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ll14ra-independent vaginal eosinophil accumulation
following helminth infection exacerbates epithelial
ulcerative pathology of HSV-2 infection
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In brief

Chetty et al. demonstrate that helminth
infection systemically enhances vaginal
pathology in subsequent HSV-2 infection.
This is a result of an IL-5-promoted type 2
immunity expanding eosinophils in the
vagina. These eosinophils cause an
enhanced vaginal epithelial ulceration in
co-infected mice.
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SUMMARY

How helminths influence the pathogenesis of sexually transmitted viral infections is not comprehensively un-
derstood. Here, we show that an acute helminth infection (Nippostrongylus brasiliensis [Nb]) induced a type 2
immune profile in the female genital tract (FGT). This leads to heightened epithelial ulceration and pathology
in subsequent herpes simplex virus (HSV)-2 infection. This was IL-5-dependent but IL-4 receptor alpha (//4ra)
independent, associated with increased FGT eosinophils, raised vaginal IL-33, and enhanced epithelial
necrosis. Vaginal eosinophil accumulation was promoted by IL-33 induction following targeted vaginal
epithelium damage from a papain challenge. Inhibition of IL-33 protected against Nb-exacerbated HSV-2
pathology. Eosinophil depletion reduced IL-33 release and HSV-2 ulceration in Nb-infected mice. These
findings demonstrate that Nb-initiated FGT eosinophil recruitment promotes an eosinophil, IL-33, and IL-5
inflammatory circuit that enhances vaginal epithelial necrosis and pathology following HSV-2 infection. These
findings identify a mechanistic framework as to how helminth infections can exacerbate viral-induced vaginal
pathology.

INTRODUCTION these infections have been associated with changes in both

female fecundity (Blackwell et al., 2015) and FGT immunity

Parasitic nematode infections and sexually transmitted viral in-
fections (STVIs) occur at high rates in the same geographical lo-
cations, especially in low-middle income countries (LMICs)
(Looker et al., 2015; WHO, 2002). Nematode infections do not
normally colonize or transit the female genital tract (FGT), yet

Gheck for
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(Chetty et al., 2020; Gravitt et al., 2016). For example, Trichu-
ris-trichiura-infected women can display a distinct FGT type 2
cytokine profile associated with increased risk of human papillo-
mavirus (HPV) infection (Gravitt et al., 2016). Nematode infec-
tions therefore appear to profoundly influence FGT biology and
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a critical consequence of this effect may be increased risk of
infection and/or pathology from STVIs.

Nematode infections are known to alter host immunity in un-
colonized tissue, these systemic effects can have important con-
sequences for unrelated conditions at these sites. Effects can be
complex and appear to be largely dependent on the context and
biology of the helminth infection. For example, Schistosoma-
mansoni- and Nippostrongylus brasiliensis (Nb)-induced IL-4
can promote CD8* T cell-driven control of murine gammaher-
pesvirus (Rolot et al., 2018), while Heligmosomoides polygyrus
infection and S. mansoni egg challenge can impair host control
of this virus (Reese et al., 2014). Natural and vaccine-mediated
immunity to a pathogen can also be impaired; Nb infection
reduces host control of non-typhoidal salmonella infection and
induction of protective vaccination (Bobat et al., 2014). Addition-
ally, canonical cellular responses to helminth infection, such as
eosinophil recruitment, have been strongly associated with
improved host control during Mycobacterium tuberculosis infec-
tion (O’Shea et al., 2018). Helminth infections therefore have
diverse and critical influences on a host’s ability to control unre-
lated infections. How helminths infections alter vaginal immunity
and suscepitibility to infections is currently not fully understood.

Genital herpes simplex virus (HSV)-2 is a common STVI world-
wide, with high prevalence in helminth endemic regions and is
associated with poorer male and female reproductive health
(Freeman et al., 2006; Looker et al., 2017, 2015; Phipps et al.,
2016). Initial host immunity to HSV-2 is classically driven by
innate type 1 interferon (IFN)-promoted natural killer (NK) cell ac-
tivity and subsequent IFN-y, CD4*, and CD8* T cell control (Lee
et al., 2017; Milligan and Bernstein, 1997; Thapa et al., 2007).
Type 1 responses are sensitive to downregulation by pre-exist-
ing or concurrent type 2/Th2 immune responses (Chang and
Aune, 2007; Szabo et al., 1997; Wei et al., 2010). To date, direct
demonstration of the consequences of helminth-induced type 2
immunity in the FGT, on immune control of HSV-2 infection, has
not been described. Artificial induction of type 2 immunity in the
FGT can increase pathogenesis of HSV-2 infection, for example,
raised IL-33 levels were shown to enhance HSV-2 pathology and
impair type 1 responses (Oh et al., 2016). Demonstrating whether
nematode infections drive altered immunity to HSV-2 therefore
remains an important and largely unanswered biological ques-
tion that could have significant implications for female reproduc-
tive health. To gain insight into how helminth infections can alter
STVI infections, this study uses a pre-clinical model to demon-
strate that current and prior Nb infections initiate profound
ll4ra-independent expansion of eosinophils in the FGT. This
eosinophil expansion promotes increased vaginal epithelial ul-
ceration following HSV-2 infection. These findings identify a
nematode-induced systemic effect on immunity that promotes
enhanced pathogenesis from a subsequent HSV-2 infection.

RESULTS

Nb infection results in a type 2 immune signature in

the FGT

To test whether helminth infections can alter the underlying im-
mune function of the FGT and associated lymph nodes, immune
homeostasis in the FGT of hormone-synchronized mice was as-
sessed at day 9 (immediately post-worm expulsion) and day 21
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(12 days post-resolution) following infection (Figure 1A). In FGT
of Nb-infected mice, raised levels of the epithelial alarmin IL-33
and canonical type 2 cytokines, IL-4 and IL-5, were found
when compared with uninfected controls (Figure 1B). Raised
IL-33 level is likely to be a consequence of epithelial stress,
immunofluorescence (IF) staining of vaginal tissue for IL-33 and
B-catenin (Bcat) confirmed vaginal epithelial cells to be the pre-
dominant source of IL-33 following Nb infection (Figure S1).
Further histological analysis of FGT tissue demonstrated
increased myeloid cell infiltration (Figure 1C) in Nb-infected
mice when compared with uninfected mice. Sirius red staining
indicated a significant element of this infiltrate were eosinophils
(Figure 1D). Flow cytometric analysis of FGT myeloid cell popu-
lations according to the applied gating strategy (Figure S2)
confirmed this observation. Nb-infected mice showed a signifi-
cant increase in the proportions and numbers of eosinophils
(CD11b"*SiglecF*SSCM), a modest induction of Ly6C" inflamma-
tory monocytes (CD11b*Ly6C"Ly6G,), and a trend for
increased neutrophils (CD11b*Ly6G™) in the FGT, in comparison
with uninfected mice (Figure 1E). Comparative analysis of
myeloid cells in the associated iliac lymph nodes (iLNs) also re-
vealed increased numbers of eosinophils, Ly6C™ monocytes,
and neutrophils in mice 9 days post-infection (dpi) compared
with uninfected controls (Figure S3A). The expanded FGT eosin-
ophil population was maintained at 21 dpi (Figure 1E), indicating
a long-term effect of Nb on FGT immunity.

Little data exist on eosinophil phenotypes in the FGT. To
address this, we compared the expression of established
markers of eosinophil function in the lung and FGT (Figure 1F).
As expected, in the lung, we identified Siglec-F™ and Siglec-
Fi"t eosinophil populations that are representative of recruited
and resident eosinophils (Mesnil et al., 2016). Relative expres-
sion of CD11b, CD62L, and CD49d on eosinophils in the lung
and FGT was used to identify molecular characteristics of these
populations (Grayson et al., 1998; Percopo et al., 2017; Veen
et al., 1998; Walker et al., 1993). We found Nb-induced FGT eo-
sinophils to be Siglec-F™CD11b™CD62L™CD49d", a pheno-
type distinct from Siglec-F" and ™ populations found at the
site of infection (lung) (Figure 1F). Nb-induced FGT eosinophils
expressed raised levels of the integrins CD11b and L-selectin
(CD62L) relative to Siglec-Fint lung eosinophils combined with
elevated expression of CD49d (Borchers et al., 2001; Grayson
et al., 1998; Henderson et al., 1997; Nakajima et al., 1994).
Together, this suggests that FGT eosinophils are predominantly
a recruited population following Nb infection.

To identify changes in FGT epithelial integrity following Nb
infection, IF staining for Bcat and cleaved caspase-3 (c-Casp-
3) was carried out. This revealed equivalent epithelial integrity
in vaginal tissue of uninfected and Nb 9 dpi mice (Figure S3B).
Together these findings show that Nb infection induces expan-
sion of myeloid cell populations in the FGT, and although this
did not result in distinct histological changes to epithelium,
raised levels of IL-33 in vaginal lavages and in the epithelium (Fig-
ure S1) suggests the presence of epithelial stress.

