
Appendix: Mathematical description

For simplicity, we describe the model in terms of LTCFs. However, the model is
applicable to closed facilities in general and the term LTCF can be replaced by e.g.,
Prison.

A population of N is divided into three interacting sub-populations, (i) the immobile
risk group, i.e., residents of LTCFs, (ii) the employees (staff) working in LTCFs, who are
in close contact with the risk group, and (iii) the general population, i.e., the rest of the
population. We use Ri, St, Ge as super and sub-scripts to refer to these sub-populations
in the following. The sub-populations are not equally sized. The general population size
is much larger than the risk group and the group of LTCF employees.

S(Ge)(t), S(St)(t), S(Ri)(t), (1)

are the numbers of susceptible individuals in the general, staff and risk group
sub-populations at time t.

Susceptible individuals become infected by contacts with infectious individuals.
Contacts across the sub-populations (Ge, St, Ri) are possible, however subject to the
inherent interactions between these groups. Infected individuals progress from a latent
(E), to a prodromal (P ), to a fully (I), and finally to a late (L) phase of the disease,
before the either recover (R) and become immune or die (D). The relative
infectiousness in the prodromal, fully contagious and late infectious states are cP , cI ,
and cL, respectively. The average duration an infected individual spends in the
respective stages are denoted by DE , DP , DI , and DL. In simple SEIR models,
implicitly, these durations are exponentially distributed, implying that the variance of
the durations are given by D2

E , D2
P , D2

I , D2
L, respectively. To mitigate this naive

dynamics, we partition each phase of the infection into consecutive identical sub-stages,
that yield Erlang-distributed durations. Let nE , nP , nI , and nL be the number of
latent, prodromal, fully contagious and late infective sub-stages. The average time spent
in each sub-stage of phase H ∈ {E,P, I, L} of the disease is hence DH/nH . Therefore,
the average duration spend in phase H is DH , however, the variance of the duration is
D2

H/nH . Thus, the number of sub-stages, shrinks the variance of the respective

durations. The sub-stages are denoted by H
(.)
k , for k = 1, . . . , nH , where (.) is a

placeholder for the respective sub-populations.
The average duration spent in the latent, prodromal, fully contagious, and late

infectious sub-stages are hence

DE

nE
=

1

ε
,

DP

nP
=

1

ϕ
,

DI

nI
=

1

γ
,

DL

nL
=

1

δ
, (2)

with ε, ϕ, γ, δ being the rates of change between compartments.
The LTCF employees will be tested for COVID-19 on a regular basis, and isolated if

tested positive. More precisely, staff is tested at a rate ξ, i.e., each staff is tested 1/ξ
times per time unit. We assume that the test is 100% specific, i.e., there are no
false-positive test results, reflecting PCR- or CRISPR-based tests [1, 2]. Thus, testing
does not need to be modelled explicitly in the susceptible staff population. The test,
however, is not 100% sensitive, i.e., false-negative results occur. We will use St,+ and
St,− as super- and sub-scripts to refer to infected staff who are tested positive and not
yet positive (either not tested or false-negative), respectively. The sensitivity of the test
depends on the phase of the infection. Let sE , sP , sI , sL, denote the test’s sensitivity in
the latent, prodromal, fully contagious and late infective phases.

Importantly, test results are not obtained immediately, but with a time delay. The
waiting time for test results is 1/α. The notation St, ∗ is used as super- and sub-scripts
to refer to staff awaiting the test results, whose test result will be positive.
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The total number of latent infected individuals in the general population is

E
(Ge)
Sum (t) =

nE∑
k=1

E
(Ge)
k (t). (3a)

In the population of LTCF staff, it is necessary to distinguish between those that have
not yet been tested positive, those that will be tested positive but are still waiting the
test results and those that have tested positive. The numbers of latently infected
individuals in these sub-populations are

E
(St,−)
Sum (t) =

nE∑
k=1

E
(St,−)
k (t), (3b)

E
(St,∗)
Sum (t) =

nE∑
k=1

E
(St,∗)
k (t), (3c)

E
(St,+)
Sum (t) =

nE∑
k=1

E
(St,+)
k (t). (3d)

The number of latent infections in the risk group is

E
(Ri)
Sum(t) =

nE∑
k=1

E
(Ri)
k (t). (3e)

Similarly, the total numbers of prodromal infections in the sub-populations are

P
(Ge)
Sum (t) =

nP∑
k=1

P
(Ge)
k (t), (4a)

P
(St,−)
Sum (t) =

nP∑
k=1

P
(St,−)
k (t), (4b)

P
(St,∗)
Sum (t) =

nP∑
k=1

P
(St,∗)
k (t), (4c)

P
(St,+)
Sum (t) =

nP∑
k=1

P
(St,+)
k (t), (4d)

P
(Ri)
Sum(t) =

nP∑
k=1

P
(Ri)
k (t). (4e)
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The numbers of fully contagious individuals in the respective sub-populations are

I
(Ge)
Sum (t) =

nI∑
k=1

I
(Ge)
k (t), (5a)

I
(St,−)
Sum (t) =

nI∑
k=1

I
(St,−)
k (t), (5b)

