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S1 File 1

S1.1 ACLED event types 2

In this Appendix we illustrate the various categories the ACLED codebook uses to 3

classify disorder events [1]: 4

Violence against civilians involve one organized armed group deliberately inflicting 5

violence against unarmed non-combatants. Perpetrators of violent acts can include state 6

forces and affiliates, rebels, militias or other marginal subjects. Attempts to inflicting 7

harm are also included, such as attempted kidnappings. 8

Riots are characterized by demonstrators or mobs engaging in violent, disruptive 9

actions such as property destruction. Riots can emerge from peaceful protests and are 10

generally characterized by the use of unsophisticated weapons. 11

Protests refer to public demonstrations involving participants that do not engage in 12

violent activity, although violence may be used against them. Symbolic acts such as 13

publicly displaying flags are not coded as protests if they are not accompanied by a 14

demonstration. Parliamentary walkouts and/or individual acts such as self-harming are 15

not included. 16

Battles involve violent interactions between politically organized armed groups at a 17

particular time and location. At least two armed actors must be present; these may be 18

armed and may include state, non-state and external entities. There is no minimum 19

threshold for the number of fatalities. 20

S1.2 k-means clustering 21

The purpose of k-means clustering is to partition a set of n points {x1, · · · , xn} into k 22

clusters C1, · · · , Ck [2]. This iterative algorithm seeks to identify clusters Ci by 23

considering their centroids νi and by minimizing the average distance of the data points 24

within it to the centroid. Therefore, the k-means algorithm tries to find 25

C = {C1, · · · , Ck} and νi defined as 26
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Fig S1. From left to right: k-means clustering applied to Israel, India, Mexico. On the
vertical axis is the WSS(k). Note that the scales reflect the spatial extent of the
countries. India being the largest by territorial extent is associated to the largest
WSS(k) range, India being the smallest is associated to the smallest WSS(k) range. The
vertical line denotes our elbow method best estimate for the optimal k∗ value which we
identify as k∗ = 4 in all countries.

arg min
C

k∑
i=1

∑
x∈Ci

‖x− νi‖2 (S1)

Here, ‖x− νi‖2 is the square of the Euclidean distance between the points in a given 27

cluster and its centroid νi. Procedurally, k centroids νi are initialized and each data 28

point is assigned to its closest centroid. The mean of the positions of all points within a 29

cluster define the new centroid. An iterative process ensues until discrepancies between 30

iterations falls below a given threshold. 31

S1.2.1 Finding the optimal number of k 32

To identify the optimal number of clusters k∗ we utilized the heuristic elbow method. 33

Here, k-means clustering is applied for several increasing values of k. Once clusters are 34

identified, the sums of the square of the distance of each point within a cluster to its 35

centroid is calculated. This k-dependent quantity is termed WSS(k), within-cluster sum. 36

As k increases, more clusters are possible, hence, one may expect the WSS(k) to 37

decrease as a function of k as there may be a centroid closer to them. However, beyond 38

a critical value k∗ the decrease may be marginal, indicating that allowing for extra 39

clusters does not improve on the compactness of the clustering process. The value of k∗ 40

beyond which decreases in WSS asymptote yields the elbow, optimal value of k∗. In our 41

work we use 1 < k < 10; as can be seen from for all three countries of interest, India, 42

Israel and Mexico, the optimal k∗ value is k∗ = 4. 43

S1.3 Hawkes Process parameter estimation 44

We use MLE to derive the Hawkes process parameters µ, α, β. These emerge as the ones 45

that maximize the loglikelihood function defined as 46
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logL(µ, α, β|t1, ..., tn) =

n∑
i=1

log(λ(ti))−
∫ tn

0

λ(t)dt (S2)

=

n∑
i=1

log

µ+ α

i−1∑
j=1

e−β(ti−tj)

− µtn +
α

β

n∑
i=1

[
e−β(tk−ti) − 1

]
,

where {t1, ..., tn} is the set of the times of occurrence of given events. The loglikelihood 47

function compares the value of the intensity function of the Hawkes process λ(t) at 48

event times {t1, ..., tn} to the cumulative value of the function within the continuous 49

interval 0 ≤ t ≤ tn. Maximizing the loglikelihood function yields parameters which best 50

represent the actual event data. In this work we maximize logL through the 51

Nelder-Mead approach as available in the ptproc package in R [3]. 52

S1.4 Event Distribution - Cluster wise 53

S1.4.1 India 54

Distribution summaries are shown in Fig. S2: C2 has the highest average number of 55

disorders per week and the highest variability, followed by C1. Interestingly, while C4 56

has the second-lowest average number of disorders, it exhibits outliers, coinciding with 57

week j = 19 (51 events) and week j = 24 (60 events). 58
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Fig S2. Cluster-wise boxplot of disorder events in India. The most occurrences arise in
clusters C1, C2, where the most densely populated states are located. C4 displays
several outliers.