HSV-2 FGT pathology is exacerbated with prior Nb
infection

To test whether Nb-associated immune changes in the FGT had
a consequence on an unrelated infection, we infected mice
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Figure 1. Influence of N. brasiliensis exposure on uncolonized FGT, increase in FGT eosinophils following Nb exposure

(A) Female mice were hormone-synchronized 7 days prior to Nb infection.

(B) At day 9 post-Nb infection (Nb 9dpi), levels of IL-33, IL-4, and IL-5 in FGT homogenates or lavages were assessed by ELISA or Luminex. <OOR: below
detection range for ELISA. Dotted line represents lower limit of quantification (LLOQ) for Luminex analysis. Vaginal tissue was analyzed by (C and D) (C) he-
matoxylin and eosin (H&E) and (D) Sirius red staining. Representative images (n = 5) were taken at x200, x400, and x 1,000 magnification. Black arrows identify

eosinophils.

(E) Frequencies (mean + SEM) and numbers (x10°%) of neutrophils (CD11b*Ly-6G*), Ly-6C™ monocytes (CD11b*Ly-6C™), macrophages (CD11b*F480%), and

eosinophils (CD11b*Siglec-F*SSC™) in the FGT of naive and Nb-infected mice.

(F) Mean fluorescence intensity (MFI) of Siglec-F, CD11b, Gr-1, CD62L, and CD49d on lung (green, blue) and FGT (pink) eosinophils at Nb 9 dpi. Dotted line
represents the MFI of CD45* FGT cells. Data are representative of two independent experiments with 4-5 mice per group (mean + SEM). Statistical significance
was calculated by Mann-Whitney t test. *p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001.

intravaginally with HSV-2, 7 days after Nb infection (Figure 2A).
Nb + HSV-2 co-infection resulted in a step shift elevation in gen-
ital pathology, with raised vaginal inflammation from day 3 post-
HSV-2 infection and increased genital ulceration by day 6, when
compared with HSV-2-only-infected mice (Figure 2B). No signif-
icant differences in viral shedding were observed between co-in-
fected and virus-only mice, at days 3 and 6 post-HSV-2 infection
(Figure 2C), which suggests that the increased pathology
following a prior Nb infection was not a result of changes to viral
replication. Histological analysis of vaginal tissue at day 6 post-
HSV-2 infection revealed increased vaginal epithelial ulceration
in co-infected mice when compared with HSV-2-only mice (Fig-
ure 2D). IF analysis of vaginal tissue at day 3 post-HSV-2 infec-
tion identified a trend for increased epithelial cell necrosis (i.e.,
loss of membranous Bcat, dispersed DNA, but negative for

apoptosis marker c-Casp-3) at the site of ulcer formation in co-
infected mice when compared with HSV-2-only mice (Figures
2E and S4). This supports virus-induced epithelial necrosis,
rather than apoptosis, underlying epithelial ulceration and that
prior Nb infection enhances the onset of necrosis.

Further analysis of vaginal epithelial cells at day 3 post-HSV-2
infection identified reduced expression of MHCI on Nb + HSV-2
vaginal epithelial cells and a trend for less MHCII (Figure 2F).
Suppressed MHC presentation in virally infected epithelial cells
is associated with evasion of host cytotoxic lymphocyte re-
sponses (Neumann et al., 2003; Orr et al., 2005). Host interferon
responses can counteract virus-induced downregulation of
MHC expression (Harle et al., 2001; Mikloska and Cunningham,
2001; Parr and Parr, 1999). We found reduced vaginal epithelial
MHC expression in co-infected mice associated with reduced
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Figure 2. Prior Nb exposure results in earlier and exacerbated HSV-2 pathology
(A) 7 days post-Nb infection, mice were infected intravaginally with 5 x 10° plaque-forming units (PFUs) HSV-2.
(B) Viral progression was determined by daily pathology scoring.
(legend continued on next page)
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detection of antiviral IFN-y (Figure 2G) in vaginal lavages
compared with HSV-2-only mice at day 2 post-viral infection.
Levels of IFN-y-induced transcription factor STAT1 were also
reduced in the FGT of co-infected mice compared with virus-
only controls (Figure 2H). Together, these findings indicate that
prior Nb infection may impair epithelial anti-viral responses;
however, this effect may be insufficient to alter viral load. We
also detected raised IL-33 levels in lavages of co-infected mice
compared with HSV-2-only-infected mice (Figure 2l). IF analysis
of HSV-2- and Nb + HSV-2-infected vaginal tissue identified a
predominant detection of IL-33 in epithelial cells (Figure 2J).
We suggest that the raised IL-33 detected in vaginal lavages is
a consequence of increased epithelial necrosis and subsequent
release of IL-33 in co-infected mice.

Exacerbated viral pathology is associated with Nb-
induced type 2 immunity in the FGT
Histological analysis of FGT at the onset of more severe pathol-
ogy in Nb + HSV-2 mice (day 3 post-virus infection), identified
increased cellular infiltration at the sites of epithelial ulceration
in co-infected mice compared with HSV-2 alone (Figure S5A).
Flow cytometric analysis of the FGT at this time point supported
these observations with significantly increased proportions and
numbers of eosinophils, as well as inflammatory monocytes
and neutrophils in the FGT of co-infected mice compared with vi-
rus-only controls. (Figures 3A and S5B). Importantly, increased
FGT eosinophils were a feature of co-infected mice and not
HSV-2 infection alone. Numbers of neutrophils, Ly6C™ mono-
cytes, macrophages (CD11b*F4/80*), and eosinophils were
also raised in the iLN of Nb + HSV-2 mice (Figure S5C). Sirius
red staining confirmed increased infiltration of eosinophils into
the genital submucosa compared with virus-only-infected mice
at day 3 post-HSV-2 infection (Figures 3B and 3Ci). Eosinophil
infiltration was also observed at the vaginal epithelial layer in
co-infected tissues but not HSV-2-only-infected tissue (Fig-
ure 3Cii). Increased detection of the eosinophil granule protein,
major basic protein (MBP) was found in co-infected FGT
compared with HSV-2 alone, at day 2 post-virus infection (Fig-
ure 3D). This supported arole for eosinophils in causing epithelial
necrosis as MBP has been demonstrated to be an important
cause of epithelial necrosis (Filley et al., 1982).

To further identify if helminth-induced genital eosinophils
could promote pathology following HSV-2 infection, expression
of established markers of eosinophil function were quantified
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(Figures 3E and S5D). This analysis revealed increased expres-
sion of Ly6C, a proinflammation marker (Percopo et al., 2017),
and integrin CD49d, a marker of eosinophil recruitment (Walsh
et al., 1996) and survival (Meerschaert et al., 1999) in Nb +
HSV-2 genital eosinophils compared with Nb 9dpi (Figure 3E).
Together with increased MBP, this suggests raised persistence
and inflammatory action of Nb-induced FGT eosinophils during
vaginal viral infection that may promote epithelial pathology.

During Nb infection, epithelial IL-33 has been shown to be a
significant contributor to the induction of mucosal type 2 immu-
nity, activating ILC2s, which in turn release IL-5 to promote
eosinophil recruitment (Hung et al., 2013; Nussbaum et al.,
2013). Here, we identified that Nb infection promoted this effect
in the FGT; increased levels of lavage IL-5, along with raised pro-
portions and numbers of Lin"IL-7Ra" ICOS*ST2* ILC2s, and IL-
5-producing Lin~IL-7Ra" ICOS™ cells were found in the FGT and
iLN of Nb + HSV-2 compared with HSV-2-only-infected mice
(Figures 3F-3H and S5C). Significantly increased proportions
and numbers of IL-5-producing inflammatory monocytes were
also found in co-infected mice (Figure 3l). Together, these find-
ings identify that host lymphoid and myeloid IL-5 responses in
the FGT provide an environment conducive to enabling eosino-
phil population expansion in Nb + HSV-2 mice.

To test whether IL-5 contributed to Nb-exacerbated viral pa-
thology, we depleted the cytokine with anti-IL-5 (a-IL-5), prior
to and during early HSV-2 infection (Figure S6A). a-IL-5-treated
co-infected mice displayed significantly reduced pathology
and ulcerated epithelium (Figures 3J and S6B) compared with
isotype control. Flow cytometry analysis of iLN and Sirius red
staining of vaginal tissue at day 6 post-HSV-2 infection
confirmed eosinophil depletion following a-IL-5 treatment (Fig-
ures 3J and S6C). Exacerbated viral pathology in helminth-
exposed mice was therefore associated with type 2 immune
imprinting in uncolonized FGT, which was characterized by an
eosinophil influx associated with expanded ILC2 and monocyte
sources of IL-5.