I
(St,∗)
Sum (t) =

nI∑
k=1

I
(St,∗)
k (t), (5c)

I
(St,+)
Sum (t) =

nI∑
k=1

I
(St,+)
k (t), (5d)

I
(Ri)
Sum(t) =

nI∑
k=1

I
(Ri)
k (t), (5e)

while those of the late infectious are

L
(Ge)
Sum(t) =

nL∑
k=1

L
(Ge)
k (t), (6a)

L
(St,−)
Sum (t) =

nL∑
k=1

L
(St,−)
k (t), (6b)

L
(St,∗)
Sum (t) =

nL∑
k=1

L
(St,∗)
k (t), (6c)

L
(St,+)
Sum (t) =

nL∑
k=1

L
(St,+)
k (t), (6d)

L
(Ri)
Sum(t) =

nL∑
k=1

L
(Ri)
k (t). (6e)

COVID-19 testing does not need to be modelled among recovered staff, since they
are immune. Note that also recovered individuals will be tested regularly, if their
infection was undetected. To assess the amount of unnecessary performed tests, it is
hence important to distinguish between the various groups also among recovered
individuals. The total numbers of recovered individuals in the general population, the
staff (St,+; St, ∗; St,−) and the risk group are R(St,+), R(St,∗), R(St,−), and R(Ri),
while the number of deaths that occurred until time t in the sub-populations are
D(St,−), D(St,∗), D(St,−), and D(Ri).

A fraction fSick of fully contagious individuals develop symptoms, i.e., the get sick.
The fraction is higher in the risk group and denoted by fSick

(Ri). Fractions fDead in the

general and LTCF staff sub-populations and f
(Ri)
Dead in the risk group of symptomatic

individuals will ultimately die.
Thus the numbers of symptomatic infections in the fully contagious states in the

various sub-populations are

I
(Ge)
Sick (t) = fSickI

(Ge)
Sum (t), (7a)

I
(St,−)
Sick (t) = fSickI

(St,−)
Sum (t), (7b)

I
(St,∗)
Sick (t) = fSickI

(St,∗)
Sum (t), (7c)

I
(St,+)
Sick (t) = fSickI

(St,+)
Sum (t), (7d)

I
(Ri)
Sick (t) = fSickI

(Ri)
Sum(t), (7e)
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and the number of individuals in the late infectious states that are/were
symptomatic are

L
(Ge)
Sick (t) = fSickL

(Ge)
Sum(t), (8a)

L
(St,−)
Sick (t) = fSickL

(St,−)
Sum (t), (8b)

L
(St,∗)
Sick (t) = fSickL

(St,∗)
Sum (t), (8c)

L
(St,+)
Sick (t) = fSickL

(St,+)
Sum (t), (8d)

L
(Ri)
Sick(t) = fSickL

(Ri)
Sum(t). (8e)

Case isolation mechanisms are sustained during the time interval from tIso1 to tIso2 . In
the risk group symptomatic infections will be isolated in quarantine, as LTCFs are
equipped for these purposes. In the rest of the population a fraction fIso of
symptomatic infections gets hospitalized and will be put into quarantine wards until
their maximum capacity Qmax is reached. In the latter case, they will go into home
isolation. Whereas quarantine wards prevent all infectious contacts, home isolation
prevents only a fraction pHome of contacts. Importantly, no individual in home isolation
has any contact with the risk group, i.e., infective contacts between an individual in
home isolation and the risk group cannot occur in the time interval from tIso1 to tIso2 .
Staff, positively tested for COVID-19, even if asymptomatic, also go into isolation in the
quarantine wards or home isolation if the wards are occupied. Individuals stay in
isolation until they recover or die, during the time interval from tIso1 to tIso2 .

The number of individuals from the general and staff sub-populations in isolation
facilities at time t are

Q(t) =fIso

(
I
(Ge)
Sick (t) + L

(Ge)
Sick (t) + I

(St,−)
Sick (t) + L

(St,−)
Sick (t) + I

(St,∗)
Sick (t) + L

(St,∗)
Sick (t)

)
+ E

(St,+)
Sum (t) + P

(St,+)
Sum (t) + I

(St,+)
Sum (t) + L

(St,+)
Sum (t).

(9)

Thus the numbers of latently infected and prodromal staff in quarantine wards are

E
(St,+)
Iso (t) =


E

(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

E
(St,+)
Sum (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(10)

and

P
(St,+)
Iso (t) =


P

(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

P
(St,+)
Sum (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(11)

The numbers of fully contagious individuals in quarantine wards in the various
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sub-populations are

I
(Ge)
Iso (t) =


fIsoI

(Ge)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoI
(Ge)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(12a)

I
(St,−)
Iso (t) =


fIsoI

(St,−)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoI
(St,−)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(12b)

I
(St,∗)
Iso (t) =


fIsoI

(St,∗)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoI
(St,∗)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(12c)

I
(St,+)
Iso (t) =


I
(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

I
(St,+)
Sum (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(12d)

I
(Ri)
Iso (t) =

{
I
(Ri)
Sick (t) if tIso1 ≤ t ≤ tIso2 ,

0 otherwise.
(12e)

