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Supplementary Materials and Methods 

 

The FLORA toolkit 

The FLORA was developed into a user-friend command line tool (http://wang-

lab.ust.hk/software/Software.html), which includes several independent components:  

(1) generateFilteredBams utilizes BEDTools [1] to remove reads mapped to coding regions 

and other custom-defined genomic locations from bam files, and reads with low mapping 

quality (MAPQ < 30) were removed using Samtools [2]. 

(2) StringTie [3] was incorporated to construct the transcriptome from the preprocessed data. 

Assembled transcripts in each sample were selected for merging by StringTie merge if all 

following criteria were satisfied: (A) longer than 200 nucleotides; (B) with expression level 

over 0.1 TPM and 0.1 FPKM; (C) account for over 10% of all isoforms from the same loci. 

(3) filterTranscripts to identify prospective lncRNAs from the assembled transcriptome. 

Transcripts were selected as prospective lncRNAs by the following criteria: (A) longer than 

200 nucleotides; (B) containing two or more exons; (C) coding potential score larger than 0.364 

as predicted by Coding Potential Assessment Tool (CPAT) [4]. 

(4) AnnotateNovelLncRNA used cuffcompare [5] to compare the prospective lncRNAs with 

RefSeq (Release 109, GRCh38.p12), GENCODE Release 27 (GRCh38.p10) and Ensembl 

(GRCh38.p12) annotation, and lncRNA-expressing loci with no overlap with known genomic 

features were defined as novel. 

(5) The functions of lncRNAs were predicted via the construction of gene co-expression 

network based on Spearman’s correlation coefficient. Gene Ontology (GO) enrichment 

analysis was performed with g-profiler [6] used the coding genes with positive and significant 

Spearman’s correlation coefficient (Benjamini-Hochberg adjusted P-value < 0.001) with the 

lncRNA. All the networks were visualized by Cytoscape [7]. 
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Comparison of the fraction of reads derived from noncoding regions 

To comprehensively characterize the noncoding transcriptome of GC, we reanalyzed the whole 

transcriptome sequencing data of 407 TCGA samples, including 375 GC and 32 tumor-

adjacent samples from 380 patients (Table S1) using the FLORA pipeline. The total mapped 

reads in the raw bam file and bam files sequentially filtered by the generateFilteredBam to 

remove the protein coding genes (gene type as protein coding in GENCODE v27), other 

transcripts (including immunoglobin and T-cell receptor family, mitochondrial genes, miRNA, 

misc_RNA, pseudogenes, rRNA, ribozyme, sRNA, scRNA, scaRNA, snRNA, snoRNA and 

vaultRNA in GENCODE v27) and rRNAs (downloaded from RefSeq), and mapping quality 

(with MAPQ below 10 removed) were counted. The remaining reads are counted towards the 

“potential known and novel lncRNAs” that are useful in noncoding transcript assembly.  

The fraction of reads derived from potential known and novel lncRNAs are compared between 

paired tumor and tumor-adjacent normal samples from 32 patients in TCGA using paired t-test. 

Among the 32 pairs, we observed that the fraction of noncoding region-derived regions was 

significantly higher in tumor compared to normal (P = 0.0045). Higher or similar fraction of 

noncoding reads was observed in tumor compared to tumor-adjacent samples, in the majority 

of cases. However, 5 normal samples derived from the same institute (sample ID: TCGA-HU-

A4GY-11A, TCGA-HU-A4GH-11A, TCGA-HU-A4GP-11A, TCGA-HU-A4GC-11A, 

TCGA-HU-A4HB-11A) showed unusually higher fraction of noncoding region-derived reads 

(fraction ranging from 3.0% to 7.8%) than other 27 normal samples (0.9% to 2.8%), suggesting 

potential batch effects in these 5 samples. Thus, these 5 normal and 5 paired tumor samples are 

excluded from this analysis. 

 

Gene expression calculation 
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The featureCount module [8] from R package ‘Subread’ was used to call read counts of 

annotated genes in GENCODE Release 27 (GRCh38.p10) and novel lncRNAs identified by 

FLORA, and normalized as FPKM (Fragments Per Kilobase per Million mapped fragments). 

 

Differential expression analysis 

Differential expression analysis of lncRNAs between tumor and normal samples was 

performed with DESeq2 [9]. Significantly upregulated or downregulated lncRNAs were 

selected by Benjamin-Hochberg adjusted P < 0.01. 