Nb-induced raised vaginal HSV-2 pathology is
independent of ll14ra signaling

Increased genital pathology in Nb + HSV-2-infected mice corre-
lated with raised canonical type 2 IL-4 and IL-5 responses in the
FGT and an impaired IFN-y response. To identify whether, in
addition to IL-5, IL-4/IL-13 also contributed to enhanced pathol-
ogy, either directly or via a classical type 2 antagonism of type 1

(C) Viral shedding (PFU/mL) was measured by plague assay of day 3 and 6 vaginal washes.

(D) At day 6 post-HSV-2 infection, vaginal tissue was analyzed by H&E staining. Representative images (n = 4) were taken at x50 and x400 magnification.
Magnified areas are indicated by yellow boxes. HSV-2 ulcerated epithelium is indicated by black dotted lines and qualified as percentage (%) of ulcerated
epithelium.

(E) At day 3 post-HSV-2 infection, vaginal tissue (n = 4) was analyzed by immunofluorescent (IF) staining for B-catenin (Bcat; white), a-smooth muscle actin (SMA;
red), hoechst 33342 (blue), and c-Casp-3 (green). Yellow boxes identify magnified areas. Yellow arrowheads identify “necrotic” cells i.e., large Bcat-filled nuclei
that are c-Casp-3 negative.

(F) At day 3 post-viral infection, vaginal epithelial cells were isolated and analyzed by flow cytometry (CD45~-CD90~EPCAM™): MFI of MHCI and MHCII on vaginal
epithelial cells from virus-only and co-infected mice. Dotted line represents the MFI of uninfected epithelial cells.

(G) Levels of IFN-vy in vaginal lavages at day 2 post-HSV-2 infection, determined by ELISA.

(H) At day 2 post-viral infection, levels of STAT1 (87 kDa) and GAPDH (37 kDa) were determined in HSV-2-only (H) and co-infected (N + H) FGT homogenates, by
western blot. Density of STAT1 was measured relative to GAPDH.

(land J) (I) Vaginal IL-33 measured by ELISA (day 2) and (J) IF staining of vaginal tissue (day 3; n = 4). Data are representative of two independent experiments with
4-6 mice per group (mean + SEM). Statistical significance was calculated by two-way analysis of variance (ANOVA) with Bonferroni correction for multiple
comparisons and Mann-Whitney t test. *p < 0.05, *p < 0.01, **p < 0.01, **p < 0.001, ns, not significant.
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immunity, i.e., IL-4 and STAT6 impairment of IFN-y production
(Reese et al., 2014), ll4ra knockout (/[ 4ra~’~), mice were infected
with Nb + HSV-2 or HSV-2 alone. Significantly reduced pathol-
ogy and viral shedding was observed in HSV-2-infected /l4ra~/~
mice when compared with wild-type (WT) counterparts. Howev-
er, unexpectedly, we did not observe significant differences in
pathology or viral PFUs, between WT and ll4ra~’~ co-infected
mice (Figures 4A and 4B). Therefore, Nb-promoted HSV-2 pa-
thology was //4ra independent.

Associated with the onset of genital pathology in both WT and
ll4ra~’~ Nb + HSV-2 co-infected mice was increased IL-5 and
reduced IFN-vy levels, in FGT tissue and lavages, respectively,
at day 2 post-HSV-2 infection (Figure 4C). Furthermore, histolog-
ical analysis of vaginal tissue at day 6 post-HSV-2 revealed
increased vaginal epithelial ulceration in WT and //4ra~’~ co-in-
fected mice compared with HSV-2-only controls (Figure 4D).
Sirius red staining exposed increased infiltration of eosinophils
in the vaginal stroma and epithelium of co-infected WT and
ll4ra~'~ mice (Figure 4E). Flow cytometry analysis confirmed
that heightened HSV-2 pathology following Nb infection was
accompanied by raised FGT eosinophils in both WT and /i4ra~'~
co-infected mice at day 3 post-viral infection (Figure 4F). Of note
was the detection of raised eosinophil populations in /l4ra~'~ co-
infected mice. We suggest that this may be a consequence of
persistence of Nb infection in these mice. Together, these find-
ings and those in Figure 3 identify that enhanced pathology in
co-infected mice is independent of /l4ra and instead mediated
by the activation of an IL-5 type 2 immune axis.

ll4ra-independent, IL-33-mediated induction of FGT
eosinophils

To test whether epithelial-damage-associated IL-33 release
could contribute to eosinophil recruitment in the FGT, we
challenged WT and Il4ra~~ mice intravaginally with the serine
protease papain (Figure 5A), which promotes IL-33 release pre-
dominantly by vaginal epithelial cells (Oh et al., 2017) and has
been shown to drive an IL-33-dependent abrogation of host con-
trol of HSV-2 (Oh et al., 2016). We found that papain treatment
resulted in equivalent raised numbers of FGT eosinophils in
both WT and //4ra~’~ mice compared with untreated controls
(Figure 5B). Moreover, induction of FGT ILC2s following intrava-
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ginal papain treatment, was also maintained in the absence of
Il4ra signaling (Figure 5C).

To identify if IL-33 contributed to raised pathology in co-infec-
tion, we treated Nb + HSV-2 mice intravaginally with the IL-33
inhibitor heligmosomoides polygyrus alarmin release inhibitor
(HpARI) (Figure 5D) (Osbourn et al., 2017). Both WT and /[ 4ra~~
HpARI-treated co-infected mice displayed reduced pathology
compared with untreated counterparts (Figure 5E), as well as
reduced epithelial ulceration at day 6 post-HSV-2 infection (Fig-
ure 5F). Flow cytometry analysis at this time point showed a trend
for reduced numbers of ILC2s and significantly less IL-5-produc-
ing ILC2s in the FGT of HpARI-treated Nb + HSV-2 mice
compared with untreated counterparts (Figures S7B and S7C).
Together, these findings support IL-33 driving an [Mra-
independent induction of the IL-5 type 2 immune axis, which con-
tributes to exacerbated HSV-2 pathology in co-infected mice.

Eosinophil depletion abrogates helminth-exacerbated
HSV-2 pathology

To confirm if Nb-induced FGT eosinophils contributes to
elevated HSV-2 pathology, we depleted eosinophils using o-Si-
glec-F antibody prior to virus infection (Figure 6A). a-Siglec-F
treatment significantly reduced eosinophils in the FGT, iLN,
spleen and lung compared with treatment with isotype control
(Figure S7D). Following HSV-2 infection, «-Siglec-F-treated
co-infected mice displayed rescued pathology equivalent to
HSV-2-only mice and significantly less than isotype-treated
co-infected mice (Figure 6B). No significant differences in viral
shedding at day 3 and day 6 post-HSV-2 infection were found
(Figure 6C). These findings were also supported by co-infection
of AdblGata1 ™~ mice, which lack eosinophils, also resulting in
significant reduction in vaginal pathology (Figure S7E). Histolog-
ical analysis of vaginal tissue at day 6 post-HSV-2 infection
demonstrated reduced ulcerated epithelium in o-Siglec-F-
treated Nb + HSV-2 mice equivalent to that seen in virus-only-in-
fected mice (Figure 6D). IF analysis of vaginal tissue at this time
point showed equivalent detection of c-Casp-3-positive cells in
the intact epithelium of all groups, notable loss of vaginal epithe-
lium (Bcat) was observed in isotype-treated Nb + HSV-2 mice
compared with HSV-2-only and «-Siglec-F-treated co-infected
mice (Figure 6E). Flow cytometry analysis and Sirius red staining

Figure 3. Prior Nb exposure results in elevated inflammation, eosinophil infiltration, and ILC2 presence in genital tissue, following HSV-2

vaginal infection

(A) At day 9 post-Nb infection (Nb only) and day 3 post-HSV-2 infection (HSV-2 only and Nb + HSV-2), numbers of FGT myeloid cells were analyzed by flow

cytometry.

(B) Vaginal tissue was analyzed by Sirius red staining. Representative images (n = 4) of virus-induced ulcers were taken at x400 magnification.

(C) Black boxes indicate magnified sections of (Ci) vaginal stroma (St) and (Cii) epithelium (Ep), taken at x 1,000 magnification. White arrows indicate eosinophilic
cell infiltration and migration in ulcerated vaginal tissue. Black arrowheads indicate eosinophil presence in vaginal epithelial layer.

(D) At day 2 post-HSV-2 infection, levels of MBP (25 kDa) and GAPDH (37 kDa) were measured in HSV-2-only and Nb + HSV-2 FGT homogenates. Density of MBP

was measured relative to that of GAPDH.

