
iBLAST: incremental BLAST of new sequences via automated e-value

correction

Sajal Dash1,2*, Sarthok Rasique Rahman3,4, Heather M. Hines3,5, Wu-chun Feng2,6,7,8*

1 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak

Ridge, TN, USA

2 Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

3 Department of Biology, The Pennsylvania State University, University Park, PA, USA

4 Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA

5 Department of Entomology, The Pennsylvania State University, University Park, PA,

USA

6 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA,

USA

7 Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA,

USA

8 Health Sciences, Virginia Tech, Blacksburg, VA, USA

* dashs@ornl.gov, feng@cs.vt.edu

April 5, 2021 1/17



Supplementary material

Growth of sequence data

Fig S1. Growth of sequence database size compared to the sequencing cost.
Increasing GenBank database size available at
https://www.ncbi.nlm.nih.gov/genbank/statistics/, accessed on September 15,
2018) follows a decreasing trend in sequencing cost (available at https:
//www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data,
accessed on September 15, 2018) .

BLAST Statistics for E-value computation

BLAST programs use two different kinds of statistics for e-value computation:

Karlin-Altschul statistics and Spouge statistics.

Karlin-Altschul Statistics

Smith-Waterman local alignment scores between two random sequences follow the

Gumbel (Type I) extreme value distribution (EVD). Under the extreme value theorem,

the generalized extreme value distribution is the limit distribution of properly

normalized maxima of a sequence of independent and identically distributed (i.i.d.)

random variables. Therefore, the generalized extreme value distribution, including the

Gumbel EVD, is often used to approximate the distributions of the maxima of long

sequences of random variables, in this case, the distributions of the HSPs.

The Gumbel EVD states that the probability of occurring a score x greater than or

equal to S is:

p(x ≥ S) = 1− e−λ(S−µ) (S1)

Here λ is the scale parameter, and µ is the location parameter. Karlin and Altschul

established a statistical theory about local alignment statistics [7], which makes five

April 5, 2021 2/17

https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


assumptions:

1. At least one score is positive.

2. The expected score must be negative; otherwise the segment with the maximum

score would tend to be the whole sequence.

3. The letters of the sequences are i.i.d.

4. The sequence lengths are sufficiently large.

5. No gaps are allowed within the local alignments.

Under such assumptions, Karlin and Altschul considered the statistical significance of

local alignments between two independent random sequences consists of letters sampled

independently from an alphabet of letters A = a1, a2, . . . , ar with respective

probabilities p1, p2, . . . , pr and p′1, p
′
2, . . . , p

′
r.

Hence, the paring of ai from the first sequence and aj from the second sequence

occurs with probability pip
′
j . Let the score for such a paring be Sij . By the assumption,

there is some probability of a positive score and the expected pair score
∑
pip
′
jSij is

negative. Let real number λ∗ be the unique positive solution to the equation

∑
i,j

pip
′
je
λSij = 1 (S2)

.

Karlin and Altschul proved that for large x,

Prob

{
M >

lnmana
λ∗

+ x

}
≤ K∗e−λ

∗x

= e
−λ∗
(
x−

lnK∗

λ∗

) (S3)

where K*, like parameter λ*, can also be computed from the set of scores and

probabilities p1, p22, . . . , pr. ma is the actual length of the query and na is the actual

length of the database. From equation S3, one can identify the location parameter µ

and the number of alignments expected by chance during a sequence database search,

the E-value,

p(S ≥ x) = 1− e−E (S4)

April 5, 2021 3/17



Therefore,

E = e−λ(S−µ) = Kmne−λS (S5)

which is the famous Karlin-Altschul equation.

Edge Effect Here, the fourth assumption, i.e., that the sequence lengths are

sufficiently large for the asymptotic theory to be accurate, does not hold. Accordingly,

we must replace the actual sequence lengths m and n within the theory by the

“effective” lengths m′ and n′, where m′ = m− l and n′ = n−Nl. They are introduced

to compensate the edge effect of alignments [1], which occurs at the end of the query

sequence or the database sequence, where there may not be enough sequence space to

construct an optimal alignment.