The numbers of individuals in the late infected states in quarantine wards are

L
(Ge)
Iso (t) =


fIsoL

(Ge)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoL
(Ge)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(13a)

L
(St,−)
Iso (t) =


fIsoL

(St,−)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoL
(St,−)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(13b)

L
(St,∗)
Iso (t) =


fIsoL

(St,∗)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

fIsoL
(St,∗)
Sick (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(13c)

L
(St,+)
Iso (t) =


L
(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) ≤ Qmax,

L
(St,+)
Sum (t)

Qmax

Q(t)
if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,

(13d)

L
(Ri)
Iso (t) =

{
L
(Ri)
Sick(t) if tIso1 ≤ t ≤ tIso2 ,

0 otherwise.
(13e)

Furthermore, the numbers of latently infected and prodromal positively tested staff
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in home isolation are given by

E
(St,+)
Home (t) =


(

1− Qmax

Q(t)

)
E

(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(14)

P
(St,+)
Home (t) =


(

1− Qmax

Q(t)

)
P

(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(15)

The total numbers of fully contagious individuals in home isolation at time t is

I
(Ge)
Home(t) =


(

1− Qmax

Q(t)

)
fIsoI

(Ge)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(16a)

I
(St,−)
Home (t) =


(

1− Qmax

Q(t)

)
fIsoI

(St,−)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(16b)

I
(St,∗)
Home (t) =


(

1− Qmax

Q(t)

)
fIsoI

(St,∗)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(16c)

I
(St,+)
Home (t) =


(

1− Qmax

Q(t)

)
I
(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(16d)

and the total numbers of late infectious individuals in the sub-populations in home
isolation are

L
(Ge)
Home(t) =


(

1− Qmax

Q(t)

)
fIsoL

(Ge)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(17a)

L
(St,−)
Home (t) =


(

1− Qmax

Q(t)

)
fIsoI

(St,−)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(17b)

L
(St,∗)
Home(t) =


(

1− Qmax

Q(t)

)
fIsoL

(St,∗)
Sick (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise,
(17c)

L
(St,+)
Home (t) =


(

1− Qmax

Q(t)

)
L
(St,+)
Sum (t) if tIso1 ≤ t ≤ tIso2 and Q(t) > Qmax,

0 otherwise.
(17d)

Prodromal individuals in the general population and the risk group participate in
infection. However, during the time case isolation measures are sustained, members of
the general population are only allowed to enter the LTCF and get in contact with the

risk group if tested negative. Assume a fraction s
(Ge)
P of prodromal individuals in the

general population cannot enter the LTCF because they obtained a negative test result
(we neglect moving them into quarantine, because their number will be limited).

Hence, the number of prodromal individuals in the general population that can have
infective contacts with the risk group is

P
(Ge)
Eff,Ri(t) = P

(Ge)
Sum (t)(1− s(Ge)

P ). (18a)
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Prodromal staff also participate to infection, except those that are in isolation. The
number of prodromal staff that can infect the general population and staff is

P
(St)
Eff (t) = P

(St,−)
Sum (t) + P

(St,∗)
Sum (t) + P

(St,+)
Sum (t)− P (St,+)

Iso (t)− pHomeP
(St,+)
Home (t). (18b)

Positively-tested staff is isolated from the risk group, hence positively-tested prodromal
staff cannot infect the risk group. Thus the number of prodromal staff that can infect
the risk group is

P
(St)
Eff, Ri(t) = P

(St,−)
Sum (t) + P

(St,∗)
Sum (t). (18c)

The number of fully contagious individuals in the general population that can infect
susceptibles in the general and staff sub-populations is

I
(Ge)
Eff (t) = I

(Ge)
Sum (t)− I(Ge)

Iso (t)− pHomeI
(Ge)
Home(t). (19a)

Infected individuals in home isolation are isolated from the risk group. The remaining

individuals need to provide a negative test before entry into the LTCF. Let s
(Ge)
I be the

fraction of fully contagious individuals in the general population not in isolation that
want to enter the LTCF but obtained a positive test results. Again it is ignored that
these individuals are put into isolation. Hence, the number of fully contagious
individuals in the general population infecting the risk group is

I
(Ge)
Eff, Ri(t) = (1− s(Ge)

I )
(
I
(Ge)
Sum (t)− I(Ge)

Iso (t)− I(Ge)
Home(t)

)
. (19b)

Similarly, the number of fully contagious individuals in the staff sub-populations,
participating to infectious contacts with the general population and staff, is

I
(St)
Eff (t) =I

(St,−)
Sum (t)− I(St,−)

Iso (t)− pHomeI
(St,−)
Home (t)

+ I
(St,∗)
Sum (t)− I(St,∗)Iso (t)− pHomeI

(St,∗)
Home (t)

+ I
(St,+)
Sum (t)− I(St,+)

Iso (t)− pHomeI
(St,+)
Home (t).

