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Supplementary Fig. S1 Comparison of active reactions in carbon assimilation pathway in storage roots of cassava 

inferred based on predicted flux distribution and transcriptome data of cultivar KU50 at five months old1 

 

Red and blue arrows represent the reactions that did not well agree with the transcriptome data. The rMeCBM model 

could not capture the cytosolic conversion of sugar phosphate to pyruvate in the respiration pathway (I.) and the 

predicted flux through serine-pyruvate transaminase reaction (R00585) in the complex alanine biosynthesis pathway 

was inconsistency with gene expression (II.). 



Supplementary Fig. S2 Flux distribution at varied thresholds and flux variability analysis indicating flux variability 

types 

 
Pathways: starch and sucrose biosynthesis pathway (SSP), respiration pathway (RES), pentose phosphate pathway (PPP), cell wall 

biosynthesis pathway (CEL), amino acid biosynthesis pathway (AMI), fatty acid biosynthesis pathway (FAT), and nucleotide 

biosynthesis pathway (NUC). 

Compartments: cytosol (c), mitochondria (m), and plastid (p). 

 

GIMME recovered low gene expression reactions. The FVA supported that those recovered reactions are essential 

reactions (black) related to amino acid (I.) and fatty acid biosynthesis (II.) pathways, with need for storage root growth. 



Supplementary Fig. S3 The flux distributions using GIMME algorithm (rMeCBMx-GIMME) at two different 

thresholds between 25th and 75th percentile of expression levels compared with transcriptome data of cultivar KU50 

at five months old 

 

A. rMeCBMx-GIMME-P25 

 

 

 

 



B. rMeCBMx-GIMME-P75 

 

The rMeCBMx-GIMME-P25 and rMeCBMx-GIMME-P75 showed similar prediction. They predicted the use of 

pyruvate-glutamate transaminase (EC 2.6.1.2; R00258 remark as I.) to synthesis alanine instead of serine-pyruvate 

transaminase (EC 2.6.1.51; R00585) (mark as I.). They are different in the prediction of the carbon precursors imported 

from the cytosol for utilization in the plastid. rMeCBMx-GIMME-P75 preferred beta-D-Fructose 1,6-bisphosphate 

(β-D-FBP) in the plastid as similar to rMeCBM model, while rMeCBMx-GIMME-P25 imported alpha-D-glucose-6-

phosphate (α-D-Glc-6P)  for the respiration pathway and biosynthesis of other biomass components (remarked as II.). 

Additionally, they   are different in the use of a bypass reaction in non-oxidative PPP, R01830-the conversion of D-

erythose-4-phosphate (D-E4P) and D-xylulose-5-phosphate (D-X5P) to D-glyceraldehyde-3-phosphate (D-G3P) and 

beta-D-fructose-6-phostphate (β-D-Fru-6P) by transketolase (EC 2.2.1.1) (remarked as III.). rMeCBMx-GIMME-P25 

predicted R01830 in the plastid, whereas rMeCBMx-GIMME-P75 predicted it in cytosol.  



Supplementary Fig. S4 Comparison of flux distribution from rMeCBM and rMeCBMx-EFlux with transcriptome 

data of KU50 cultivar at five-month-old plant1. 

 

rMeCBMx-EFlux transported α-D-Glc-6P into plastid for the respiration pathway and biosynthesis of other 

biomass components instead of β-D-FBP. 

 

 

 

 



Supplementary Fig. S5 Comparison of flux distribution from rMeCBM and rMeCBMx-HPCOF with transcriptome 

data of cultivar KU50 at five months old plant1. 

 

rMeCBMx-HPCOF was the only model that could capture the conversion of sugar phosphate to pyruvate through 

glycolysis (I.), the pentose phosphate pathway occurring in both cytosol and plastid (II.), and the full cycle of 

mitochondrial TCA (III.). 

 

 

 



Supplementary Fig. S6 GO analysis of expressed genes in each representative scenario 

A. The comparison of GO enrichment from total genes (> 0th percentile of gene expression) in three scenarios 

 

 

B. The comparison of GO enrichment from total genes (> 25th percentile of gene expression) in three scenarios 

 

 



C. The comparison of GO enrichment from total genes (> 75th percentile of gene expression) in three scenarios 

 

 

 

 

 

 

 

 

 

 



Supplementary Fig S7 The qualitative analysis of model performance based on three algorithms at varied 

thresholds of expressed genes from transcriptome data. (A) The 25th (low-rank) percentile of enzymatic gene 

expression in the model. (B) The 75th (high-rank) percentile of enzymatic gene expression in the model 



Supplementary Fig S8 Model validation using CMC9 physiological data, A: the harvest index of CMC9 and 

KU50 cultivars, B: comparison of predicted growth rate of CMC9 from rMeCBM and rMeCBMx-HPCOF with 

the measured growth rate 
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Supplementary Fig. S9 Sensitivity analysis of SGAM to predicted growth rate of the rMeCBM model. Empty 

triangle and filled triangle represented SGAM requirement of rMeCBM and rMeCBMx-HPCOF, respectively. 

Dotted lines lay out the percentage error of model simulated to measured storage roots growth rate 
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Supplementary Fig. S10 Cumulative frequency of supporting datasets from transcriptome data (A), proteome 

data (B), and metabolome data (C) 

 

 



Supplementary Fig. S11 Comparison of active reactions from transcriptome, proteome, and metabolome with 

predicted fluxes from each model 

 