(E) MFI of Siglec-F, CD11b, Ly6G, Ly6C, CD62L, and CD49d on FGT eosinophils in Nb 9 dpi and Nb + HSV-2 mice.
(F) Levels of IL-5 in vaginal lavages at day 2 post-virus infection, determined by Luminex. Dotted line represents LLOQ.
(G) Frequencies (mean + SEM) and numbers of Lin~IL-7Ra" ICOS*ST2" cells (ILC2s) in the FGT of Nb 9 dpi, HSV-2-only and Nb + HSV-2 mice.

(H and 1) Frequency and number of (H) Lin"IL-7Ra*ICOS* cells and () Ly6C" monocytes that are IL-5+ in the FGT, determined by flow cytometry. Data are
representative of two independent experiments with 5-6 mice per group (mean + SEM).

(J) Nb-infected mice were treated with 20 pg a-IL-5 or isotype control, on day —2, 0, and 2 post-HSV-2 infection. Viral progression was determined by daily
pathology scoring and HSV-2 ulcerated epithelium was qualified as percentage (%) of ulcerated epithelium. At day 6 post-HSV-2 infection, numbers of eo-
sinophils in the iLN were determined by flow cytometry. Data are representative of two independent experiments with 4 mice per group (mean + SEM). Statistical
significance was calculated by two-way ANOVA with Bonferroni correction for multiple comparisons and Mann-Whitney t test. *p < 0.05, *p < 0.01, **p <
0.001, ***p < 0.0001.
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Figure 4. Nb-exacerbated HSV-2 pathology and FGT eosinophil infiltration is /l4ra independent

WT and /i4ra~’~ mice were infected with HSV-2 following Nb exposure as previously described.

(A) HSV-2 progression was determined by daily pathology scoring.

(B) Viral shedding was measured by plaque assay of day 6 vaginal washes.

(C) Genital levels of IL-5 and IFN-y at day 2 post-HSV-2 infection, determined by Luminex and ELISA, respectively. Dotted line represents LLOQ of Luminex
analysis. At 6 dpi, vaginal tissue was analyzed by H&E staining.

(D) Representative sections (n = 3—4), displaying ulceration and inflammation of vaginal tissue. Images were taken at x50 magnification. HSV-2-ulcerated vaginal
epithelium is indicated by black dotted lines and qualified as percentage (%) of ulcerated epithelium.

(E) Representative Sirius-red-stained sections (n = 3-4) of virus-induced (Ei) epithelial ulcers and (Eii) stromal inflammation. Black arrows indicate eosinophil
presence in the vaginal epithelial layer. Images were taken at x400 and x 1,000 magnification.

(F) Numbers (x10%) of FGT eosinophils in WT and /l4ra~’~ co-infected mice compared with HSV-2-only controls. Data are representative of two independent
experiments with 3-6 mice per group (mean + SEM). Statistical significance was calculated by two-way ANOVA with Bonferroni correction for multiple com-
parisons. *p < 0.05, *p < 0.01, **p < 0.001, ***p < 0.0001.

of the FGT at days 3 and 6, respectively, confirmed a significant  epithelial ulceration and reduced tissue integrity in co-infected
reduction in FGT eosinophils in a-Siglec-F-treated co-infected mice, as being mediated by FGT eosinophil accumulation. Along
mice (Figures 6F and 6G). These findings support increased  with these findings, a-Siglec-F treatment also reduced numbers
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Figure 5. Epithelial IL-33-induced FGT eosinophil inflammation in the absence of ll4ra signaling
(A) WT and /l4ra~'~ mice were treated intravaginally with 20 pg papain for 3 days. The next day, FGT cells were analyzed by flow cytometry.
(B and C) Numbers of FGT (B) eosinophils (x10% and (C) ILC2s (x10?) in papain-treated and untreated WT and //4ra~’~ mice. Data are representative of two

experiments with 3-4 mice per group (mean + SEM).

(D) To inhibit vaginal IL-33, co-infected mice were treated intravaginally with helminth-derived HpARI (day —3 to 3 post-HSV-2).

(E) HSV-2 progression in WT and /l4ra~ co-infected HpARI-treated mice and BSA-treated controls was determined by daily pathology scoring (*WT Nb + HSV-2
versus WT Nb + HSV-2 + HpARI, *ll4ra~~ Nb + HSV-2 versus ll4ra~’~ Nb + HSV-2 + HpARI).

(F) Representative H&E-stained sections (n = 4) of ulcerated vaginal tissue. Images were taken at x50 magnification. HSV-2-ulcerated vaginal epithelium is
indicated by black dotted lines and qualified as percentage (%) of ulcerated epithelium. Data are representative of two independent experiments with 4-6 mice
per group. Statistical significance was calculated by two-way ANOVA with Bonferroni correction for multiple comparisons and Mann-Whitney t test. *p < 0.05,

**p < 0.01, **p < 0.001, ***p < 0.0001, ns, not significant.

of ILC2s in FGT (Figure 6H). This reduction in FGT ILC2s associ-
ated with significantly reduced levels of vaginal IL-33 in a-Siglec-
F-treated co-infected mice (Figure 6l). Together, these data
demonstrate that the exacerbation of HSV-2 pathology following
prior Nb infection is dependent on an Nb-induced FGT eosino-
phil recruitment and bystander tissue damage.

DISCUSSION

In this study, we identify that systemic immunity to nematode
infection results in a type 2 immune profile in uncolonized female
genital tissue, a salient feature of this is an enhanced and persis-
tent FGT eosinophil population. Additionally, we show that prior

Nb infection results in a step increase in pathology to a subse-
quent vaginal HSV-2 infection. Depletion of eosinophils pro-
tected against this increased HSV-2-induced genital pathology.
Furthermore, increased HSV-2 ulceration was dependent on IL-5
and IL-33 and correlated with an //4ra-independent induction of
ILC2s, which would further promote eosinophil action in the
FGT. These findings may provide a mechanistic framework
that explains the association between raised type 2 cytokine pro-
files in cervical fluids of nematode-infected women and their
increased risk of viral infection (Gravitt et al., 2016).

Diverse roles of IL-33 during viral infections have been
identified. For example, IL-33 receptor ST2 signaling drives
type 2 immune pathology during respiratory viral infection
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(Walzl et al., 2001); IL-33 mediates influenza airway pathology by
eliciting IL-13 production by innate lymphoid cells (Chang et al.,
2011). Conversely, IL-33 has shown to enhance cytotoxic and
memory T cell responses to virus infection (Bonilla et al., 2012)
and vaccine challenge (MclLaren et al., 2019).

In the vagina, Oh et al. (2016) demonstrated adverse effects of
IL-33 on adaptive T cells responses and viral control. Here, we
identify an IL-33-promoted type 2 immune environment in the
FGT following helminth exposure, which enhances innate
immune pathology during subsequent HSV-2 infection. In agree-
ment with others, we also identify the epithelial barrier as the pre-
dominant source of IL-33 in the vagina (Oh et al., 2016; Pichery
et al., 2012). Our demonstration of eosinophil and ILC2 FGT infil-
tration, in response to established papain-driven induction of
epithelial IL-33 release, further supports these findings. More-
over, we also identified that local inhibition of IL-33 at the epithe-
lial barrier reduced helminth-exacerbated HSV-2 pathology. This
body of work supports vaginal epithelial cells to be the key
source of IL-33-mediated type 2 immunity in the FGT during
co-infection. Recent studies have identified myeloid sources of
IL-33 to play roles in downregulating mucosal inflammation
(Hung et al., 2020a, 2020b; Jackson et al., 2020; Sell et al.,
2020). The findings we present here do not currently suggest a
role for cells other than epithelial cells as a contributing source
of IL-33. Moreover, our findings support a pro-inflammatory
role for IL-33 in the presented co-infection scenario.

Our identification that pathology was a result of increased
eosinophil numbers in the FGT was anatomically unexpected,
considering the protective role eosinophils have shown during up-
per FGT damage caused by Chlamydia infection (Vicetti Miguel
et al., 2017). But our findings do agree with roles of helminth-
induced eosinophils in parasite-colonized tissue causing
pathology. Expanded eosinophil numbers following parasite colo-
nization or transit of host tissue are well established as a contrib-
utor to pathologies resulting from helminth migration including
pulmonary eosinophilia, Loeffler’'s syndrome (Akuthota and
Weller, 2012; Chitkara and Krishna, 2006; Ekin et al., 2016; Sim-
mons et al, 2019), and eosinophilic meningitis following
Angiostrongylus cantonensis infection (McBride et al., 2017).
However, the influence of helminth elicited eosinophils on host
ability to control unrelated infections is not well understood. Dem-
onstrations of strong associations between eosinophil numbers
and mycobacterial and hookworm infections suggest that the
eosinophil contribution to bystander immunity is likely to be signif-
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icant (O’Shea et al., 2018). The findings presented in this study
identify key players and mediators required to understand the
importance of nematode-induced type 2 immune networks in
controlling inflammation and tissue integrity in mucosal-based tis-
sues. This supports future consideration of eosinophils in the FGT
as potential drivers of pathology caused by STVIs.

