
March 6, 2021 

 

Dr. Tzai-Hung Wen 

Academic Editor 

PLOS ONE 

 

Dear Editor: 

 

Thank you for inviting us to submit a revised draft of our manuscript (PONE-D-20-20268), entitled 

“Predicting Regional Influenza Epidemics with Uncertainty Estimation using Commuting Data in 

Japan” to the PLOS ONE. We appreciate the time and effort you and each reviewer have dedicated to 

providing insightful feedback to help strengthen our manuscript. Thus, it is with great pleasure that 

we resubmit our manuscript for further consideration. We have incorporated changes that reflect the 

detailed suggestions you have graciously provided. We also hope that the edits and the responses we 

have provided satisfactorily address all the issues and concerns you and the reviewers have noted. We 

have also sought the help of a native English editor to improve our manuscript in terms of language 
and grammar. In this rebuttal letter, the comments or suggestions from you and the reviewers are 

inside black textboxes, our responses follow these, and our revisions to the manuscript are shown in 

italics.  

 

Best regards, 

Taichi Murayama 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
To Reviewer #3 

 

1. The graph element is very crucial in this study, and thus relevant information should be given 

as clear as possible. For example,… 

 

Thank you for this assessment. We agree that the information related to graph elements and GCNs 

should be clearer for unfamiliar readers. We answer your questions as follows: 

 

1-a. why is the diffusion graph (Pg5) needed while the graph information has already given (Pg 

9, “Commuting Data”). 

1-b. Is the diffusion process is inherence process of GCN or else? 

 

1-a 

In this paper, a diffusion process is intended to model the spread of infection on a commuting graph, 

representing the geological dependency of the flow of people. As the influenza virus infections 

considered in this study are only mediated by human bodies, we assume that the volume of infection 

positively correlates with the flow of people. 

We represent the regional network as a weighted directed graph G = (V, E, W), where W is a 

weighted matrix representation of “commuting data”, i.e., commuting volume between regions. A 

commuter only goes to another region and back and repeats this every day; however, the virus 

infection spreads beyond these two regions, i.e., to the neighboring nodes in G. The diffusion process 

is a random walk on G, and its transition matrix is given as 𝐷𝑂
−1𝑊. Intuitively, it is a stochastic 

process of the “flow of viruses” through regions step-by-step; one day, a commuter transmits a virus 

to a region, and over the following days, other commuters transmit the virus from this region to other 

regions with some probability, and so on. 

 

We tried to improve the explanations so that the manuscript is easier to follow for readers with 

diverse backgrounds. For readers who might seek more thorough guidance in this domain, we also 

added the following two citations to the manuscript: 

 

[1] Molitierno, JJ. Applications of combinatorial matrix theory to Laplacian matrices of graphs. CRC 

Press (2016). 

[2] Klicpera, J, Weißenberger S, Günnemann S. Diffusion improves graph learning. In Proceedings of 

NeurIPS (2019). 

 

1-b 

In principle, not restricted to a graph convolutional network (GCN), any graph-based algorithms that 

compute the influence from non-neighboring nodes with multi-hop separation necessarily adopt a 

random walk, diffusion process, or some related stochastic process. “The diffusion process” is 

considered as a generic term that refers to such a stochastic process that is implemented as a message 

passing between nodes. A graph spectral approach is another way to formulate the same problem 

using eigenvalue decomposition. Matrix factorization approaches might be considered as another 

example of non-stochastic process approaches. 

A GCN adopts a graph convolution operation that can be either spectral or spatial (namely, message 

passing) depending on the approach it adopts. We adopted the latter approach, i.e., diffusion graph 

convolution because despite its theoretical soundness, spectral graph convolution suffers from 

problems such as inefficient implementation, difficult scalability, and poor adaptability. 



 

We have rewritten the related sentences in the “Diffusion graph convolutional network” subsection of 

the “Materials and Methods” section to make these points clearer: 

 

 

Diffusion graph convolutional network 
 

We used a diffusion GCN (DGCN), which was originally developed for traffic flow prediction by [51], 
where we modeled the spatial dependence of the virus spreading by applying a diffusion process, i.e., 

random walk on a commuting graph. Thus, the temporal dynamics of the infection spread through 

regions were captured by a stochastic process on the input graph G. 

