Transcriptome integrated metabolic modeling of carbon assimilation underlying storage root development in cassava

Ratchaprapa Kamsen¹, Saowalak Kalapanulak^{1,2}, Porntip Chiewchankaset², and Treenut Saithong^{1,2,*}

¹Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.

²Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150 Thailand

*corresponding author; e-mail: treenut.sai@kmutt.ac.th

No.	Datasets	Cassava	Age of plants	Biological	Mapping	No.	References	
		cultivars	(DAP)*	replicates	rate (%)**	No. of expressed	No. of expressed metabolic	
						genes ^a (33,033)	genes in rMeCBM model ^a (762)	
1	Wang2014_W14-75	W14	75	-	86%	26,944	737	Wang <i>et al</i> . ¹
2	Wang2014_KU50-75	KU50	75	-	93%	27,201	731	Wang <i>et al.</i> ¹
3	Wang2014_KU50-120	KU50	120	-	93%	26,851	734	Wang <i>et al.</i> ¹
4	Wang2014_KU50-150	KU50	150	-	93%	28,247	724	Wang <i>et al.</i> ¹
5	Wang2014_Arg7-75	Arg7	75	-	89%	28,014	731	Wang <i>et al.</i> ¹
6	Wang2014_Arg7-120	Arg7	120	-	92%	27,846	732	Wang <i>et al.</i> ¹
7	Wang2014_Arg7-150	Arg7	150	-	92%	27,583	745	Wang <i>et al.</i> ¹
8	Wilson2017_TME-90	TME204	90	2	90%	23,188	731	Wilson <i>et al.</i> ²

Supplementary Table S1 The detail of available transcriptome data of cassava storage roots

* DAP is days after planting

** Mapping rate is percentage of raw reads mapping to cassava AM560 genome (Bredeson et al.³)

^a Expressed genes were defined based on (a) a number of mapped reads are more than 5 reads and (b) gene expression level is greater than zero FPKM. Number in parenthesis is total genes in cassava AM560 genome (33,033) and total genes in rMeCBM model (762 genes). respectively

		Characteristics					Pro	teins	Reactions		
		Cassava cultivars	Age of plants	Protein identification	No. of datasets	No. of identified	No. of annotated	No. of annotated	No. of annotated	No. of reactions in	
No.	Datasets		(MAP)*	method		proteins ^a (unique	proteins in cassava	proteins in cassava	proteins in	rMeCBM related to	References
						protein IDs)	genome V.4.1ª	genome V.6.1 ^b	rMeCBM ^c	annotated proteins ^d	
1	Sheffield2006	-	3	QTOF- MS/MS	1	42	-	36	8	29	Sheffield <i>et al.</i> ⁵
2	Li2010	SC8	3	LC-ESI- MS/MS	1	155	-	210	48	83	Li et al. ⁶
3	Owiti2011	-	-	LC-MAIDI- MS	1	949	-	39	5	7	Owiti <i>et al.</i> ⁷
4	Vanderschuren2014	TMS60444	10	TP3Q- MS/MS	1	-	1194	1031	166	203	Vanderschuren <i>et al.</i> ⁸
5	Naconsie2015	KU50	3	LC-MS/MS	1	95	-	61	13	39	Naconsie <i>et al.</i> ⁹
				Total (unique)	5	-	-	1180	192	217	

Supplementary Table S2 The characteristics of proteome data in developing cassava storage roots, including number of expressed proteins, and associated reactions

* MAP is months after planting

^a data was collected from literatures which belong to cassava storage roots at control condition.

^b annotated proteins in cassava genome V.6.1 were identified if the identity percentage ≥ 60 , coverage percentage ≥ 80 and e-value $\leq 10^{-10}$ using Blastp and proteins from all datasets as the query.