This study also supports Nb infection induction of eosinophils
in the FGT as the basis by which pathology to HSV-2 pathology is
promoted. Our data support Nb infection conditioning of the FGT
via a cycle of eosinophil recruitment promoting IL-33 release,
which support expanded ILC2 and monocytes populations
that generate increased IL-5 levels and therefore increased
promotion of eosinophils in the FGT, thereby driving an environ-
ment that elevates tissue pathology following an HSV-2 infection
(Figure 7). That this immune environment is appropriate for
maintaining FGT eosinophil populations is supported by our
demonstration of maintained eosinophil accumulation 12 days
post-parasite expulsion. Bystander tissue damage and inflam-
mation in the FGT following Nb infection, despite no direct para-
site colonization is possibly directly mediated by eosinophil
degranulation as described by others (Galioto et al., 2006; Knott
et al., 2009, 2007; Patnode et al., 2014). Eosinophil granule MBP
is an established cause of epithelial necrosis (Filley et al., 1982;
Kato et al., 2012), and our demonstration of this being increased
in our co-infection model suggests such a mechanism underlies
increased pathology.

An unexpected feature of our study was that the eosinophil-
driven response and raised pathology was largely independent
of ll4ra expression. ll4ra expression is widely demonstrated as
a pre-requisite for optimal mucosal eosinophil responses.
Studies addressing eosinophil expansion and responses in
allergic airway inflammation (Cohn et al., 1999; Nieuwenhuizen
et al., 2012), respiratory viral infection (Castilow et al., 2008;
Johnson et al., 2003), and helminth infection (Mearns et al,,
2008; Spencer et al., 2001) all show noticeably reduced eosino-
phil responses in ll4ra~’~ mice. However, IL-5 is accepted as
also being the critical type 2 driver of eosinophil development,
activation, and survival (Coffman et al., 1989; Daly et al., 1999;
Dent et al., 1999; Herndon and Kayes, 1992). In support of our
findings, others have demonstrated IL-33 induction of T cell IL-
5 independently of IL-4, and STAT-6 being sufficient to induce
eosinophils in IL-4~/~ mice has been reported (Kurowska-Stolar-
ska et al., 2008). Our demonstration of papain induced IL-33
rapidly generating an /l4ra-independent vaginal ILC2 expansion

Figure 6. Depletion of eosinophils rescues HSV-2 pathology in co-infected mice
(A) Co-infected mice were treated with 20 ug a-Siglec-F or isotype control antibody at days 5, 7, and 9 post-Nb infection.
(B) Viral progression in HSV-2-only, a-Siglec-F-, and isotype-treated mice was determined by daily pathology scoring (*Nb + HSV-2 isotype control versus Nb +

HSV-2 a-Siglec-F; #HSV-2 only versus Nb + HSV-2 isotype control).

(C) Viral shedding was measured by plaque assay of days 3 and 6 vaginal washes.

(D) Representative H&E-stained sections (n = 3) of vaginal tissue at day 6 post-HSV-2 infection. Images were taken at x50 magnification. Ulcerated vaginal
epithelium is indicated by black dotted lines and qualified as percentage (%) of ulcerated epithelium. Yellow boxes indicate magnified sections in (G).

(E) IF analysis of day 6 post-HSV-2 vaginal tissue. White boxes indicate magnified sections.

(F) Numbers of FGT eosinophils at day 3 post-virus infection in isotype control and a-Siglec-F-treated Nb + HSV-2 mice compared with Nb 9dpi and HSV-2 only

controls.

(G) Representative magnified sections (n = 3) of Sirius-red-stained vaginal tissue at day 6 post-HSV-2. Images were taken at x 1,000 magnification.

(H) Numbers of FGT ILC2s at day 3 post-HSV-2 infection.

(I) At day 2 post-HSV-2 infection, lavage or FGT levels of IL-33 and IFN-y were measured by ELISA. Data are representative of two independent experiments with
3 mice per group (mean + SEM). Statistical significance was calculated by two-way ANOVA with Bonferroni correction for multiple comparisons and Mann-
Whitney t test. *p < 0.05, “*p < 0.01, **p < 0.001.
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(A) We hypothesize that Nb-induced infiltration of
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colonized FGT, results in epithelial stress and
release of epithelial “alarmin” IL-33, which sup-
ports the local activation of ILC2 and release of IL-
5, essential for eosinophil survival.

(B) The consequence of this during a subsequent
virus infection was exacerbated pathology caused
by virus-induced epithelial necrosis. Type 2 im-
munity and inflammation is amplified following
HSV-2 infection: (1) eosinophil release of granule
proteins promotes epithelial necrosis and (2)
further release of IL-33, which (3) expands ILC2s
that are a source of IL-5, along with infiltrating
monocytes. Impaired anti-viral IFN-y responses
associated with eosinophil accumulation in the
FGT.
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is increased, and tissue integrity is lost. Created
with BioRender.com.
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destruction following Chlamydia tracho-
matis murine infection (Vicetti Miguel
et al., 2017). Our results clearly demon-
strate that nematode-induced genital
eosinophil infiltration mediates vaginal
tissue disruption, predisposing an exac-
erbation of HSV-2-induced ulceration in

the vagina.
In the co-infection model presented
here, helminth infection is naturally

cleared by an immune-competent host.
In ll4ra~~ mice, Nb infections persist
(Horsnell et al., 2013; Urban et al., 1998),
which suggests that our findings will also
have relevance to chronic helminth infec-
tions. Chronic enteric helminth infection
has been shown to systemically alter im-
munity in the lung mucosa, protecting
against pulmonary virus infection (McFar-

and eosinophil accumulation equivalent to that seen in WT mice
identifies redundancy in //4ra signaling in our model. Rapid
induction of both ILC2 and eosinophils, suggests T cell indepen-
dence and lack of //4ra largely precludes a role for IL-13. Our ob-
servations and experiments therefore strongly support an IL-33,
ILC2/monocyte, IL-5 axis driving vaginal eosinophils.

The current understanding of eosinophil function in the FGT
is limited, yet the evidence indicates complex functions, de-
pending on the location of the eosinophil response. Related
to our findings, antibiotic-mediated vaginal dysbiosis has
been shown to increase HSV-2 vaginal pathology, via epithelial
IL-33 impairment of anti-viral immunity; however, this study
does not address any role for eosinophils in promoting pathol-
ogy (Oh et al., 2016). Conversely, eosinophils in the uterus have
been shown to promote endometrial repair and reduce tissue
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lane et al., 2017). Irrespective, further
investigation is needed to understand
the systemic effects of chronic helminth infections on genital
susceptibility to viral infections.

In conclusion, we have shown that an acute, self-resolving
nematode infection systemically induced canonical type 2
immunity in uncolonized genital tissue. Moreover, helminth-
induced genital eosinophils were associated with vaginal
tissue disruption, elevated IL-33 responses, and expansion
of genital ILC2s and IL-5 levels during subsequent HSV-2
infection. This directly demonstrates systemic influences
of gastrointestinal nematode infections on genital responses
to viral infection and provides important experimental
support for the relevance of reported clinical associations
between soil-transmitted helminth infection and vaginal viral
infection (Gravitt et al., 2016). These findings represent a con-
ceptual advance in our understanding of how a non-FGT
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infection can systemically alter pathogenesis to an impor-
tant STVI.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Anti-Siglec-F Monoclonal Rat IgG2A Clone: R&D systems AB_2286029
# 238047 (depletion) Cat# MAB17061

Monoclonal Rat IgG2A Isotype Control Clone: R&D systems AB_357349
# 54447 Cat# MAB006

Anti-IL-5 Monoclonal Rat IgG1 Clone: TRFKS eBioscience™, Thermo Scientific™ AB_469212
(Functional grade, depletion) Cat# 16-7052-81

Monoclonal Rat IgG1 Isotype Control Clone: Invitrogen™, Thermo Scientific™ AB_470153
eBRG1 (Functional grade) Cat# 16-4301-81

Anti-mouse CD16/32, clone: 93 Cat# 101302 BioLegend® AB_312801
Anti-mouse CD45 Alexa Fluor® 700, clone: BioLegend® AB_493715
30-F11 Cat# 103128

Anti-mouse CD11b Brilliant violet (BV) 421™, clone: BioLegend® AB_10897942
M1/70 Cat# 101235

