© 2020 Wiley-VCH GmbH

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202004640

Defect Induced Polarization Loss in Multi-shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application

Ming Qin, Limin Zhang, Xiaoru Zhao, Hongjing Wu*

Supplementary information:

Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application

Ming Qin, Limin Zhang, Xiaoru Zhao, Hongjing Wu*

MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School

of Physical Science and Technology, Northwestern Polytechnical University, Xi'an

710072, China;

* Corresponding author: <u>wuhongjing@nwpu.edu.cn</u> (H. Wu).

Bivalent	Ma	Mn	Fe	Ni	Cu	Zn
metal ions	Mg			111		
Products	Co ₃ O ₄	Co ₃ O ₄	FeCo ₂ O ₄	NiO	CuO	ZnO
			Co ₃ O ₄	NiCo ₂ O ₄	CuCo ₂ O ₄	ZnCo ₂ O ₄

Table S1 The products prepared by different bivalent metal ions

peak areas						
Samples	Co ²⁺ /%	Co ³⁺ /%	Co ²⁺ /	Ni ²⁺ /%	Ni ³⁺ /%	Oxygen
			Co ³⁺			vacancy/%
NCO-500	72.9	27.1	2.70	59.3	40.7	32.3
NCO-600	72.6	27.4	2.66	54.0	46.0	31.5
NCO-700	64.9	35.1	1.85	47.7	52.3	35.9

Table S2 The calculated results of the Co^{2+} ratios and oxygen vacancies form XPS

	Work function	Work function	Defe
Materials	(eV)	difference (eV)	Keis.
NiCo ₂ O ₄	6.1	-	[50]
NiO	5.4	-	
NiO/NiCo ₂ O ₄	-	0.7	
CuCo ₂ O ₄	4.87	-	[52]
CuO	5.31	-	[53]
CuO/CuCo ₂ O ₄	-	0.44	
ZnO	4.45	-	[51]
ZnCo ₂ O ₄	5.22	-	
ZnO/ZnCo ₂ O ₄	-	0.77	

Table S3 Work function of materials and their differences collected from reference

EM wave	Bandwidth	Thickness	Density	
absorbers	absorbers (GHz)		(mg/cm^{-3})	Refs.
NiCo ₂ O ₄	4.28	1.20	127	[12]
nanosheet	4.28	1.39	137	[12]
NCO-S	5.44	1.8	243	
NCO-P	4.64	1.6	106	[14]
NCO-C	4.96	1.9	120	
NiCo ₂ O ₄	6.08	2.06	409	[18]
NiO/NiCo ₂ O ₄	C 09	1.00	204	[11]
microrod	0.08	1.88	294	[11]
NiCo ₂ O ₄	7.44	2.1	478	[62]
Multi-shelled				
NiO/NiCo ₂ O ₄	5.84	1.86	41.1	This work
hollow spheres				

Table S4 Comparison with our previously prepared NiCo2O4-based EM wave

absorbing	materials

Fig. S1 SEM images and EDS mapping of NCO-550.

Fig. S2 SEM images and EDS mapping of NCO-650.

Fig. S3 RL values of (a) NiCo₂O₄ precursors, (b) NCO-500, (c) NCO-550, (d)

Fig. S4 2D plot of (a) NiCo₂O₄ precursors, (b) NCO-500, (c) NCO-550, (d) NCO-600,

(e) NCO-650 and (f) NCO-700 as a function of frequency.

Fig. S5 (a) The real part and (b) imaginary part of complex permittivity, (c) the dielectric loss tangent, the (d) real part, (e) imaginary part of complex permeability, (f) the magnetic loss tangent of the as-obtained NCO samples.

Fig. S6 Cole-Cole semicircles of (a) NiCo₂O₄ precursors, (b) NCO-500, (c) NCO-550,

(d) NCO-600, (e) NCO-650 and (f) NCO-700.

Fig. S7 EIS curves of serial NCO samples.

Fig. S8 Normalized impedance matching characteristic of NCO samples.

Fig. S9 Attenuation constant of as-prepared NCO samples.

Fig. S10 EM parameters of samples obtained from different divalent metal ions (a)

 Mg^{2+} ,(b) Mn^{2+} , (c) Fe^{2+} , (d) Ni^{2+} , (e) Cu^{2+} and (f) Zn^{2+} .

Fig. S11 (a) the dielectric loss tangent and (b) the magnetic loss tangent of the

as-obtained samples.

Fig. S12 High-resolution XPS spectrum survey of O 1s of as-prepared samples obtained from divalent metal ions (a) Mg^{2+} and (b) Mn^{2+} .

Fig. S13 XPS spectrum survey of O 1s of as-prepared samples obtained from divalent metal ions Fe^{2+} , Ni^{2+} , and Cu^{2+} .

Fig. S14 *Cole-Cole* semicircles of samples obtained from different divalent metal ions (a) Mg^{2+} ,(b) Mn^{2+} , (c) Fe^{2+} , (d) Ni^{2+} , (e) Cu^{2+} and (f) Zn^{2+} .