 

Identification of LncRNA-based molecular subtype in TCGA 

To identify lncRNA-based molecular subtypes, we conducted hierarchical clustering with 

Ward.D linkage. The distance metric was 1 – Pearson’s correlation coefficient and the 

procedure was iterated 1,000 times with subsampling ratio of 0.8 using normalized expression 

of lncRNAs which were upregulated in tumor compared to normal samples. A lncRNA’s 

expression level in tumor samples was normalized using the average expression of the lncRNA 

in tumor-adjacent normal samples: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑖𝑛	𝑡𝑢𝑚𝑜𝑟	𝑠𝑎𝑚𝑝𝑙𝑒	𝐴

= −𝑙𝑜𝑔!" 5
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑖𝑛	𝑡𝑢𝑚𝑜𝑟	𝑠𝑎𝑚𝑝𝑙𝑒	𝐴	𝑖𝑛	𝐹𝑃𝐾𝑀

𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑎𝑐𝑟𝑜𝑠𝑠	𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒𝑠< 

The normalized expression level was further center-normalized. The clustering of tumor 

samples was performed with R package ‘ConsensusClusterPlus’ [10]. To assess the ideal 

number of identified clusters, cumulative distribution functions (CDF) of consensus indexes 

were estimated for k (number of clusters) from 2 to 10.  

 

Definition of lncRNA-based subtypes (L1/L2/L3) in independent cohorts 
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To define L1/L2/L3 subtypes in independent cohorts with only microarray data (but not RNA-

seq), we developed machine learning methods to classify GC patients. As the lncRNA-based 

molecular subtypes (L1/L2/L3) were well defined on TCGA patients, we first performed 

Wilcoxon rank-sum tests to extract features (both coding and noncoding genes) that are 

differentially expressed among subtypes using RNA-seq data of all TCGA GC patients. The 

microarray platforms capture most of coding gene but only a small number of noncoding genes, 

limiting the capability to directly define L1/L2/L3. Therefore, for a given patient cohort 

characterized by the microarray platform, we will use coding feature genes to predict their 

noncoding-expression subtypes. In particular, three support vector machine (SVM) classifiers  

were built to predict whether a sample is L1, L2 or L3 respectively.  

 

To train the L1 classifier, we respectively selected top 1,000 differentially expressed genes 

(DEGs) between L1 and L2, as well as top 1,000 DEGs between L1 and L3. We then conducted 

principal component analysis on these DEGs to reduce the feature dimension. Subsequently, 

Wilcoxon rank-sum tests were performed on the principal components to select the top 50 

principal components enriched in the L1 subtype. Using the Z-score normalized principal 

components, we tuned the hyperparameters of a SVM classifier by 10-fold cross-validation in 

the TCGA dataset. Finally, this classifier will be applied to the independent cohort for L1 

subtyping. Similarly, L2 and L3 classifiers will be trained in the same manner. To determine 

the final subtype of a GC case, we will run the L3 classifier first. If it was classified as L3 the 

procedure will stop; otherwise, the L3-negative samples will be sequentially evaluated by L2 

and L1 classifiers. The predicted subtype of samples that were not identified by any of the 

classifiers were labeled as “Not Available” (NA). 

 

Survival analysis 
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Survival analysis was performed with python package ‘lifelines’ [11]. The associations 

between the expression of lncRNAs and survival was estimated by two approaches: (1) Cox 

regression analysis; (2) segregating patients into high-expression and low-expression groups 

by different cut-offs of FPKM level and calculating the P-value by log-rank test, and the result 

with the most significant P-value was reported. 

 

Copy number alterations analysis 

We used a cut-off of +/− 0.3 on the segment mean (log2 transformation of the copy number) 

to define copy number gain/loss, where approximately 99% of all segments in normal samples 

were below this threshold. GISTIC 2.0 (v2.0.12) was used to identify regions of the genome 

that were significantly gained or deleted across a set of samples using a Q-value cut-off <0.05 

[12]. 