Given the statistical parameters α, β, λ, and K, the edge effect parameter l may be

found as the solution to the equation:

l =
α

λ
× ln(Km′n′) + β =

α

λ
× ln

(
K(m− l)(n−Nl)

)
+ β (S6)

In large search spaces, l may be greater than ma, resulting in a negative effective

length m. In cases like this, if the effective length is shorter than 1/k, then it is set to

1/k to cancel its contribution to the expect-value E.

The discussions above are all based on alignments that have no gaps [3]. For

gap-alignments, BLAST algorithm computes the gap penalty, which consists of two

parts, the gap existence penalty a and the gap extension penalty b. Thus a gap of k

residues gets a total score of −(a+ bk). For alignments with gaps, there is no analytical

formula for values of λ, K, and H.

Spouge Statistics

Finite size correction [5] was introduced since version 2.2.26. Instead of estimating l,

FSC estimates

area = E[m− LI(y)]+[n− LJ(y)]+ (S7)

as a measure of (m− l)(n−Nl). Here, I, J are two sequences to be compared. LI(y) is

the distribution of the length required to attain a score of y or more. Equation S7 is

April 5, 2021 4/17



practically computed by approximating the distribution of 〈LI(y), LJ(y)〉. This is

approximated by a bivariate normal distribution with means

lI(y) = E[LI(y)], lJ(y) = E[LJ(y)] (S8)

variances

vI(y) = var(LI(y)), vJ(y) = var(LJ(y)) (S9)

and covariance

c(y) = cov(LI(y), LJ(y)) (S10)

These parameters are estimated using linear functions of the score y using following

formulas

lI(y) = aIy + bI , lJ(y) = aJy + bJ

vI(y) = αIy + βI , vI(y) = αJy + βJ

c(y) = σy + τ

(S11)

aI = aJ = a, bI = bJ = b, αI = αJ = α, βI = βJ = β, and σ are computed using a

rigorous mathematical formula which depend on gap penalties. These values are

precomputed for different scoring matrices. bI , bJ , βI , βJ , and τ is approximated from

α, β, σ, a, b.

These parameters don’t depend on the length of the database or the query. However,

in actual BLAST implementations using Spouge statistics, the formula is modified to

include a database scale factor. The database scale factor is calculated using the

formula,

db scale factor =
n′

m′
(S12)

For a given HSP with score S, evalue is calculated using

E = area×Ke−λS × db scale factor (S13)

April 5, 2021 5/17



Existing e-value correction software and their features

mpiBLAST

mpiBLAST [4] is a parallel implementation of NCBI BLAST on the cluster. It segments

the database, ports the segments into different nodes of a cluster, and runs parallel

BLAST search jobs against database segments on different nodes. Once the parallel

search jobs return, it aggregates the search result. It has two important contributions.

First, it achieves super-linear speedup by reducing IO overhead (time spent in reading

and writing hard-disk storage). Second, it is the first parallel BLAST tool to provide

exact e-value statistics in contrast to approximate e-value statistics of other

contemporary parallel implementations of NCBI BLAST.

mpiBLAST’s exact e-value statistics requires two steps. First, it collects the

necessary statistical parameters for the entire database by performing a pseudo-run of

the BLAST engine against the global database. Once it has the global parameters, it

passes the global parameters (such as whole database length n, the total number of

sequences N) to the parallel search jobs against segmented databases. mpiBLAST

modifies some functionalities of NCBI BLAST (blast.c, blastdef.h, blastkar.c, and

blastutl.c) so that global parameters can be fed externally and that information can be

used to calculate exact e-values.

For accurate e-value correction, mpiBLAST requires prior knowledge of the entire

database.