(19c)

Any staff in isolation (in wards or at home) are isolated from the risk group. Hence, the
numbers of fully contagious staff that can infect the risk group are

I
(St)
Eff, Ri(t) =I

(St,−)
Sum (t)− I(St,−)

Iso (t)− I(St,−)
Home (t) + I

(St,∗)
Sum (t)− I(St,∗)Iso (t)− I(St,∗)Home (t). (19d)

The number of fully contagious individuals in the risk group participating in infection is

I
(Ri)
Eff (t) =I

(Ri)
Sum(t)− I(Ri)

Iso (t). (19e)

The number of late infected individuals in the general population participating in
infective contacts with the general and staff populations is

L
(Ge)
Eff (t) =L

(Ge)
Sum(t)− L(Ge)

Iso (t)− pHomeL
(Ge)
Home(t), (20a)

whereas the number of late infectious individuals potentially infecting the risk group is

L
(Ge)
Eff, Ri(t) =(1− s(Ge)

L )
(
L
(Ge)
Sum(t)− L(Ge)

Iso (t)− L(Ge)
Home(t)

)
, (20b)
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where s
(Ge)
L is the probability that a late infected individual not in isolation that wants

to enter the LTCF obtains a positive test result and is thus denied access. Again it is
ignored to put these individuals into quarantine. The late infected staff population
potentially infecting the general and staff populations is

L
(St)
Eff (t) =L

(St,−)
Sum (t)− L(St,−)

Iso (t)− pHomeL
(St,−)
Home (t),

+ L
(St,∗)
Sum (t)− L(St,∗)

Iso (t)− pHomeL
(St,∗)
Home(t),

+ L
(St,+)
Sum (t)− L(St,+)

Iso (t)− pHomeL
(St,+)
Home (t),

(20c)

while those late infected staff potentially infecting the risk group amount to

L
(St)
Eff,Ri(t) =L

(St,−)
Sum (t)− L(St,−)

Iso (t)− L(St,−)
Home (t) + L

(St,∗)
Sum (t)

− L(St,∗)
Iso (t)− L(St,∗)

Home(t),
(20d)

whereas the number of late infected in the risk group participating in infection is

L
(Ri)
Eff (t) =L

(Ri)
Sum(t)− L(Ri)

Iso (t). (20e)

The basic reproduction number R0 is the average number of infections caused by an
average infected individual in a completely susceptible population, in which no
interventions occur (cf. [3]). R0 is assumed to fluctuate seasonally with a peak at time
tR0max

, i.e.,

R0(t) := R̄0

(
1 + a cos

(
2π
t− tR0max

365

))
, (21)

where R̄0 is the seasonal average basic reproduction number, and a (0 ≤ a ≤ 1)
determines the amplitude of seasonal fluctuations.

In populations, sub-divided into heterogeneous sub-populations, R̄0 is determined by
the contact behaviors via the next generation matrix (see [3]). Contacts between
sub-populations are not random, but reflect the specific interactions between them.
Random encounters between the sub-populations are mediated by the symmetric mixing
matrix

X(t) =


xGe,Ge(t) xGe,St(t) xGe,Ri(t)

xSt,Ge(t) xSt,St(t) xSt,Ri(t)

xRi,Ge(t) xRi,St(t) xRi,Ri(t)

 , (22)

whose entries are defined by (40), which corrects for the true contact behavior,
described in detail below (see below section “Mathematical description of the
demographic mixing matrix”). This matrix is time dependent because the contact
behavior is further mediated by general contact reducing measure, e.g., curfews being
sustained in certain time intervals. These contact-reducing measures depend on the
characteristic of the sub-populations and are described below in detail.

The rates of infective contacts are determined by multiplying the mixing matrix with
a rate, independent of the sub-populations. In the following these are referred to as
contact rates. The contact rates for the prodromal, fully contagious and late infectious
states are determined by the relative contagiousness, cP , cI , cL, in these states and –
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following [4] – are given by

βP (t) :=
cP R̄

(adj)
0

cPDP + cIDI + cLDL

(
1 + a cos

(
2π
t− tR0max

365

))
, (23a)

βI(t) :=
cIR̄

(adj)
0

cPDP + cIDI + cLDL

(
1 + a cos

(
2π
t− tR0max

365

))
, (23b)

βL(t) :=
cLR̄

(adj)
0

cPDP + cIDI + cLDL

(
1 + a cos

(
2π
t− tR0max

365

))
, (23c)

where R̄
(adj)
0 is the adjusted average reproduction number that accounts for the contact

behavior in the population.
Hence, the (internal) force of infection for susceptible in the general population

becomes

λGe(t) =βP (t)
(
xGe,Ge(t)P

(Ge)
Sum (t) + xGe,St(t)P

(St)
Eff (t) + xGe,Ri(t)P

(Ri)
Sum(t)

)
+ βI(t)

(
xGe,Ge(t)I

(Ge)
Eff (t) + xGe,St(t)I

(St)
Eff (t) + xGe,Ri(t)I

(Ri)
Eff (t)

)
+ βL(t)

(
xGe,Ge(t)L

(Ge)
Eff (t) + xGe,St(t)L

(St)
Eff (t) + xGe,Ri(t)L

(Ri)
Eff (t)

)
.