Anti-mouse F4/80 BV605™, clone: BM8 Cat# 123133 BioLegend® AB_2562305
Anti-mouse Ly6C FITC, clone: HK1.4 Cat# 128005 BioLegend® AB_1186134
Anti-mouse Ly6G APC Cy7, clone: 1A8 Cat# 127623 BioLegend® AB_10645331
Anti-mouse Siglec-F PE, clone: S17007L Cat# 155506 BioLegend® AB_2750235
Anti-mouse lineage cocktail PE (CD3g, clone: 145-2C11; BioLegend® AB_1595553
Ly-6G/Ly-6C, clone: RB6-8C5; CD11b, clone: M1/70;

CD45R/B220, clone: RA3-6B2; TER-119, clone:

Ter-119) Cat# 133303

Anti-mouse IL-7Ra (CD127) PE Cy7, clone: A7R34 Cat# 135013 BioLegend® AB_1937266
Anti-mouse ICOS APC, clone: C398.4A Cat# 313510 BioLegend® AB_416334
Anti-mouse ST2 (IL-33Ra) BV421™, clone: DIH9 Cat# 145309 BioLegend® AB_2565634
Anti-mouse EPCAM (CD326) APC, clone: G8.8 Cat# 118213 BioLegend® AB_1134105
Anti-mouse CD90.2 BV605™, clone: 30-H12 Cat# 105343 BioLegend® AB_2632889
Anti-mouse MHCI (H-2Dd) PE, clone: 34-2-12 Cat# 110607 BioLegend® AB_313488
Anti-mouse MHCII (I-A/I-E) FITC, clone: M5/114.15.2 BioLegend® AB_313320
Cat# 107605

Anti-mouse CD62L BV605™, clone MEL-14 Cat# 104437 BioLegend® AB_11125577
Anti-mouse CD49d Alexa Fluor® 647, clone R1-2 Cat# 103613 BioLegend® AB_528836
Anti-mouse/human CD11b PerCP, clone M1/70 Cat# 101230 BioLegend® AB_2129374
Anti-mouse/human IL-5 BV421™, clone TRFK5 Cat# 504311 BioLegend® AB_2563161
Rabbit polyclonal anti-STAT1 Cat# ab47425 abcam AB_882708
Rabbit polyclonal anti-Major Basic Protein (MBP) abcam Cat# ab187523
Rabbit polyclonal anti-GAPDH Cat# ab9485 abcam AB_307275
Goat anti-rabbit IgG-HRP Cat# ab205718 abcam AB_2819160
Bacterial and virus strains

Human herpesvirus 2 (strain G) VR-734™ ATCC® -

Biological samples

Heligmosomoides polygyrus Alarmin Release Inhibitor (HpARI) Dr Henry McSorley N/A
Chemicals, peptides, and recombinant proteins

Depo Provera® Pfizer N/A

Papain Product Sigma-Aldrich® Cat# P4762
7-aminoactinomycin D (7-AAD) staining solution BioLegend® Cat# 420404
Protease inhibitor cocktail Sigma-Aldrich® Cat # P8340
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REAGENT or RESOURCE SOURCE IDENTIFIER
Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich® Cat# P1585
lonomycin calcium salt Sigma-Aldrich® Cat# 13909

Brefeldin A (BFA) Sigma-Aldrich® Cat# B6542

LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit
LumiGlo® chemiluminescent substrate

Invitrogen™, Thermo Scientific™
KPL

Cat# L34957
Cat# 54-12-50

Critical commercial assays

Pierce™ bicinchoninic acid (BCA) assay Thermo Scientific™ Cat# 23225
ELISA MAX™ Standard Set Mouse IL-4 BioLegend® Cat# 431101
ELISA MAX™ Standard Set Mouse IFN-y BioLegend® Cat # 430801
Mouse IL-33 DuoSet ELISA R&D systems Cat# DY3626
Pierce™ TMB Substrate Kit Thermo Scientific™ Cat# 34021
Invitrogen™ Cytokine & Chemokine 36-plex Thermo Scientific™ AB_2576123
mouse kit ProcartaPlex™ Cat# EPX360-26092-901
Experimental models: cell lines
African green monkey kidney (Vero) cells CCL-81™ ATCC® CVCL_0059
Experimental models: organisms/strains
Nippostrongylus brasiliensis University of Cape Town, WGC N/A

Horsnell Group, Division of

Immunology, IDM.
Mouse: BALB/c University of Cape Town, Faculty of N/A

Health Sciences, Research Animal

Facility (UCT FHSRAF)
Mouse: ll4ra”" Prof Frank Brombacher N/A
Mouse: AdblGatal™ University Hospital of Bonn, Institute N/A

for Medical Microbiology, Immunology
and Parasitology (originally obtained
from The Jackson Laboratory (Bar
Harbor, ME, USA)

Software and algorithms

FlowJo V10
GraphPad Prism V6

Fiji Image J
BioRender

Tree Star

https://www.flowjo.com/

https://www.graphpad.com/
scientific-software/prism/

https://imagej.nih.gov/ij/
https://biorender.com/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr William

G. C. Horsnell (wghorsnell@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability
This study did not generate any unique datasets or code.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cells

African green monkey kidney (Vero) cells were obtained from ATCC (ATCC® CCL-81™, Manassas, VA, USA) and cultured in Dulbec-
co’s Modified Eagle Medium (DMEM, Sigma-Aldrich®) supplemented with 10% FCS, 100 U/ml penicillin, 100mg/ml streptomycin
and 2mM glutamine, at 37°C, 5% CO..
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Virus

Human herpesvirus 2 strain G (HSV-2, ATCC® VR-734™) was propagated in Vero cells (Blaho et al., 2005; Marshak et al., 2014).
Confluent Vero cells were washed with serum-free media and the HSV-2 inoculum was added, at a multiplicity of infection (MOI)
of 0.1. At 2-3 days post-infection, cells and supernatant was collected and viral titres were determined by plaque assay. Briefly,
confluent Vero cells were incubated with serial dilutions of viral stock, at 37°C, 5% CO,, for 2 hours (hrs) to allow for absorption.
The inoculum was then replaced with supplemented DMEM and cells were incubated for 2 days, fixed with methanol + 2% H,0,
and stained with Giemsa stain (Sigma-Aldrich®) to determine plaque forming units (PFU). Viral aliquots were stored at -80°C until use.

Animals

Mice were bred and housed in specific pathogen-free conditions at the Research Animal Facility, University of Cape Town, South
Africa. Food and water were provided ad libitum. All studies carried out are in accordance with ethical protocols 014/027 or 018/
002, approved by the Faculty of Health Science Animal Ethics Committee from the University of Cape Town. Mice were randomly
sorted into experimental groups. Female wildtype BALB/c, ll4ra”~ and AdblGata1”" (BALB/c background) mice, aged 6-8 weeks,
were injected subcutaneously with 2 mg Depo Provera® (Pfizer) in sterile phosphate buffered saline (PBS), 7 days prior to infection,
to synchronize estrous cycles and facilitate consistent intravaginal viral infection (Marshak et al., 2014).

Parasite maintenance and infection

N. brasiliensis (Nb) was maintained in male Wistar rats (ethics protocol 014/042 or 018/037). Briefly, rats were injected subcutane-
ously with 5000 x infectious Nb L3.Feces were collected during peak helminth egg production (day 6-8 post infection). Fecal cultures
were prepared by placing a feces/charcaol mix on wet raised filter paper. Hatched L3 arvae migrate to the edge of filter paper and are
collected by gently washing off with water. Collected L3 larvae were counted under a disecting microscope and resuspended in an
appropriate volume for infection. Mice were infected with 500 x Nb L3 larvae subcutaneously delivered in 200 ul of water, 7 days prior
to viral infection.

METHODS DETAILS

Intravaginal infection with HSV-2

Mice were anesthetized and inoculated intravaginally with 5 x 10° PFU HSV-2. Virus-associated illness severity was determined by
pathology scoring: 0 - No pathology observed; 1 - Slight genital/perianal erythema; 2 - Genital/perianal swelling and erythema; 3 -
Genital lesions and/or visible weight loss; 4 - Hind limb paralysis and/or purulent lesions; 5 — Premoribund (Marshak et al., 2014).
Vaginal lavages were performed by 10x flushing the vaginal vault with 50 ul sterile PBS. This was repeated three times. Viral shedding
was quantified by plaque assay as described previously.

Intravaginal papain treatment
Female WT or //4ra”" mice were treated subcutaneously with 2 mg Depo Provera® to equilibrate hormone levels. One week later,
mice were treated with 20 pg of serine protease Papain intravaginally under deep anesthesia, for three consecutive days.