NOBLAST

NOBLAST [6] provides new options for NCBI BLAST. It offers a way to correct

e-values when split databases are used and the results need to be aggregated. E-value

computation requires knowledge about the entire database size, the number of

sequences in the whole database N and the total length of the database n. Using the

values N , n and Karlin-Altschul statistical parameters which are independent of

database size, the e-value can be computed using Karlin-Altschul statistics. First,

NOBLAST computes the length adjustment using the knowledge about the complete

original database, then, it computes effective search space using length adjustment, and

finally, it computes the e-value using effective search space.

April 5, 2021 6/17



In principle, NOBLAST takes a similar approach to mpiBLAST, as both provide

global statistical parameters to the search jobs against a segmented database so that

that exact e-value can be computed. While mpiBLAST’s main contribution is a parallel

implementation and e-value correction comes from the need of producing the same

output as the sequential counterpart, NOBLAST’s main contribution is an e-value

correction. Both tools require prior knowledge about the entire database. Both tools

were developed before Spouge’s e-value statistics were introduced, so they didn’t address

e-value corrections for the BLAST programs that use Spouge’s statistics.

e-value correction

We use algorithm S1 to recompute e-values for BLAST programs using Karlin-Altschul

statistics. We first aggregate database sizes from two input results and use the

aggregated sizeN to compute length adjustment l. Using N and l, we recompute

e-values for both results.

Algorithm S1 Recomputing e-values for Karlin-Altschul Statistics

1: Input: result1, result2

2: n← result1.n+ result2.n

3: m← result1.m

4: N ← result1.N + result2.N

5: l← recompute length adjustment(n,m,N)

6: recompute evalues(result1, l, N)

7: recompute evalues(result2, l, N)

We use algorithm S2 to re-scale e-values for BLAST programs using Spouge statistics.

First we aggregate the database sizes for two input results, and scale the e-values by a

factor of the ratio between aggregated database size and the individual database size.

April 5, 2021 7/17



Algorithm S2 Re-scale e-values for Spouge statistics

1: Input: result1, result2

2: db length1← result1.db length

3: db length2← result2.db length

4: db length← db length1 + db length2

5: re-scale evalues(result1,
db length

db length1
)

6: re-scale evalues(result2,
db length

db length2
)

Algorithm to merge two search results through e-value correction

Algorithm S3 Merging results for Karlin-Altschul/Spouge statistics

1: Input: result1, result2

2: merged result← Φ

3: recompute/re-scale e-values

4: m,n← 0

5: for i = 1→ num of hits do

6: e-value1, score1← min(result1.alignment[m].hsps)

7: e-value2, score2← min(result2.alignment[n].hsps)

8: if (e-value1 < e-value2) or (e-value1 == e-value2 and score1 > score2) then

9: merged result.add(result1.alignments[m])

10: increment m

11: else

12: merged result.add(result2.alignments[n])

13: increment n

14: end if

15: end for

16: return merged result

Data collection for case studies II and III

To obtain the venom gland transcriptome, 15 venom glands were dissected from newly

emerged adult females from wild-collected oak (oak spp.) hedgehog galls Acraspis

erinacei and placed in RNAlater stabilization solution. Pooled tissues were homogenized

April 5, 2021 8/17



in lysis buffer using a Bead Ruptor 12 (Omni International) with additional lysis with a

26-gauge syringe. RNA was extracted from the sample using the RNaqueous Micro kit

followed by DNase I treatment as specified by the kit and confirmed to be of good

quality using the Bioanalyzer 2100 (Agilent). The Illumina HiSeq library was prepared

from 200 ng RNA using the TruSeq Stranded mRNA kit and sequenced in 150 bp

single-end reads across two Rapid Run lanes on the Illumina HiSeq 2500 (Penn State

Genomics Core Facility, University Park, USA) along with nine other barcoded wasp

samples.