(24)

The (internal) force of infection in the sub-populations of LTCF employees and the risk
group are

λSt(t) =βP (t)
(
xSt,Ge(t)P

(Ge)
Sum (t) + xSt,St(t)P

(St)
Eff (t) + xSt,Ri(t)P

(Ri)
Sum(t)

)
+ βI(t)

(
xSt,Ge(t)I

(Ge)
Eff (t) + xSt,St(t)I

(St)
Eff (t) + xSt,Ri(t)I

(Ri)
Eff (t)

)
+ βL(t)

(
xSt,Ge(t)L

(Ge)
Eff (t) + xSt,St(t)L

(St)
Eff (t) + xSt,Ri(t)L

(Ri)
Eff (t)

)
,

(25)

and

λRi(t) =xRi,Ge(t)
(
βP (t)P

(Ge)
Eff,Ri(t) + βI(t)I

(Ge)
Eff,Ri(t) + βL(t)L

(Ge)
Eff,Ri(t)

)
+ βP (t)

(
xRi,St(t)P

(St)
Eff,Ri(t) + xRi,Ri(t)P

(Ri)
Sum(t)

)
+ βI(t)

(
xRi,St(t)I

(St)
Eff,Ri(t) + xRi,Ri(t)I

(Ri)
Eff (t)

)
+ βL(t)

(
xRi,St(t)L

(St)
Eff,Ri(t) + xRi,Ri(t)L

(Ri)
Eff (t)

)
,

(26)

respectively.
Furthermore, we assume an external force of infection λExt for the general population

and LTCF staff. These are caused by infectious contacts with individuals from outside
the population. We assume that the risk group has no contacts with these individuals.

Putting all together, the dynamics for the susceptible individuals become

dS(Ge)

dt
= −

(
λGe(t) + λExt

)
S(Ge)(t)

N
, (27a)

dS(St)

dt
= −

(
λSt(t) + λExt

)
S(St)

N
, (27b)

dS(Ri)

dt
= −λRi(t)

S(Ri)

N
. (27c)
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The dynamics of the latently infected individuals in the respective sub-populations and
Erlang states become

dE
(Ge)
1

dt
=
(
λGe(t) + λExt

)S(Ge)(t)

N
− εE(Ge)

1 (t), (28a)

dE
(Ge)
k

dt
= εE

(Ge)
k−1 (t)− εE(Ge)

k (t) for 2 ≤ k ≤ nE , (28b)

dE
(St,−)
1

dt
=
(
λSt(t)+λExt

)S(St)(t)

N
−εE(St,−)

1 (t)−ξsEE(St,−)
1 (t), (28c)

dE
(St,∗)
1

dt
= ξsEE

(St,−)
1 (t)− εE(St,∗)

1 (t)− αE(St,∗)
1 (t), (28d)

dE
(St,+)
1

dt
= αE

(St,∗)
1 (t)− εE(St,+)

1 (t), (28e)

dE
(St,−)
k

dt
= εE

(St,−)
k−1 (t)− εE(St,−)

k (t)− ξsEE(St,−)
k (t) for 2 ≤ k ≤ nE , (28f)

dE
(St,∗)
k

dt
= ξsEE

(St,−)
k (t)+εE

(St,∗)
k−1 (t)−εE(St,∗)

k (t)−αE(St,∗)
k (t) for 2 ≤ k ≤ nE , (28g)

dE
(St,+)
k

dt
= αE

(St,∗)
k (t) + εE

(St,+)
k−1 (t)− εE(St,+)

k (t) for 2 ≤ k ≤nE , (28h)

dE
(Ri)
1

dt
= λRi(t)

S(Ri)(t)

N
− εE(Ri)

1 (t), (28i)

dE
(Ri)
k

dt
= εE

(Ri)
k−1(t)− εE(Ri)

k (t) for 2 ≤ k ≤ nE . (28j)

For the prodromal individuals the set of differential equations becomes

dP
(Ge)
1

dt
= εE(Ge)

nE
(t)− ϕP (Ge)

1 (t), (29a)

dP
(Ge)
k

dt
= ϕP

(Ge)
k−1 (t)− ϕP (Ge)

k (t) for 2 ≤ k ≤ nP , (29b)

dP
(St,−)
1

dt
= εE(St,−)

nE
(t)− ϕP (St,−)

1 (t)− ξsPP (St,−)
1 (t), (29c)

dP
(St,∗)
1

dt
= εE(St,∗)

nE
(t)+ξsPP

(St,−)
1 (t)−ϕP (St,∗)

1 (t)−αP (St,∗)
1 (t), (29d)

dP
(St,+)
1

dt
= εE(St,+)

nE
(t) + αP

(St,∗)
1 (t)− ϕP (St,+)

1 (t), (29e)

dP
(St,−)
k

dt
= ϕP

(St,−)
k−1 (t)− ϕP (St,−)

k (t)− ξsPP (St,−)
k (t) for 2 ≤ k ≤ nP , (29f)

dP
(St,∗)
k

dt
=ξsPP

(St,−)
k (t)+ϕP

(St,∗)
k−1 (t)−ϕP (St,∗)

k (t)−αP (St,∗)
k (t) for 2 ≤ k ≤ nP , (29g)

dP
(St,+)
k

dt
= αP

(St,∗)
k (t) + ϕP

(St,+)
k−1 (t)− ϕP (St,+)

k (t) for 2 ≤ k ≤ nP , (29h)

dP
(Ri)
1

dt
= εE(Ri)

nE
(t)− ϕP (Ri)