Intravaginal HpARI treatment

Hormone-synchronized female WT and /i4ra”~ mice were infected subcutaneously with 500x L3 Nb, one week prior to intravaginal
infection with 5 x 10° PFU HSV-2. To inhibit vaginal IL-33, mice were treated intravaginally with 5 ug Heligmosomoides polygyrus
Alarmin Release Inhibitor (HpARI) (Osbourn et al., 2017) consecutively from 3 days prior until 3 days post HSV-2 infection.

Antibody depletions

To deplete eosinophils and IL-5, mice were treated with 20 pg/mouse anti-Siglec-F (a-Siglec-F, monoclonal Rat IgG2A clone: #
238047, R&D systems) or anti-IL-5 («-IL-5, monoclonal Rat IgG1 clone: TRFK5, eBioscience™) antibody intraperitoneally on day
5, 7 and 9 post Nb infection. Control mice were treated with rat IgG2A or rat IgG1 isotype antibody, respectively.

Histology

Vaginal tissue was excised and fixed in phosphate-buffered formalin solution (Sigma-Aldrich®) overnight (Horsnell et al., 2007).
Following paraffin embedding, tissue was cut into 5 um cross-sections (2 sections per vaginal at varying depths) and stained with
hematoxylin and eosin (H&E) to visualize vaginal epithelial integrity and inflammation. Sections were also stained with hematoxylin
and Sirius red, to identify eosinophils. All sections were viewed with Zeiss Axioskop Microscope (Zeiss) and images were taken
with a color AxioCam HRc and AxioVision 4.7 supporting software. ‘Ulcerated epithelium’ was defined as the complete loss of
the stratified squamous cells from a given length of vaginal epithelium. ‘Total epithelial length’ was defined as the total length of
the tissue-lumen interface. Total and ulcerated epithelium length was measured using ImagedJ Software (NIH) and percentage of ul-
cerated epithelium was calculated as follows:

% ulcerated epithelium = ("Measured length of ulcerated epithelium" / "Total measured epithelial length") x 100.
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Immunofluorescent (IF) staining and confocal imaging: Briefly, paraffin embedded sections (4 um) were subjected to deparaffina-
tion in Neo-clear (Sigma-Aldrich®), followed by rehydration and antigen retrieval in Tris-EDTA buffer (pH 9). Slides were blocked (5%
normal goat serum, 5% BSA, 0.3% Tx-100, 0.05% Tween 20 in PBS) and then incubated with primary antibodies (anti-Bcatenin,
Mouse monoclonal Ab, BD Biosciences, 610154; anti-cleaved caspase 3, Rabbit polyclonal Ab, Cell signaling, 9661) overnight at
4°C (humid). Following three washes, slides were then incubated with appropriate secondary antibodies (goat anti-Rabbit IgG Alexa
Fluor 488, Invitrogen, A11034; goat anti-Mouse IgG Alexa Fluor 647, Invitrogen, A32728) for 1 hr at room temperature (dark, humid).
Following three washes, slides were incubated with anti-smooth muscle actin (SMA)-Cy3 directly labelled antibody (mouse mAb,
Sigma-Aldrich® C6198) and Hoechst 33342 for 30 min at RT (dark, humid).

For IL-33 staining, antigen retrieval was performed by boiling slides in citrate buffer (pH 6), followed by blocking (5% BSA, 0.3%
Tx-100, 0.05% Tween 20 in PBS). The primary antibodies (anti-IL33, Goat polyclonal, AF3626, R&D Systems; anti-Bcatenin) were
incubated in 2.5 % BSA, 0.3% Tx-100, 0.05% Tween 20 in PBS. Secondary antibody (Donkey anti-Goat IgG Alexa Fluor Plus
488, Invitrogen, A32814; Donkey anti-Mouse IgG Alexa Fluor Plus 647, Invitrogen, A32787) incubation was performed in the same
buffer for 1 h at RT adding Hoechst 33342.

After four washes, slides were mounted in Fluoromount G medium (Thermo Fisher Scientific) and imaged using Zeiss Airyscan
confocal microscope, with a 10x and 20x objective. Images were analyzed using Zen black edition software (Zeiss). Maximal intensity
projections are shown (Zwiggelaar et al., 2020).

Flow cytometry

Female genital tissue (FGT, excluding ovaries) was removed from individual mice, finely cut, and digested in supplemented DMEM
containing 1% HEPES and 20 ng/ml Liberase™ TL (Roche), for 1 hr at 37°C with gentle shaking. Digested tissue was passed through
a 70 pum cell strainer and dispersed cells resuspended in fresh supplemented DMEM. lliac lymph nodes (iLN) were excised and
passed through a 40 um cell strainer. To isolate vaginal epithelial cells, excised vaginal tissue was incubated in 0.25% Trypsin/
EDTA, for 1 hr at 37°C with gentle shaking.

Cells were stained with staining buffer (PBS + 0.5% BSA and 2mM Ethylenediaminetetraacetic acid (EDTA)) containing 2%
heat-inactivated rat serum, 1 ug anti-mouse CD16/32 antibody (clone: 93, BioLegend) and fluorochrome-conjugated antibodies
against cell-surface markers for 20 min (min) at 4°C (dark): CD45 Alexa Fluor® 700 (clone: 30-F11, BioLegend) to define hemato-
poietic cells; CD11b Brilliant violet (BV) 421™ (clone: M1/70, BioLegend), F4/80 BV605™ (clone: BM8, BioLegend), Ly6C FITC
(clone: HK1.4, BioLegend), Ly6G APC Cy7 (clone: 1A8, BioLegend) and Siglec-F PE (clone: S17007L, BioLegend) to identify
myeloid cells; lineage cocktail PE (CD3g, clone: 145-2C11; Ly-6G/Ly-6C, clone: RB6-8C5; CD11b, clone: M1/70; CD45R/B220,
clone: RA3-6B2; TER-119, clone: Ter-119, BioLegend), IL-7Ra (CD127) PE Cy7 (clone: A7R34, BioLegend), ICOS APC (clone:
C398.4A, BioLegend) and ST2 (IL-33Ra) BV421™ (clone: DIH9, BioLegend) to define ILC2s; and EPCAM (CD326) APC (clone:
(8.8, BioLegend), CD90.2 BV605™ (clone: 30-H12, BioLegend), MHCI (H-2D% PE (clone: 34-2-12, BioLegend) and MHCII (I-A/
I-E) FITC (clone: M5/114.15.2, BioLegend) to identify vaginal epithelial cells. 7-aminoactinomycin D (7-AAD) staining was used
to identify ‘Live’ cells.

For intracellular cytokine staining, cells were incubated in complete DMEM, containing 50 ng/ml Phorbol 12-myristate 13-acetate
(PMA; Sigma-Aldrich®) and 1 pg/ml lonomycin (Sigma-Aldrich®) for 3 hrs at 37°C, in the presence of 10 pg/ml brefeldin A (BFA;
Sigma-Aldrich®). Following ex vivo stimulation, cells were stained for viability (LIVE/DEAD® Fixable Aqua) and surface markers, fixed
in 2% Formalin/PBS, and washed in permeabilization buffer (eBioscience™), before incubation with anti-mouse/human IL-5 BV421™
(clone: TRFK5, BioLegend) for 30 min at 4°C (dark).

Samples were acquired on a BD LSR Fortessa flow cytometer (BD Biosciences) and data were analyzed by FlowJo®© V10 (Treestar,
Ashland, OR). Appropriately stained compensation beads and unstained controls were run to compensate for spectral overlap be-
tween fluorochrome emissions.

Enzyme-linked immunosorbent assay (ELISA) and luminex

Isolated FGT was snap frozen in liquid nitrogen and stored at -80°C until use. For cytokine analysis, tissue was homogenized in RIPA
lysis buffer containing protease inhibitor cocktail (Sigma-Aldrich®), using a benchtop homogenizer (Kinematica Polytron™ PT 2500E
homogenizer). Homogenates were centrifuged at 10 000 rpm for 10 min to isolate the supernatant. Protein concentrations were quan-
tified by bicinchoninic acid (BCA) assay (Pierce™, Thermo Scientific) and all samples were standardized for cytokine analysis by
ELISA or Luminex (Thawer et al., 2016).

Quantification of cytokines IL-4 and IFN-y was performed using ELISA MAX™ Standard kits (BioLegend) following the manufac-
turer’s instructions. IL-33 quantification was performed using Mouse IL-33 Duoset ELISA kit (R&D systems) as per manufacturer’s
instructions. The plates were developed with TMB microwell peroxidase substrate system (Thermo Fisher Scientific), and the reac-
tion was stopped with 1M H3zPO,. The plates were read at an absorbance of 450nm (Lm1) and 570 nm (Lm2; background) using a
VersaMax microplate reader (Molecular Devices Corporation, CA, U.S.A).