 

Analysis of DNA methylation level of lncRNA genes 

To analyze the methylation level of all annotated and novel lncRNAs, the probes on 

HumanMethylation450 array were assigned to a lncRNA gene if it falls within the promoter (2 

kb upstream from transcriptional start site) or within the gene body of the lncRNA. For 

lncRNAs that contains at least one methylation probes, the methylation level of the lncRNA is 

represented by the probe that satisfy these criteria: (1) methylation level of the probe is 

negatively associated with the expression level of the lncRNA (with Spearman’s correlation 

coefficient below 0 and P-value below 0.05); (2) when more than one probes are located at the 

promoter and gene body of a lncRNA, the probe with the strongest negative association with 

lncRNA expression level were selected to represent the methylation level of the lncRNA. On 

the contrary, if there is either no probe on the lncRNA gene or no significant negative 
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correlation was observed between the lncRNA expression and the methylation level of any 

probes on the lncRNA, the methylation level of the lncRNA gene is considered non-available. 

 

Characterization and prioritization of oncogenic lncRNAs in GC 

The 50 lncRNAs that are upregulated and associated with poor prognosis in GC are prioritized 

by a priority score calculated as below: 

𝑆𝑐𝑜𝑟𝑒#$%&$%'( = 𝑆𝑐𝑜𝑟𝑒)%**+$+,'%-.	#01-.2+ + 𝑆𝑐𝑜𝑟𝑒#$&3,&4%4	#01-.2+ + 𝑆𝑐𝑜𝑟𝑒567.%*%8-'%&,

+ 𝑆𝑐𝑜𝑟𝑒9:5; 	+ 𝑆𝑐𝑜𝑟𝑒<=7+$%6+,'-.	<1%>+,8+ 

where 𝑆𝑐𝑜𝑟𝑒)%**+$+,'%-.	#01-.2+ represents the normalized rank of each lncRNA in the order 

of descending P-value of differential expression in GC compared to normal stomach tissues;  

𝑆𝑐𝑜𝑟𝑒#$&3,&4%4	#01-.2+  represents the normalized rank of each lncRNA in the order of 

descending P-value in associations with poor prognosis by cox regression test; 

𝑆𝑐𝑜𝑟𝑒567.%*%8-'%&, represents the normalized rank of each lncRNA in the order of increasing 

frequency of amplification in GC; 𝑆𝑐𝑜𝑟𝑒9:5; assessed if the lncRNA is in close adjacency 

(within 10 Mbp) with any reported SNPs that are associated with the risk of GC (from the 

GWAS catalog [13]); 𝑆𝑐𝑜𝑟𝑒<=7+$%6+,'-.	<1%>+,8+  indicates whether the lncRNA has been 

experimentally validated with oncogenic functions in any cancer types. 

 

RNA extraction, semiquantitative reverse transcription PCR, and real-time PCR 

analyses 

Total RNA was extracted using TRIzol Reagent (Invitrogen). Complementary DNA (cDNA) 

was synthesized using Transcriptor Reverse Transcriptase (Roche Applied Sciences, 

Indianapolis, IN). Real-time PCR was performed using an SYBR Green master mixture (Roche) 

on LightCycler 480 Instrument. Each sample was tested in triplicate. Experiments were 

repeated twice. Primer sequences for LINC01614 and GADPH are listed below: 
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Primer Sequence 

LINC01614 Forward  TCAACCAAGAGCGAAGCCAA  

LINC01614 Reverse  TTGGACACAGACCCTAGCAC  

GAPDH Forward  GGGAAACTGTGGCGTGAT  

GAPDH Reverse  GAGTGGGTGTCGCTGTTGA  
 

Overexpression of LINC01614 in GC cell lines 

Full-length LINC01614 cDNA (NR_132383.1) was cloned into pEXP-RB-Mam vector 

(RiboBio, Guangzhou, China).  The sequence of LINC01614 cDNA insert was confirmed by 

sequencing. The resulting vector or control vector (empty vector) was transfected into MKN28 

cells using Lipofectamine2000 Transfection Reagent (Life Technologies, Carlsbad, CA) 

according to the manufacturer's protocol. 

 

LentiCRISPR for LINC01614 knockout experiment in GC cell lines 

sgRNA (GTGTAAGGTACTCAAGTGCT) targeting LINC01614 was cloned into the 

lentiCRISPR vector.  Following transformation, plasmids were purified and the insertion of 

sgRNA was confirmed by sequencing. The resulting vector or control vector (empty vector) 

was transfected into 293T cells with psPAX2 and pMD2.G using Lipofectamine2000 

Transfection Reagent (Life Technologies, Carlsbad, CA). Lentiviral particles were produced 

to infect MKN28 cells. After infection with lentivirus, cells were selected with puromycin.  