1 (t), (29i)

dP
(Ri)
k

dt
= ϕP

(Ri)
k−1 (t)− ϕP (Ri)

k (t) for ≤ k ≤ nP . (29j)

The dynamic of the fully infected population is described by the following differential
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equations

dI
(Ge)
1

dt
= ϕP (Ge)

nP
(t)− γI(Ge)

1 (t), (30a)

dI
(Ge)
k

dt
= γI

(Ge)
k−1 (t)− γI(Ge)

k (t) for 2 ≤ k ≤ nI , (30b)

dI
(St,−)
1

dt
= ϕP (St,−)

nP
(t)− γI(St,−)

1 (t)− ξsII(St,−)
1 (t), (30c)

dI
(St,∗)
1

dt
= ϕP (St,∗)

nP
(t)+ξsII

(St,−)
1 (t)−γI(St,∗)1 (t)−αI(St,∗)1 (t), (30d)

dI
(St,+)
1

dt
= ϕP (St,+)

nP
(t) + αI

(St,∗)
1 (t)− γI(St,+)

1 (t), (30e)

dI
(St,−)
k

dt
= γI

(St,−)
k−1 (t)− γI(St,−)

k (t)− ξsII(St,−)
k (t) for 2 ≤ k ≤ nI , (30f)

dI
(St,∗)
k

dt
= ξsII

(St,−)
k (t)+γI

(St,∗)
k−1 (t)−γI(St,∗)k (t)−αI(St,∗)k (t) for 2 ≤ k ≤ nI , (30g)

dI
(St,+)
k

dt
= αI

(St,∗)
k (t) + γI

(St,+)
k−1 (t)− γI(St,+)

k (t) for 2 ≤ k ≤ nI , (30h)

dI
(Ri)
1

dt
= ϕP (Ri)

nP
(t)− γI(Ri)

1 (t), (30i)

dI
(Ri)
k

dt
= γI

(Ri)
k−1(t)− γI(Ri)

k (t) for 2 ≤ k ≤ nI . (30j)

The following differential equations describe the dynamic of the late infectious
individuals

dL
(Ge)
1

dt
= γI(Ge)

nI
(t)− δL(Ge)

1 (t), (31a)

dL
(Ge)
k

dt
= δL

(Ge)
k−1 (t)− δL(Ge)

k (t) for 2 ≤ k ≤ nL, (31b)

dL
(St,−)
1

dt
= γI(St,−)

nI
(t)− δL(St,−)

1 (t)− ξsLL(St,−)
1 (t), (31c)

dL
(St,∗)
1

dt
= γI(St,∗)nI

(t)+ξsLL
(St,−)
1 (t)−δL(St,∗)

1 (t)−αL(St,∗)
1 (t), (31d)

dL
(St,+)
1

dt
= γI(St,+)

nI
(t) + αL

(St,∗)
1 (t)− δL(St,+)

1 (t), (31e)

dL
(St,−)
k

dt
= δL

(St,−)
k−1 (t)− δL(St,−)

k (t)− ξsLL(St,−)
k (t) for 2 ≤ k ≤ nL, (31f)

dL
(St,∗)
k

dt
=ξsLL

(St,−)
k (t)+δL

(St,∗)
k−1 (t)−δL(St,∗)

k (t)−αL(St,∗)
k (t) for 2 ≤ k ≤ nL, (31g)

dL
(St,+)
k

dt
= αL

(St,∗)
k (t) + δL

(St,+)
k−1 (t)− δL(St,+)

k (t) for 2 ≤ k ≤ nL, (31h)

dL
(Ri)
1

dt
= γI(Ri)

nI
(t)− δL(Ri)

1 (t), (31i)

dL
(Ri)
k

dt
= δL

(Ri)
k−1(t)− δL(Ri)

k (t) for 2 ≤ k ≤ nL. (31j)

11/18



The dynamics of the recovered sub-populations are

dR(Ge)

dt
= δ
(
1− fSickfDead

)
L(Ge)
nL

(t), (32a)

dR(St,-)

dt
= δ
(
1− fSickfDead

)
L(St,−)
nL

(t), (32b)

dR(St,*)

dt
= δ
(
1− fSickfDead

)
L(St,∗)
nL

(t), (32c)

dR(St,+)

dt
= δ
(
1− fSickfDead

)
L(St,+)
nL

(t), (32d)

dR(Ri)

dt
= δ

(
1− fSick(Ri)f

(Ri)
Dead

)
L(Ri)
nL

(t). (32e)

Finally, the dynamics of dead individuals are given by

dD(Ge)

dt
= δfSickfDeadL

(Ge)
nL

(t), (33a)

dD(St,-)

dt
= δfSickfDeadL

(St,−)
nL

(t), (33b)

dD(St,*)

dt
= δfSickfDeadL

(St,∗)
nL

(t), (33c)

dD(St,+)

dt
= δfSickfDeadL

(St,+)
nL

(t), (33d)

dD(Ri)

dt
= δfSick

(Ri)f
(Ri)
DeadL

(Ri)
nL

(t). (33e)