S1.4.2 Israel 59

Figure S3 reveals low values of averaged weekly disorders, however many outliers emerge 60

corresponding to the interval between weeks j = 37 and j = 50 mentioned above. 61
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Fig S3. Cluster-wise boxplot of disorder events in Israel. The most occurrences arise in
clusters C1, C3 and C4 where the major cities of Haifa, Tel Aviv and Jerusalem are
located.

S1.4.3 Mexico 62

Figure S4 summarizes the distribution of events in Mexico at the weekly level. As 63

mentioned, C4 has the highest average and variability in event counts, followed by C2, 64

whereas in C3 and C1 fewer events are recorded. Interestingly, C1 is characterized by a 65

very low variability. Thus, while spikes in activity and fluctuations emerge in other 66

clusters, events in C1 are more uniformly distributed. 67
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Fig S4. Cluster-wise boxplot of disorder events in Mexico. The most occurrences arise
in cluster C4, where the most populous and dense areas of Mexico City and Mexico
state are located.

S1.5 Cluster-based analysis: Pearson’s correlation coefficients 68

In this section we list the numerical values of the Pearson coefficient r correlating the 69

number of weekly of events in pairs of clusters within a given country. If we denote two 70

clusters within a country CX and CY then r is defined as 71

r =
E(X − µx)E(Y − µy)

σXσY
(S3)

where X,Y are the sets of weekly data in clusters CX and CY , respectively, µX , µY 72

their averages, and σX , σY their standard deviations. Pearson’s correlation coefficient 73

ranges from −1 to 1; r = 1 implies a perfect, positive, linear relationship between the 74
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two datasets whereas r = −1 implies a perfect negative one. As |r| decreases, 75

correlations become weaker, so that r = 0 implies data points in the two sets X,Y are 76

not correlated. In our work, X,Y are the either the sets of weekly events {nXj }, {nYj } in 77

each cluster or the sets of differentiated weekly events {∆nXj }, {∆nYj } where 78

∆nXj = nXj − nXj−1 and ∆nYj = nYj − nYj−1. Below we show how these quantities 79

manifest in each of the three countries under investigation. 80

S1.5.1 India 81

C1 C2 C3 C4
C1 1.000
C2 0.678 1.000
C3 0.724 0.595 1.000
C4 0.598 0.644 0.658 1.000

C1 C2 C3 C4
C1 1.000
C2 0.124 1.000
C3 0.219 0.301 1.000
C4 0.450 0.339 0.512 1.000

Table 1. Pearson’s correlation matrices for India and shown in Fig. 6. Top: Entries
represent correlation coefficients r derived on weekly events {nj} for the period January
3rd to December 12th 2020 and between the associated clusters. Overall, correlation
values are moderately large and uniform. The highest r = 0.724 is observed between
clusters C1 and C3. Bottom: Entries represent correlation coefficients r derived on
differentiated weekly events {∆nj} and show much weaker correlation, implying a
reduced synchrony in the rate of change of the occurrence of events.

S1.5.2 Israel 82

C1 C2 C3 C4
C1 1.000
C2 0.996 1.000
C3 0.998 0.995 1.000
C4 0.998 0.995 0.999 1.000

C1 C2 C3 C4
C1 1.000
C2 0.972 1.000
C3 0.986 0.954 1.000
C4 0.986 0.958 0.995 1.000

Table 2. Pearson’s correlation matrices for Israel and shown in Fig. 10. Top: Entries
represents correlation coefficients r derived on weekly events {nj} for the period
January 3rd to December 12th 2020 and between the associated clusters. Correlation
values approach unity, revealing large synchrony within the country. Bottom: Entries
represent correlation coefficients r derived on differentiated weekly events {∆nj}. These
remain very large, confirming the large degree of synchrony in the rate of change of
events in the country.
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S1.5.3 Mexico 83

C1 C2 C3 C4
C1 1.000
C2 0.675 1.000
C3 0.632 0.571 1.000
C4 0.753 0.826 0.772 1.000

C1 C2 C3 C4
C1 1.000
C2 -0.092 1.000
C3 0.203 -0.445 1.000
C4 0.286 0.140 0.246 1.000

Table 3. Pearson’s correlation matrices for Mexico and shown in Fig. 14. Top: Entries
represents correlation coefficients r derived on weekly events {nj} for the period
January 3rd to December 12th 2020 and between the associated clusters. Overall,
correlation values are moderately large. The highest r = 0.826 is observed between the
geographically contiguous clusters C2 and C4. The lowest r = 0.571 is observed between
clusters C2 and C4. Bottom: Entries represent correlation coefficients r derived on
differentiated weekly events {∆nj} show vanishing or even negative correlation and
implying lack of synchrony in the rate of change of the occurrence of events.