Raw sequence data (30596191 reads, available at NCBI SRA achieve under

Accession ID SRR14053705) quality was assessed using FastQC v0.10.0 (available at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and appropriate

trimming for Illumina single-end reads was conducted using Trimmomatic v0.35 [2] to

remove adapters and low quality bases (ILLUMINACLIP:TruSeq3-SE:2:30:10

LEADING:20 TRAILING:20 MINLEN:50 AVGQUAL:20), which removed 0.12% of the

total reads and de novo transcriptome assembly from these QC-passed trimmed

reads(30, 559, 248 in total) was performed on the Trinity RNA-Seq de novo Assembler

(version: trinityrnaseq r20140717) [8]. The transcriptome assembly consists of 44, 440

transcripts with the contig N50 of 865 bases. Transdecoder v5.3.0 (available at

https://github.com/TransDecoder/TransDecoder/wiki) was used to predict 17, 927

protein sequences which were used as queries for Case studies II and III.

iBLAST software allows the user to perform incremental

BLAST search with minimal overhead

The iBLAST program v1.0 includes a collection of Python scripts that can be

downloaded at https://github.com/vtsynergy/iBLAST. To facilitate the use of

iBLAST, we have provided instructions for installation, a user’s manual, a quick start

guide and examples of how to use iBLAST in several typical scenarios of bioinformatics

research.

First, the user needs to copy the source folder and run the following command from

this directory to install iBLAST:

./iBLAST-installer.sh

April 5, 2021 9/17

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/TransDecoder/TransDecoder/wiki
https://github.com/vtsynergy/iBLAST


Next, we move onto the Python scripts, as described below.

Main program: iBLAST.py This program provides intelligent and incremental

BLAST search options. It takes in a regular BLAST search command and performs an

incremental search. Below is an example of how to use the script.

python iBLAST.py "blastp -db nr -query Trinity-tx.fasta -outfmt 5 -out result.xml"

Merge scripts: These scripts merge the results of two BLAST searches in XML

format and produce an XML output with corrected e-values.

1. BlastpMergerModule.py: This script merges the results obtained using

Karlin-Altschul statistics (e.g., blastn results).

2. BlastnMergerModule.py: This script merges the results obtained using

Spouge statistics (e.g., blastp results).

3. BlastpMergerModuleX.py These scripts merge more than two BLAST results.

They require several results to merge the input and output.

python BlastpMergerModule.py input1.xml input2.xml output.xml

python BlastnMergerModule.py input1.xml input2.xml output.xml

python BlastpMergerModuleX.py 3 input1.xml input2.xml input3.xml output.xml

Data source for case study I

100 nucleotide sequences from Bombus impatiens are available at ftp://ftp.ncbi.nlm.

nih.gov/genomes/Bombus_impatiens/CHR_Un/bim_ref_BIMP_2.1_chrUn.fa.gz. 100

protein sequences from Bombus impatiens assembly are available at ftp:

//ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/protein/protein.fa.gz.

Creating experimental databases

Pre-formatted BLAST databases such nt and nr come in incremental parts. With

progression of time, new sequences are packaged in parts and added to the databases.

April 5, 2021 10/17

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/CHR_Un/bim_ref_BIMP_2.1_chrUn.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/CHR_Un/bim_ref_BIMP_2.1_chrUn.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/protein/protein.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bombus_impatiens/protein/protein.fa.gz


Databases for case study I

For case study I, we consider three time steps when the nt and nr databases had 30, 40,

and 50 parts. For these three time periods, we construct three databases as instances of

nt and nr by combining 30, 40, and 50 parts using BLAST tool blastdb aliastool. The

incremental databases between two periods are also constructed. Table S1 shows

different instances of nt databases in three different periods.

Table S1. Incremental nt Databases for case study I.

Time
Period

Database
parts

Number of
sequences

Number of
bases

Longest sequence
length (bases)

T0 0-29 25,117,275 80,740,533,243 774,434,471

T0 → T1 30-39 8,389,596 33,008,962,097 275,920,749

T1 0-39 33,506,871 113,749,495,340 774,434,471

T1 → T2 40-59 8,891,258 38,722,333,261 129,927,919

T2 0-49 42,398,129 152,471,828,601 774,434,471

Table S2 shows different instances of nr databases in three different periods.