Mathematical description of the demographic mixing matrix

The average numbers of daily contacts of an individual in the general sub-populations,
among the LTCF employees, and the risk group are n(Ge), n(St), n(Ri), respectively. The
total number of contacts in the three sub-populations are respectively the products
n(Ge)N (Ge), n(St)N (St), and n(Ri)N (Ri). For the general sub-population, x and y are the
(conditional) probabilities that a contact occurs with and individual of the general
sub-population or the sub-population of LTCF employees, respectively. Similarly for the
LTCF staff, u and v are the probabilities that a contact occurs with the
general-sub-population or the LTCF employees. Finally, for the risk group p and q are
the probabilities of a contact with the general sub-population or the LTCF staff.
Therefore, the matrix of all contacts becomes

MTot :=

xn(Ge)N (Ge) yn(Ge)N (Ge) (1− x− y)n(Ge)N (Ge)

un(St)N (St) vn(St)N (St) (1− u− v)n(St)N (St)

pn(Ri)N (Ri) qn(Ri)N (Ri) (1− p− q)n(Ri)N (Ri)

 . (34)

The bidirectional nature of contacts implies that this matrix is symmetric and hence
can be rewritten as

MTot =

 xn(Ge)N (Ge) yn(Ge)N (Ge) (1−x−y)n(Ge)N (Ge)

yn(Ge)N (Ge) vn(St)N (St) (1−u−v)n(St)N (St)

(1−x−y)n(Ge)N (Ge) (1−u−v)n(St)N (St) (1−p−q)n(Ri)N (Ri)

 . (35)
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This implies the relations

u = y
n(Ge)N (Ge)

n(St)N (St)
, (36a)

p = (1− x− y)
n(Ge)N (Ge)

n(Ri)N (Ri)
, (36b)

q = (1− u− v)
n(St)N (St)

n(Ri)N (Ri)
. (36c)

The symmetry of the matrix constrains the choices of n(Ge), n(St), n(Ri), x, y, u, v, p,
and q.

If individuals in the whole population would encounter randomly, which is not the
case due to the specific contact behaviour, the probabilities of encounters between the
sub-populations was

R :=



(
N (Ge)

N

)2
N (Ge)N (St)

N2

N (Ge)N (Ri)

N2

N (Ge)N (St)

N2

(
N (St)

N

)2
N (St)N (Ri)

N2

N (Ge)N (Ri)

N2

N (St)N (Ri)

N2

(
N (Ri)

N

)2


. (37)

The mixing matrix X corrects for the dependency in the behavior of encounters such
that the matrix of all contacts emerges as the scalar product (element-wise product) of
the matrix R and the mixing matrix X, i.e., MTot = R�X. Thus the mixing matrix X
is given by

X := MTot � (1/R) =


xn(Ge) N2

N (Ge)
yn(Ge) N2

N (St)
(1− x− y)n(Ge) N2

N (Ri)

un(St)
N2

N (Ge)
vn(St)

N2

N (St)
(1− u− v)n(St)

N2

N (Ri)

pn(Ri) N2

N (Ge)
qn(Ri) N2

N (St)
(1− p− q)n(Ri) N2

N (Ri)

 , (38)

where 1/R denotes the matrix which has the reciprocal entries of R.

General contact reduction and restricted facility access

General contact reduction is sustained in a time-dependent fashion. At each time point,
the amount of contacts being reduced depends on the characteristics of the interactions
between sub-populations. This changes the matrix MTot to M̃Tot(t). Let

p
(i,j)
Cont(t) = p

(j,i)
Cont(t) be the fraction of contacts that is reduced between sub-populations i

and j at time t (i, j = (Ge), (St), (Ri)). The actual numbers of these reductions depend
on the type of interventions being sustained. The matrix M̃Tot(t) is given by

M̃Tot(t) = MTot �

1− p(Ge,Ge)
Cont (t) 1− p(Ge,St)

Cont (t) 1− p(Ge,Ri)
Cont (t)

1− p(Ge,Ri)
Cont (t) 1− p(St,St)Cont (t) 1− p(St,Ri)

Cont (t)

1− p(Ge,Ri)
Cont (t) 1− p(Ri,St)

Cont (t) 1− p(Ri,Ri)
Cont (t)

 . (39)

The mixing matrix X becomes a function of time defined by

X(t) = M̃Tot(t)� (1/R). (40)
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The basic reproduction number and the next generation matrix

The normal classical definition of the basic reproductive number R0 is the average
number of infections caused by an infected individual in a completely susceptible
population. This definition does not make sense in a heterogeneous subdivided
population, in this case it is rather the average number of infections caused by an
average infected individual [3] in a susceptible population without any disease-control
interventions. In this case R0 is derived as the maximum eigenvalue of the
next-generation matrix (NGM).