^c the total number of proteins based on cassava genome V.6.1 in rMeCBM model is 852 proteins

^d the protein-related reactions in rMeCBM model consist of 330 reactions

		Characteristics					Meta	bolites	Reactions	
No.	Datasets	No. of cultivars	Age of plant (MAP)*	Cultivation system	Protein identification method	No. of datasets	No. of identified metabolites ^a	No. of matching metabolites in rMeCBM ^b	No. of reactions in rMeCBM related to metabolites ^c	References
1	Drapal2020_Field	8 ^d	10	Field	GC-MS	8	93	25	106	Drapal <i>et</i> <i>al</i> . ¹⁰
2	Obata2020_Field	6 ^e	4	Field	GC-MS	6	126	53	217	Obata <i>et al</i> . ¹¹
3	Obata2020_Greenhouse	6 ^e	3	Greenhouse	GC-MS	6	126	53	217	Obata <i>et al</i> . ¹¹
					Total (unique)	20	158	53	217	

Supplementary Table S3 The characteristics of metabolomic data in developing cassava storage roots including number of metabolites, and associated reactions

* MAP is months after planting

^a data was collected from literatures which belong to cassava storage roots at control condition.

^b the total number of metabolites in rMeCBM model is 393 metabolites

^c the protein-related reactions in rMeCBM model consist of 330 reactions

^d Eight cassava cultivars: BRA1A, COL22, COL638, CUB23, PER183, PER283, PER483, and PER583

^e Six cassava cultivars: IITA-TMS-IBA980581, IITA-TMS-IBA980002, IITA-TMS-IBA30572, IITA-TMS-IBA011412, TMEB693, and TMEB419

Algorithms	S_{GAM}	Storage root growth rate (day ⁻¹)					
Argonums	(mmol _{ATP} gDW ⁻¹ _{SRs})	Prediction	Experiment*				
rMeCBM (FBA)	9.8	0.0090	0.0090	0			
rMeCBMx-GIMME-P25	9.8	0.0090	0.0090	0			
rMeCBMx-GIMME-P50	9.8	0.0090	0.0090	0			
rMeCBMx-GIMME-P75	9.8	0.0090	0.0090	0			
rMeCBMx-GIMME-P90	9.8	0.0090	0.0090	0			
rMeCBMx-EFlux	9.8	0.0090	0.0090	0			
rMeCBMx-HPCOF	19.7	0.0090	0.0090	0			

Supplementary Table S4 Simulation of storage root growth rate through FBA and transcriptome-integrated metabolic models of cassava storage roots

 ε was the percentage error of prediction to measured cassava storage root growth rate

* Measured growth rate from experiment was obtained from Chiewchankaset et al4.

Models	Models Thresholds of No. of		Total react	ions (468 reac	tions)	Biochemical reactions with genes (330 reactions)				
	gene expression in rMeCBM model	expressed genes related in rMeCBM model	No. of active reactions based on a given threshold	No. of reactions with non- zero fluxes	No. of reactions with zero fluxes	No. of active reactions based on a given threshold	No. of reactions with non- zero fluxes	No. of reactions with zero fluxes	No. of recovered low gene expression reactions	
rMeCBM (FBA)	-	731	468	251	217	330	163	167	-	
rMeCBMx-GIMME-P25	25 th percentile	518	460	251	217	325	161	169	2	
rMeCBMx-GIMME-P50	50 th percentile	345	421	254	214	283	166	164	22	
rMeCBMx-GIMME-P75	75 th percentile	173	339	249	219	201	158	172	62	
rMeCBMx-GIMME-P90	90 th percentile	70	253	249	219	115	159	171	112	

Supplementary Table S5 The expression-guided active metabolic reactions in carbon assimilation pathway of cassava storage roots inferred by using different thresholds

Supplementary Table S6 Identification of expressed genes in each representative scenario based on coefficient of variance (CV). It assumed that the representative gene set denoted the expressed genes in charge of regulation under the scenario was considered if the variation in terms of CV between the datasets in scenario was less than 25 percent. The representative gene set was also categorized based on expression level, in percentile basis of individual datasets