FGT homogenate and vaginal lavage cytokine levels were measured by Luminex xMap technology using the Invitrogen
ProcartaPlex™ 36-plex mouse kit (Cat# EPX360-26092-901, Lot # 189084327), as per manufacturers. The Luminex plate was
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read using Bio-Rad Bio-Plex® 200 system and analysis software. Luminex was performed once, with samples from two independent
experiments. Analyte levels below the lower detection limits were given an arbitrary value of half the Lower Limit of Quantification
(LLOAQ), defined by the manufacturer.

Western blotting

For detection of proteins of interest in the FGT, 25 ng of tissue homogenates were analyzed by reduced SDS-PAGE and Western
blotting according to conventional protocols (Ujma et al., 2019). Primary antibodies used were rabbit polyclonal anti-STAT1 (abcam;
ab47425), rabbit polyclonal anti-Major Basic Protein (MBP; abcam; ab187523) and rabbit polyclonal anti-GAPDH loading control
(abcam; ab9485). For signal detection, secondary goat anti-rabbit IgG-HRP (abcam; ab205718) was used. All Western blots were
visualized using the LumiGlo® chemiluminescent substrate (KPL, Milford, MA, USA), with the Biospectrum™ 500 Imaging System
(UltraViolet Products, UVP, Mile End South, SA, Australia). Densitometry analysis were performed using Imaged software, to deter-
mine relative changes in protein expression.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details (statistical tests used, value of n (number of animals), definition of center, and dispersion and precision measures)
can be found in the figure legends. Data are represented as group mean and standard error of the mean (mean+sem). Statistical anal-
ysis was performed either by analysis of variance (ANOVA) followed by the Bonferroni multiple comparison test or by non-parametric
Mann-Whitney test, with a 95% confidence interval. A p value < 0.05 was considered significant and are indicated by an asterisk (*).
Statistical analyses were performed using GraphPad Prism V6.
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Figure S1. Vaginal epithelial cells are a major source of IL-33, Related to Figure 1: At
day 9 post Nb infection (Nb 9dpi), vaginal tissue (n=2) was isolated for immunofluorescent
(IF) staining for beta catenin (Bcat; white), IL-33 (green) and Hoechst 33342 (blue). White
boxes indicate magnified sections. Data is representative of one experiment with 2 mice per

group.
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Figure S2. FGT and iLN flow cytometry gating strategy, Related to Star Methods: Flow
cytometry: At day 3 post HSV-2 infection. FGT and iLNs were harvested and processed to a
single cell suspension. Cells were stained with fluorochrome-conjugated antibodies and
analysed by multi-colour flow cytometry. (a) The following gating strategy was used to identify
(i) CD11b*SigLec-F*SSC" eosinophils, (ii) CD11b*Ly-6G* neutrophils, (iii) CD11b*Ly-6C"
monocytes and (iv) CD11b*F480* macrophages. (b) Gating strategy used to identify LinIL-
7Ra*ICOS*ST2* ILC2s in the FGT and iLN.
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Figure S3. (a) Nb infection increases myeloid cell accumulation in the genital lymph
nodes, Related to Figure 1: At 9dpi, myeloid cell populations in the iLN were analysed by
flow cytometry to determine the numbers (x103) of neutrophils, Ly-6C" monocytes,
macrophages and eosinophils in the iLN. Data is representative of two independent
experiments with 4-5 mice per group (meantsem). Statistical significance was calculated by
Mann Whitney t test. *p < 0.05. (b) Nb infection alone does not alter vaginal epithelial
integrity, Related to Figure 1: Female BALB/c mice were treated with 2 mg Depo Provera®
(DP) 7 days prior to subcutaneous infection with Nb. At day 9 post Nb infection (Nb 9dpi),
vaginal tissue (n=2) was isolated for immunofluorescent (IF) staining for beta catenin (Bcat),
smooth muscle actin (SMA), 4’,6-diamindino-2-phenylindole (DAPI) and cleaved caspase 3
(Casp 3). Images were taken using a 10x and 20x objective lens. White boxes indicate
magnified sections. Data is representative of one experiment with 2 mice per group.
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Figure S4. Virus-
induced epithelial
necrosis, rather
than apoptosis, and
early ulcer
formation at day 3
post HSV-2
infection, Related to
Figure 2: 7 days after
Nb infection, mice
were intravaginally
infected with HSV-2.
At day 3 post HSV-2
vaginal tissue were
analysed by IF
staining: beta catenin,
smooth muscle actin
(SMA), 4’ 6-
diamindino-2-
phenylindole (DAPI)
and cleaved caspase
3. Images were taken
using a 10x and 20x
objective lens. Yellow
boxes indicate
magnified areas. Data
is representative of
one experiment with 4
mice per group.
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Figure S5. Prior Nb exposure increases myeloid cell inflammation in FGT and
associated lymph nodes during subsequent HSV-2 infection, Related to Figure 3: At
day 3 post HSV-2 vaginal tissue and iLNs were analysed by histology and flow cytometry,
respectively. (a) Representative H&E-stained sections (n=4-5) of vaginal tissue of Nb only
infected mice (day 9 PI), HSV-2 only and co-infected mice (day 3 post viral infection),
displaying eosinophilic inflammation during co-infection (white arrows). (b) Frequencies
(meanzsem) of neutrophils, Ly6Ch monocytes, macrophages, and eosinophils in the FGT of
HSV-2 only and Nb+HSV-2 mice at day 3 post virus infection. (¢) Myeloid cell and ILC2 (Lin
IL-7Ra*ICOS*ST2*) populations in the iLN of HSV-2 only and Nb+HSV-2 infected mice. (d)
Representative histograms (n=4-5) of the mean florescence intensity (MFI) of Siglec-F,
CD11b, Ly6G, Ly6C, CD62L and CD49d on FGT eosinophils in Nb 9dpi and Nb+HSV-2 mice.
Data is representative of two independent experiments with 4-5 mice per group (meantsem).
Statistical significance was calculated by Mann Whitney t test. *p < 0.05, **p < 0.01.
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Figure S6. Anti-IL-5 antibody treatment protects against eosinophil-mediated Nb
exacerbated pathology, Related to Figure 3: (a) Nb infected mice were treated with 20 ug
a-IL-5 or isotype control, on day -2, 0 and 2 post HSV-2 infection. (b) Representative H&E-
stained vaginal sections (n=4) of co-infected a-IL-5 or isotype treated mice at day 6 post
HSV-2 infection. Images were taken at x50 magnification. Ulcerated vaginal epithelium is
indicated by black dotted lines and qualified as percentage (%) of ulcerated epithelium. (c)
Representative sections (n=4) of Sirius red-stained vaginal ulcers at day 6 post virus
infection. Images were taken at x400 magnification. (d) Viral shedding was measured by
plaque assay (PFU/ml) in day 3 and day 6 vaginal washes. Data is representative of two
independent experiments with 4 mice per group (meantsem). Statistical significance was
calculated by Mann Whitney t test. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S7. (a-c) IL-33 inhibition by vaginal HPARI treatment reduces IL-5 production by
ILC2s, Related to Figure 5: (a) Viral shedding was measured by plaque assay (PFU/mI) in
day 3 and day 6 vaginal washes. Data is representative of two independent experiments with
4 mice per group (meanzsem). Statistical significance was calculated by two-way ANOVA
with Bonferroni correction for multiple comparisons. At day 6 post HSV-2 infection, FGT cells
were analysed by flow cytometry: (b) numbers of Lin’IL-7Ra*ICOS* cells in the FGT and (c)
the numbers of these cells, positive for intracellular IL-5. Data is representative of one
experiment with 4-6 mice per group (mean+sem). Statistical significance was calculated by
two-way ANOVA with Bonferroni correction for multiple comparisons. *p < 0.05. Related to
Figure 5. (d) Anti-Siglec-F antibody administration depletes tissue resident
eosinophils, Related to Figure 6: Nb infected mice were injected with 20 ug a-Siglec-F or
isotype control, on day 5, 7 and 9 post infection. Representative flow plots (n=3) showing
frequency (mean+sem) of CD11b*SSCMiSiglec-F* eosinophils in the FGT, iLN, spleen and
lung, following antibody depletion. Data is representative of one experiment with 3 mice per
group (meantsem). Statistical significance was calculated by Mann Whitney t test. *p < 0.05.
Related to Figure 6. (e) Reduced HSV-2 pathology in co-infected Adb/Gata1’- mice,
Related to Figure 6: Hormone synchronized WT and AdblGata1”- co-infected mice were
scored for virus-associated vaginal pathology following HSV-2 infection. Data is
representative of one experiment with 3-4 mice per group (meantsem). Statistical
significance was calculated by two-way ANOVA with Bonferroni correction for multiple
comparisons. ***p < 0.001.
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