The NGM is derived by first linearizing the reduced system of ODEs assuming no
control interventions and all individuals to be susceptible. In particular, the reduced
system is obtained by retaining only those differential equations from the original
system that describe the states of infected individuals, which are relevant in the absence
of interventions. Let xxx be the vector of all states in the reduced system. The Jacobian
of this system is derived at the state, in which all individuals are susceptible, denoted
xxx0. The Jacobian is split into one matrix describing transmission and one matrix
describing transitions between infected states. Equivalently, vector-valued functions
F (xxx) and V (xxx), describing transmission and transitions in the reduced system can be

calculated, whose sum of Jacobian matrices,
∂F

∂xxx
and

∂V

∂xxx
, equals the Jacobian of the

reduced system. The NGM is calculated as

G := −

[
∂F

∂xxx
(xxx0)

][
∂V

∂xxx
(xxx0)

]−1

. (41)

Finally, R0 is obtained as the spectral radius of the matrix G, i.e., as the maximum
absolute eigenvalue (cf. [3]). In mathematical terms

R0 := ρ(G) := max
i
|λi(G)|, (42)

where λi(G) denote the eigenvalues of G. Note that ρ(G) is a function of R̄
(adj)
0 . It has

to be chosen such that

R̄0 =
maxi |λi(G)|

1 + a cos

(
− 2π

tR0max

365

)
holds.

In our case, the reduced system omits equations (27), (28e), (28f), (28h), (28i), (29d),
(29e), (29g) (29h), (30d), (30e), (30g) (30h), (31d), (31e), (31g) (31h), (32), and (33).
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The function F becomes

F (xxx) =



(
λGe(t) + λExt

)
S(Ge)(t)

N
0
...
0(

λSt(t) + λExt

)
S(St)(t)

N
0
...
0

λRi(t)
S(Ri)(t)

N
0
...
0



=



F
E

(Ge)
1

0
...
0

F
E

(St,−)
1

0
...
0

F
E

(Ri)
1

0
...
0



. (43)

The non-vanishing entries of the Jacobian of F are

∂F
E

(l)
1

∂P
(j)
k

:=βP (t)xi,j
S(i)

N
for k = 1, . . . , nP , (44a)

∂F
E

(l)
1

∂I
(j)
k

:=βI(t)xi,j
S(i)

N
for k = 1, . . . , nI , (44b)

∂F
E

(l)
1

∂L
(j)
k

:=βL(t)xi,j
S(i)

N
for k = 1, . . . , nL, (44c)

for i, j = ‘Ge’, ‘St’, ‘Ri’ and l = i except for i = ‘St’, in which case l = ‘St,-’.
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Furthermore,

(
V1(xxx), . . . , V3nE

(xxx)
)

=



−εE(Ge)
1 (t)
...

εE
(Ge)
k−1 (t)− εE(Ge)

k (t)
...

−εE(St,−)
1 (t)

...

εE
(St,−)
k−1 (t)− εE(St,−)

k (t)
...

−εE(Ri)
1 (t)
...

εE
(Ri)
k−1(t)− εE(Ri)

k (t)
...



, (45a)

(
V3nE+1(xxx), . . . , V3(nE+nP )(xxx)

)
=



εE
(Ge)
nE (t)− ϕP (Ge)

1 (t)
...

ϕP
(Ge)
k−1 (t)− ϕP (Ge)

k (t)
...

εE
(St,−)
nE (t)− ϕP (St,−)

1 (t)
...

ϕP
(St,−)
k−1 (t)− ϕP (St,−)

k (t)
...

εE
(Ri)
nE (t)− ϕP (Ri)

1 (t)
...

ϕP
(Ri)
k−1 (t)− ϕP (Ri)

k (t)
...



, (45b)
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(
V3(nE+nP )+1(xxx), . . . , V3(nE+nP+nI)(xxx)

)
=



ϕP
(Ge)
nP (t)− γI(Ge)

1 (t)
...

γI
(Ge)
k−1 (t)− γI(Ge)

k (t)
...

ϕP
(St,−)
nP (t)− γI(St,−)

1 (t)
...

γI
(St,−)
k−1 (t)− γI(St,−)

k (t)
...

ϕP
(Ri)
nP (t)− γI(Ri)

1 (t)
...

γI
(Ri)
k−1(t)− γI(Ri)

k (t)
...



, (45c)

(
V3(nE+nP+nI)+1(xxx), . . . , V3(nE+nP+nI+nL)(xxx)

)
=



γI
(Ge)
nI (t)− δL(Ge)

1 (t)
...

δL
(Ge)
k−1 (t)− δL(Ge)

k (t)
...

γI
(St,−)
nI (t)− δL(St,−)

1 (t)
...

δL
(St,−)
k−1 (t)− δL(St,−)

k (t)
...

γI
(Ri)
nI (t)− δL(Ri)

1 (t)
...

δL
(Ri)
k−1(t)− δL(Ri)

k (t)
...



. (45d)

The derivatives of the V (xxx) are straightforward and are omitted here. Deriving (41) and
(42) from (44) and the derivatives of (45) is straightforward.

To find the proper values of R̄
(adj)
0 , let G̃ denote the matrix

G̃ :=
1

R̄
(adj)
0

(
1 + a cos

(
− 2π

tR0max

365

))G, (46)

which is independent of R̄
(adj)
0 . Then

R̄
(adj)
0 =

R̄0

maxi |λi(G̃)|
. (47)
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