Table S2. Incremental nr databases for case study I

Time
Period

Database
parts

Number of
sequences

Number of
residues

Longest sequence
length (residues)

T0 0-29 49,468,463 17,686,779,866 36,507

T0 → T1 30-39 15,878,318 6,065,300,773 35,523

T1 0-39 65,346,781 23,752,080,639 36,507

T1 → T2 40-49 16,448,075 6,278,067,810 38,105

T2 0-49 81,794,856 30,030,148,449 38,105

April 5, 2021 11/17



Databases for case study II

We construct nr database instances for time 0 and 1 by combining 64 and 90 parts

respectively. We combine these parts using blastdb aliastool.

Table S3. Incremental nr databases for case study II

Time
Period

Database Number of
sequences

Total residues Longest sequence
length (residues)

T0 0-63 109,407,071 40,077,622,077 38,105

T0 → T1 64-90 52,860,187 19,192,851,238 74,488

T1 0-90 162,267,258 59,270,473,315 74,488

Fidelity of iBLAST

Table S4. Case study I: Fidelity of iBLAST in three consecutive time periods. blastp search was
performed on nucleotide protein databases (nr). At any time instance, the Past database size is the size of the
database from the previous time instance. The Present database size is the final database size at that instance.
Delta is the incremental database growth from previous time instance to the current time instance. NCBI
BLAST is performed on the Present database size, while iBLAST is performed only on Delta.

NCBI BLAST iBLAST

Time Search
Data-
base

Database Size Delta =
Present – Past

e-value
Match

Hit
Match

Past Present

t0 blastp nr 0 17,686,779,866 17,686,779,866 100% 100%

t1 blastp nr 17,686,779,866 23,752,080,639 6,065,300,773 100% 100%

t2 blastp nr 23,752,080,639 30,030,148,449 6,278,067,810 100% 100%

April 5, 2021 12/17



Table S5. Case study II: Fidelity of iBLAST in two consecutive time periods. blastp search was
performed on a large-scale novel transcriptome. At any time instance, the Past database size is the size of the
database from the previous time instance. The Present database size is the final database size at that instance.
Delta is the incremental database growth from previous time instance to the current time instance. NCBI
BLAST is performed on the Present database size, while iBLAST is performed only on Delta.

NCBI BLAST iBLAST

Time Search
Data-
base

Database Size Delta =
Present – Past

e-value
Match

Hit
Match

Past Present

t0 blastp nr 0 40,077,622,077 40,077,622,077 100% 100%

t1 blastp nr 40,077,622,077 59,270,473,315 19,192,851,238 100% 100%

Load-balancing via query partitioning

For case study II and III, we have partitioned 17927 queries into 20 query files based on

number of residues after randomizing the order instead of a more straightforward

partitioning based on number of queries while keeping the original order.

If we partition the queries by making sure each partition has roughly same number

of queries without disrupting their order, we get a range of execution times

demonstrating lack of proper load balancing. The standard deviation in iBLAST search

times is 2748 seconds and standard deviation in NCBI BLAST search times is 8727

seconds. This means the compute nodes have to wait idly for 1− 3 hours on average.

Fig S2 demonstrates the lack of load balancing.

In contrast, when we first randomize the order of the queries and then partition the

queries by making sure that all partitions have the roughly same number of residues,

the standard deviations fall to 150 and 487 seconds respectively (Fig S3).