 

Colony formation assay 

Cells were seeded in 48-well plates (2×102 cells/well) and cultured at 37°C in 5% CO2. After 

10 days, the cells were washed with PBS and stained with crystal violet. ddH2O was used to 

wash the cells three times to obtain a clean background. 
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Cell migration assessment by wound-healing assay 

Cells were cultured in 24-well plates with the density of 5×104 cells per well. After confluence, 

a wound was made across the well with a 200 μL pipette tip. The wound was photographed 

immediately. The cells migrated across the gap wound were observed and documented using 

an inverted microscope. Area of the gap was quantified using Image J. Two different areas in 

each well were imaged, measured and averaged in statistical analysis. 

 

Cell proliferation assay (MTT assay) 

After lentivirus infection and puromycin selection, cells were trypsinized, resuspended, seeded 

in a 96-well plate with a density of 2×103 cells/well and incubated at 37°C. At each indicated 

time-point, 10 µl of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was 

added and incubation was continued for 4 h. At the end of the incubation period, the medium 

was removed carefully and 50 µl of dimethylsulfoxide (DMSO) was added. The plates were 

agitated and the absorbance was measured at 570 nm under an absorption spectrophotometer. 

Two measurements were taken for each sample and the signals were averaged in statistical 

analysis. 

 

Generation and analysis of RNA-seq data of GC cell lines with LINC01614 manipulation 

After knocking out LINC01614 in human cell lines, including GES1 and MKN1, or 

overexpressing LINC01614 in human cell lines, including GES1 and MGC803, total RNA was 

extracted with TRIzol reagent (Thermo Fisher Scientific). RNA-seq was performed by Beijing 

Novogene Technology on Illumina NovaSeq 6000 platform with paired-end 150 bp (PE150). 

15G of raw data were generated for each sample. The raw sequencing data was mapped to 

human reference genome hg38 using STAR [17], and the total read pairs mapped to each gene 

annotated in GENCODE release 27 were obtained using featureCounts [8] in the Subread 
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package. The count of each gene was normalized to FPKM. The fold-change of gene 

expression in each cell line after LINC01614 over-expression or CRISPR-Cas9 knock-out was 

calculated in contrast to the control by 𝑓𝑜𝑙𝑑 − 𝑐ℎ𝑎𝑛𝑔𝑒 = 	 ?#@A!"#!$%&!'(B	8)
?#@A*+'($+,	B	8)

, where pseudo-

count c0 = 1 to reduce noise in low expression genes. The expression data and fold change 

values were provided in Table S7. The genes that are positively regulated by LINC01614 was 

defined by: (1) positively correlated with LINC01614 in TCGA GC dataset; (2) up-regulated 

in both GES1 and MGC803 cell lines after LINC01614 over-expression; (3) down-regulated in 

both GES1 and MKN1 cell lines after LINC01614 CRISPR-Cas9 knock-out. The genes that 

are negatively regulated by LINC01614 were defined by: (1) negatively correlated with 

LINC01614 in TCGA GC dataset; (2) down-regulated in both GES1 and MGC803 cell lines 

after LINC01614 over-expression; (3) up-regulated in both GES1 and MKN1 cell lines after 

LINC01614 CRISPR-Cas9 knock-out.  

The gene list ranked by fold change was used to perform Gene Set Enrichment Analysis [18, 

19] on all gene sets in the Mutation Signature Dataset v7.2 [20], and gene sets with significant 

associations (NOM p-val < 0.05 and FDR q-val < 0.25) in all cell lines were reported in the 

Table S8. 

 

Data and code availability 

The FLORA pipeline is deposited at http://wang-lab.ust.hk/software/Software.html. 

Expression, mutation, copy number and clinical data generated by The Cancer Genome Atlas 

are available at the GDC portal: https://portal.gdc.cancer.gov/. Preprocessed sequencing data 

are available at the Broad GDAC firehose: https://gdac.broadinstitute.org/. The targeted DNA 

sequencing data was downloaded from the supplementary table of the ACRG study [21], and 

the copy number data was downloaded from GSE62717. Correspondence and requests for 

materials should be addressed to J.W. (jgwang@ust.hk) and J.Y. (junyu@cuhk.edu.hk)  
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