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Supplementary methods  

TPMS technology: Systems biology-based model creation and analysis for Still’s disease 

A systems biology-based model was created and analysed by using Therapeutic Performance Mapping 

System (TPMS)[1] to investigate the Molecular Mechanisms of Action (MoA) of biological and non-

biological drugs implicated in the modulation of Still’s disease. TPMS is a validated top-down systems 

biology approach that integrates all available biological, pharmacological, and medical knowledge by 

means of pattern recognition and artificial intelligence techniques to create mathematical models that 

simulate in silico the behaviour of human physiology.  

Molecular and biological characterization of Still’s disease pathophysiology and drugs 

For Still’s disease characterization, we initiated an extensive and careful full-length review of relevant 

articles in the PubMed database (all until March, 2018) that consisted of the following search string: ((Still's 

disease) OR (systemic juvenile idiopathic arthritis) OR (juvenile idiopathic arthritis)) AND (molecular OR 

protein) AND (pathophysiology). The search was expanded using relevant references listed in the 

reviewed articles. The pathophysiological processes (motives) described to be involved in Still’s disease 

(either as triggering, worsening or establishment facilitator factors) were identified, considering the most 

widely accepted biologically general concepts reported by the reviewed authors (supplementary Table 

S1). The motives were classified as participating in systemic or rheumatic phenotypic components of the 

disease, according to current knowledge. Subsequently, each motive was further functionally 

characterized at protein level to determine molecular effectors. A total of 65 unique proteins were identified 

to be functionally related to Still’s disease according to scientific literature (supplementary Table S2). This 

process has been previously successfully applied to create models that have yielded experimentally 

validated conclusions1. 

For the drug molecular definition (anakinra, canakinumab, tocilizumab, sarilumab, prednisone, and 

metrotrexate), a revision of dedicated databases (DrugBank,[2, 3] STITCH,[4] SuperTarget[5]) and of 

scientific literature was performed (online supplementary Table S3). 

Creation of human biological networks  

 The protein-protein interaction (PPI) human network created incorporated the available relationships 

(edges or links) between proteins (nodes) from a regularly updated in-house database drawn from public 

sources.[1] All information of the key proteins defined during the molecular and biological characterization, 

and stored in relevant databases (drug targets, other diseases effectors, biomarkers…) was incorporated 

into the biological networks.  

Mathematical models generation  

Biological maps were transformed into a mathematical model capable of both, reproducing existing 

knowledge and predicting new data. As it was deeply described,[1] and applied elsewhere [6-8], TPMS 

                                                           
1 Giménez et al. (2020). Sci Rep DOI: 10.1038/s41598-020-78315-0 
Lorén et al. (2019). J Crohns Colitis DOI: 10.1093/ecco-jcc/jjy171 
Iborra-Egea et al. (2019). JACC Basic Transl Sci DOI: 10.1016/j.jacbts.2019.07.010 
Romeo-Guitart et al. (2018).Sci Rep DOI: 10.1038/s41598-018-19767-3 
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technology uses a set of artificial intelligence algorithms to generate the human physiology over the 

human biological network [9-12]. 

Briefly, a selected collection of known input-output physiological signals considered the “truths” were 

collated into a table (truth table) to train de models [13]. The truth table was constructed using a 

compendium of biological and clinical databases [1-3, 14] through text mining techniques and manual 

review and curation of the information to obtain biological and pharmacological input-output relationships 

(such as drug-indication pairs). The biological or pathological conditions included in the truth table are 

molecularly characterized through specific scientific literature search and hand-curated assignment of 

proteins to the conditions (see Molecular and biological characterization of Still’s disease pathophysiology 

and drugs for information on Still’s disease characterization process). This information relating biological 

processes (adverse drug reactions, indications, diseases, and molecular pathways) to their molecular 

effectors, i.e. each one of the proteins involved in the physiological process, was compiled in the biological 

effectors database (BED) [1, 15]. The models had to be able to reproduce every rule contained in the truth 

table, and the error of a model is calculated as the sum of all the rules with which the model does not 

comply and the accuracy as the sum of all the rules complied with.  

Thus, the approach allows creating models that integrate all the available biological, pharmacological, and 

medical knowledge, and are able to suggest mechanistic hypotheses that are consistent with actual 

biological processes. 

Two complementary modelling strategies were used, Artificial Neural Networks (ANNs) and Sampling-

based Methods, to compare the efficacy of the drugs and to elucidate the molecular mechanism of action 

(MoA).  