S1.6 Hawkes process in a restricted time window 84

In this section we apply the Hawkes process to disorder events recorded from the CDT 85

from January 3rd to October 10th 2020. Similarly to what observed for the entire data 86

set, the Hawkes process outperforms the Poisson process in all three countries and in all 87

clusters, even in this limited time range. A noteworthy observation is that while the 88

sequence of events in C4 in Israel is appropriately described by a Hawkes process until 89

October 10th 2020 as per Table 5, the sequence of events that extends to December 12th 90

is not as per Table 4, confirming that disorders in Israel in Fall 2020 are even extremely 91

clustered than what predicted by Hawkes processes. 92

S1.6.1 India 93

Cluster
India
(all)

India
(C1)

India
(C2)

India
(C3)

India
(C4)

Number of events 2,744 852 946 408 538
µ 0.291 0.537 0.332 0.120 0.662
α 2.075 1.447 1.538 0.495 1.518
β 2.020 1.223 1.400 0.462 1.078
γ 0.973 0.845 0.910 0.933 0.710
µ/(1− γ) 10.777 3.464 3.666 1.791 2.282
Hawkes AIC -9230 -825 -1274 204 -89
Poisson AIC -7360 -371 -526 428 195
KS Stat, D 0.147 0.097 0.103 0.154 0.063
KS Crit 95%, D95

c 0.161 0.118 0.145 0.246 0.113
KS Crit 99%, D99

c 0.193 0.141 0.174 0.295 0.135

Table 4. Statistical outcomes of the Hawkes process applied to data from India up to
October 10th 2020. The Hawkes process outperforms the baseline Poisson process both
nationwide and in each cluster, since the Hawkes AIC is always less than the Poisson
AIC. The Hawkes process passes the KS test at the 95% significance level in all cases.
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S1.6.2 Israel 94

Cluster
Israel
(all)

Israel
(C1)

Israel
(C2)

Israel
(C3)

Israel
(C4)

Number of events 1,197 285 76 373 463
µ 0.341 0.207 0.640 0.184 0.081
α 20.927 10.383 6.865 11.159 13.901
β 19.749 8.987 5.368 10.107 13.626
γ 0.944 0.866 0.782 0.906 0.980
µ/(1− γ) 6.089 1.544 2.935 1.957 4.050
Hawkes AIC -7871 -742 -66 -1366 -2290
Poisson AIC -1759 375 6 312 200
KS Stat, D 0.104 0.164 0.122 0.131 0.257
KS Crit 95%, D95

c 0.164 0.207 0.375 0.224 0.355
KS Crit 99%, D99

c 0.196 0.249 0.449 0.268 0.381

Table 5. Statistical outcomes of the Hawkes process applied to data from Israel up to
October 10th 2020. The Hawkes process outperforms the baseline Poisson process both
nationwide and in each cluster, since the Hawkes AIC is always less than the Poisson
AIC. The Hawkes process passes the KS test at the 95% significance level in all cases.

S1.6.3 Mexico 95

Cluster
Mexico
(all)

Mexico
(C1)

Mexico
(C2)

Mexico
(C3)

Mexico
(C4)

Number of events 1,193 135 254 91 703
µ 1.330 0.460 0.651 0.143 0.985
α 2.968 2.911 1.845 0.159 2.496
β 2.287 1.085 0.906 0.110 1.782
γ 0.771 0.373 0.491 0.695 0.714
µ/(1− γ) 5.807 0.733 1.278 0.468 3.444
Hawkes AIC -2337 318 325 315 -659
Poisson AIC -1781 356 386 330 -324
KS Stat, D 0.036 0.065 0.071 0.134 0.029
KS Crit 95%, D95

c 0.081 0.147 0.116 0.275 0.096
KS Crit 99%, D99

c 0.097 0.176 0.139 0.330 0.115

Table 6. Statistical outcomes of the Hawkes process applied to data from Mexico up to
October 10th 2020. The Hawkes process outperforms the baseline Poisson process both
nationwide and in each cluster, since the Hawkes AIC is always less than the Poisson
AIC. The Hawkes process passes the KS test at the 95% significance level in all cases.
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