	Standard Control Contr	5 100 100 100 100 100 100 100 10	view of the second seco	100 100 100 100 100 100 100 100 100 100	259 / 100 /		
Threshold of gene	Scena in developing storag (all four c	rio 1 ge roots of cassava ultivars)	Scena in developing storage r (KU50 ar	ario 2 oots of high-yield traits nd ARG7)	Scenario 3 in developing storage roots of KU50 cultivar		
expression levels	No. of expressed	No. of active	No. of expressed	No. of active	No. of expressed	No. of active reactions	
	genes (763 genes)	reactions (330	genes (763 genes)	reactions (330	genes (763 genes)	(330 reactions)	
		reactions)	reactions)				
> The 0 th percentile	472	330	545	330	589	330	
> The 25 th percentile	464	282	524	290	552	293	
> The 50 th percentile	354	268	369	270	379	266	
> The 75 th percentile	180	212	188	216	191	212	

	Scenario 1				Scenario 2				Scenario 3			
	in developing storage roots of cassava				in developing storage roots of high-yield traits				in developing storage roots of KU50 cultivar			
	(all four cultivars)					(KU50 a	and ARG7)					
	No. of No. of % of No. of			No. of	No. of	% of	No. of	No. of	No. of	% of	No. of	
	genes	genes	genes	enriched	genes	genes	genes	enriched	genes	genes	genes	enriched
		with	with	GOs		with	with	GOs		with	with	GOs
		annotated	annotated			annotated	annotated			annotated	annotated	
		GOs	GOs			GOs	GOs			GOs	GOs	
> The 0 th percentile	472	367	77.75	177	545	421	77.25	183	589	461	78.27	201
> The 25 th percentile	464	363	78.23	176	524	409	78.05	181	552	439	79.53	201
> The 50 th percentile	354	282	79.66	160	369	290	78.59	169	379	295	77.84	166
> The 75 th percentile	180	145	80.56	115	188	152	80.85	119	191	152	79.58	115

Supplementary Table S7 GO analysis of the expressed gene set in each representative scenario

References

- 1. Wang, W. et al. Cassava genome from a wild ancestor to cultivated varieties. Nat. Commun. 5, (2014).
- 2. Wilson, M. C. *et al.* Rapid report Gene expression atlas for the food security crop cassava. (2017) doi:10.1111/nph.14443.
- 3. Bredeson, J. V *et al.* resource Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. **34**, (2016).
- 4. Chiewchankaset, P., Siriwat, W. & Suksangpanomrung, M. Understanding carbon utilization routes between high and low starch-producing cultivars of cassava through Flux Balance Analysis. *Sci. Rep.* 1–15 (2019) doi:10.1038/s41598-019-39920-w.
- 5. Sheffield, J., Taylor, N., Fauquet, C. & Chen, S. The cassava (Manihot esculenta Crantz) root proteome : 1588–1598 (2006) doi:10.1002/pmic.200500503.
- 6. Li, K. *et al.* Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. 1–12 (2010).
- 7. Owiti, J. *et al.* iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. 145–156 (2011) doi:10.1111/j.1365-313X.2011.04582.x.
- 8. Vanderschuren, H. Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration Large-Scale Proteomics of the Cassava Storage Root and Identi fi cation of a Target Gene to Reduce Postharvest Deterioration. (2014) doi:10.1105/tpc.114.123927.
- 9. Naconsie, M., Lertpanyasampatha, M. & Viboonjun, U. Cassava root membrane proteome reveals activities during storage root maturation. *J. Plant Res.* (2015) doi:10.1007/s10265-015-0761-4.
- Drapal, M., Ovalle Rivera, T. M., Becerra Lopez-Lavalle, L. A. & Fraser, P. D. Exploring the chemotypes underlying important agronomic and consumer traits in cassava (Manihot esculenta crantz). *J. Plant Physiol.* 251, 153206 (2020).
- 11. Obata, T. *et al.* Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield. *Plant J.* 1202–1219 (2020) doi:10.1111/tpj.14693.