Explanation for NCBI BLAST missing many top hits

Due to the early cutoff of max target sequence used by its heuristic algorithm. NCBI

BLAST performs search in two phases. In earlier phase (ungapped extension), it starts

with matching a seed sub-string between target and query sequence and then extends

April 5, 2021 13/17



Fig S2. Load imbalance resulted from a naive query partitioning. Execution
time when a straightforward query partitioning scheme is adopted, which results in
significant lack of load balancing. The standard deviation for the execution times for
both incremental and NCBI BLAST searches are large (2748 and 8727 seconds
respectively).

the matching pair in both direction without allowing any gap. In this phase, BLAST

algorithm assigns some scores to these matching pairs and keeps only the very high

scoring pairs using a cutoff determined by e-value cutoff or number of maximum hits. In

the gapped phase, these selected high scoring pairs are further extended in both

directions while allowing gaps and these evolved pairs get changed scores. Some of the

pairs that did not make the cut during the ungapped extension, can become high

scoring pairs. For a larger database, these missed opportunities are higher in number

because there are more potential pairs in the ungapped phase. Since iBLAST is

combining results from smaller databases, it misses relatively smaller number of those

high scoring hits compared to NCBI BLAST.

Computing delta database

A formatted NCBI database consists of several index files and actual sequences are

partitioned into several 1GB partitions. For example non redundant protein database

nr has 100 1GB partitions named as nr.00, nr.01, . . . , nr.99. While saving an instance of

the database, AdaBLAST saves a list of these file names. Let, at time t1, database db

had Pt1 parts, so the Record Database will save the instance by saving the list

L1 = db.00, db.01, . . . , db.(Pt1 − 1). At time t2, nr got updated and now it has Pt2 data

files. The instance of db at time t2 is the list L2 = db.00, db.01, . . . , db.(Pt2 − 1). To

compute delta database between times t1, t2, the Incremental Logic module will first

April 5, 2021 14/17



Fig S3. Load balance demonstrated by our proposed strategy. Execution
time when our improvised query partitioning scheme is adopted which results in better
load balancing. The standard deviation for the execution times for both incremental
and NCBI BLAST searches are minimal compared to the naive strategy (150 and 487
seconds respectively).

compute the difference between the two lists saved as the two instances. The difference

is δL = L2 − L1 = db.(Pt1), . . . , db.(Pt2 − 1). We then use blastdb aliastool distributed

with command-line BLAST to make the delta database using the files in δL.

There is one caveat, the last file (db.(Pt1 − 1)) in the instance at t1 might have been

updated with new sequences and by not including them, we might miss some of the

potential hits. To mitigate this effect, we include db.(Pt1 − 1) in the delta database.

When recomputing or re-scaling the e-values, we use the correct previous and current

database sizes (Fig S4).

It takes few milliseconds to compute the delta database from two instances.

April 5, 2021 15/17



Fig S4. Delta database computation from two instances of the same
database db. At time t1, the instance has Pt1 parts. At time t2, the instance has Pt2
parts. In both of these instances, the part db.(Pt1) is common. However this part is
potentially updated. So, we take all the parts from db.(Pt1) to db.(Pt2) to compute the
delta database.

April 5, 2021 16/17



References

1. Altschul SF, Gish W, et al. Local alignment statistics. Methods in enzymology.

1996;266(2):460–480.

2. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics. 2014;30(15):2114–2120.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. Journal of molecular biology. 1990;215(3):403–410.

4. Darling AE, Carey L, Feng WC. The design, implementation, and evaluation of

mpiBLAST. Los Alamos National Laboratory; 2003.

5. Park Y, Sheetlin S, Ma N, Madden TL, Spouge JL. New finite-size correction for

local alignment score distributions. BMC research notes. 2012;5(1):286.

6. Lagnel J, Tsigenopoulos CS, Iliopoulos I. NOBLAST and JAMBLAST: New

Options for BLAST and a Java Application Manager for BLAST results.

Bioinformatics. 2009;25(6):824–826.

7. Karlin S and Altschul SF. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proceedings of the

National Academy of Sciences. 1990;87(6):2264–2268.

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.

Full-length transcriptome assembly from RNA-Seq data without a reference

genome. Nature biotechnology. 2011;29(7):644.

April 5, 2021 17/17