Intuitively, this stochastic process represents the step-by-step “flows of viruses” through regions; one 

day, a commuter transmits a virus to a region, and over the following days, other commuters transmit 
the virus from this region to other regions with some probability, and so on. The transition matrix of 

the diffusion process is 𝐷𝑂
−1𝑊, where 𝐷𝑂

−1 = 𝑑𝑖𝑎𝑔(𝑊1) is the diagonal matrix of the total out-

commuters from each region, and 1 denotes the all-ones vector. The stationary distribution of the 
diffusion process is as follows: 

 

…Equation (1) 
  

where k represents the number of diffusion steps and α ∈ [0, 1] represents the restart probability, 
with which the diffusion process restarts from its initial states [52, 53]. 

The DGCN adopts a graph diffusion convolution using the above-mentioned diffusion process in 

Equation 1 over an input epidemiology signal X and a filter 𝑓𝜃, leveraging the flows both leaving and 

entering each region. The signal information X, such as the current number of patients, is transferred 

from one node to its neighboring nodes with the probabilities given in the transition matrix, and the 
spread signal distribution can reach the above-mentioned stationary distribution after several steps. 

However, the DGCN uses only a finite K-step truncation of the whole diffusion process for 

computational efficiency. Thus, it captures the K localized graph structures of G as follows: 
 

… Equation (2) 
 

 

[52] Molitierno, JJ. Applications of combinatorial matrix theory to Laplacian matrices of graphs. 
CRC Press (2016). 

[53] Klicpera, J, Weißenberger S, Günnemann S. Diffusion improves graph learning. In Proceedings 
of NeurIPS (2019). 

 

 

 

1-c. Furthermore, it seems that there are only single (cross-sectional) commuting data, since the 

articles states “…provides only the number of commuters, regardless of the year” (pg 9, 

“Commuting Data” section). Is that mean such information used throughout the GCN model, or 

as initial information and subsequently evolve through the diffusion process? 

 

We used only single graph information, i.e., commuting data, to learn the proposed model. Through 

learning the model, the weights of the diffusion process (filter parameters 𝜃 in Equation (3)) are 

updated; however, the used graph information remains unchanged throughout both training and 

inference. 

 

We have rewritten the related sentences in the “Task Definition” subsection of the “Materials and 

Methods” section to make these points clearer: 

 



Task Definition 

Additionally, we represent the regional network as a weighted directed graph G=(V,𝜀,W), where V is 

a set of nodes |V|=N, 𝜀 is a set of edges, and W∈ ℝ𝑁×𝑁 is a weighted matrix representation, such as 
the constant commuting volume between regions. The influenza prediction problem aims to learn the 

function f(·) that maps T′ historical signals and a constant weighted matrix representation of G to T 

future signals: 
 

 
 

 

 

2. Recently, some study (see reference) also applied geographically weighted regression (GWR) 

into epidemic prediction. The reason that I raise this suggestion is that GWR also considers the 

spatial flow relation between regions which is similar in this study. This study may indicates 

GWR-based method may be improved using commuting data. Adding such information may be 

helpful for those researchers who using “statistical and time series” approach. 

 

Thank you for your comment. We added a description of studies on the GWR model in the “Influenza 

prediction” subsection of the “Related Works” section as follows: 

 

Related Works 
Influenza Prediction 

Moreover, our research on influenza prediction for each prefecture is related to the following studies. 

Senanayake et al. [5] used a kernel function based on the distance between two areas to capture 

spatial dependence. Wu et al. [6] used a convolutional neural network (CNN) architecture to 
convolve the information of surrounding areas. Liu et al. [37] used a geographically weighted 

regression model, which extended the ordinary linear regression model and embedded geographical 

location data into the regression parameters, with geographical information about hospitals, such as 
the number of hospitals per 10,000 population, to predict the COVID-19 situation in China. In 

contrast to the abovementioned studies, our study used regional commuting data to model the flow of 

people into a specific area. Brockmann et al. [35] attempted to capture the onset of an epidemic using 

data on international traffic. Wang et al. [36] extended the classic SIR model to consider the visitor 

transmission between any two areas to predict intra-city epidemic propagation using the traffic 
volumes in cities. To the best of our knowledge, our study is the first attempt to predict influenza 

volume in detail for a large area, i.e., the entire territory of Japan, by considering the inter-regional 
flow of people using machine learning. 

 

[37] Liu F, Wang J, Liu J, Li Y, Liu D, Tong J, et al. Predicting and analyzing the COVID-19 
epidemic in China: Based on SEIRD, LSTM and GWR models. PLOS ONE. 2020;15(8): e0238 

 

 