ANNs are supervised algorithms that identify relations between proteins (e.g. drug targets) and clinical 

elements of the network [8, 11, 16] by inferring the probability of the existence of a specific relationship 

between two or more protein sets, based on a validation of the predictive capacity of the model towards 

the truth table. The learning methodology used consisted in an architecture of stratified ensembles of 

neural networks as a model, trained with a gradient descent algorithm to approximate the values of the 

given truth table. The neural network model used was a multilayer perceptron (MLP) neural network 

classifier. MLP gradient descent training depends on randomization initialization and to avoid random 

errors 1000 MLPs are trained with the training subset and the best 100 MLPs are used. In order to 

correctly predict the effect of a drug independently of the number of targets, different ensemble of neural 

networks are trained for different subset of drugs according to their number of targets (drugs with 1 target, 

2 targets, 3 targets…). Then, the predictions for a query drug are calculated by all the ensembles, and 

pondered according to the number of targets of the query drug (the difference between the number of 

targets of the query and the number of targets of the drugs used to calculate each ensemble is used to 

ponder the result of each ensemble). A cross-validation with the truth table information showed that the 

accuracy of the described ANNs to reproduce the indications compiled in the truth table[1]) is 81.23% for 
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those drugs with all targets in the human biological network. This strategy was used for the efficacy 

evaluation of the biologic and non-biologic drugs respect Still’s disease.  

TPMS sampling-based methods generate models similar to a Multilayer Perceptron of an Artificial Neural 

Network over the human protein network (where neurons are the proteins and the edges of the network 

are used to transfer the information). This methodology was used for describing with high capability all 

plausible relationships between an input (or stimulus) and an output (or response). Sampling-based 

methods use optimization algorithms [10] to solve each parameter of the equation, i.e. the weights 

associated to the links between the nodes in the human protein network. In this approach, the network is 

limited by considering only interactions that connect drug targets with protein effectors in a maximum of 

three steps. The values of activation (+1) and inactivation (-1) of the targets of the drugs in the truth table 

were considered as input signals. The output results are the values of activation and inactivation of the 

proteins defining the phenotype (as retrieved from the BED). Each node of the protein network receives as 

input the output of the connected nodes in the direction flow from targets to effectors, weighted by each 

link weight. The sum of inputs is transformed by a hyperbolic tangent function to generate the score of the 

node (neuron), which become the “output signal” of the current node towards the nodes. The weight 

parameters are obtained by Stochastic Optimization Method based on Simulated Annealing, [10] which 

use probabilistic measures derived from the biological evidences to adjust network interaction types and 

strengths. Since the number of entries in the truth table is always smaller than the number of parameters 

(link weights) required by the algorithm, any process modelled by TPMS considers a population of 

different solutions. Models complying with the information in the truth table with a mean accuracy of 95.4% 

were obtained. In order to elucidate canakinumab/ tocilizumab vs. Still’s disease innate immune system 

deregulation mechanisms of action, drug vs. disease-specific models were created by repeating the 

optimization process adding the new inputs (drug characterization) and output (disease characterization). 

The presented mechanisms of action are a mean representation of the solutions obtained, and it was 

checked whether each link was accurate, i.e., it was already described in the literature whether the MoA 

made sense overall, featuring pathways coherent with the living system and the known pathophysiology of 

Still’s disease. 

Expression data description and statistical analyses 

Expression data from samples derived from sJIA patients (n= 197) and controls (n= 79), stored in Gene 

Expression Omnibus [17], were obtained and are summarised in supplementary Table S5) [18-22]. T tests 

were applied to determine differential expression and T-Stouffer test was employed for results unification 

when more than one experiment was considered for the same comparison [23]. 

Enrichment analysis 

Hypergeometric enrichment analysis [24] was performed over the database-derived sJIA-related gene 

expression data (supplementary Table supplementary Table S6) and the network around Still’s disease 

characterization to determine the presence of enriched pathways defined in functionally informative 

databases, including pathology-focused BED [1, 15]. pathway-oriented KEGG [25, 26], function-focused 
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Gene Ontology [27, 28], drug-related PHARMGKB[29] and SMPDB [30, 31], and transcription regulation-

focused TRRUST[32] databases. 

Validation of the results obtained from model analysis with expression data 

The activity of the proteins presenting a differential (FDR<0.05) behaviour between canakinumab and 

tocilizumab was compared to sJIA vs. healthy patients and sJIA-treated patients expression data. A 

validation score was calculated using the following criteria, and a percentage over the total of potential 

validation points according to the validation design was calculated:  

‐ genes with significant difference in the sJIA vs. healthy patients expression comparison (T-

Stouffer equivalent to FDR<0.05) AND opposed modulation sign respect the drug in silico MoA 

where considered validated and assigned +1 validation point; 

‐ genes with significant difference in the sJIA vs. healthy patients expression comparison (T-

Stouffer equivalent to FDR<0.05) OR significant difference in the sJIA-treated analyses (p-value 

< 0.05) AND same modulation sign between drug-derived sJIA-treated patients expression 

analysis respect the drug in silico MoA predictions where considered validated and assigned +1 

validation point;  

‐ genes with tendency to difference in the sJIA-treated analyses (p-value < 0.3) AND same 

modulation sign between drug-derived sJIA-treated patients expression analysis respect the drug 

in silico MoA predictions where considered validated and assigned +0.5 validation points. 
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