Cell Reports, Volume 34

Supplemental information

Regulation of translation

by methylation multiplicity of 18S rRNA

Kuanqing Liu, Daniel A. Santos, Jeffrey A. Hussmann, Yun Wang, Benjamin M. Sutter, Jonathan S. Weissman, and Benjamin P. Tu

Figure S1. Detection of m⁶**A in 18S rRNA from vegetatively growing haploid yeast cells.** Related to Figure 1. (**A**) Standard curves for m⁶A, m⁶₂A, and ac⁴C. (**B**) m⁶A is not detected in polyA⁺ RNA from vegetatively growing haploid yeast (CEN.PK). (**C**) m⁶A levels in polyA⁺ RNA increase during sporulation. KL139 (CEN.PK diploid) was induced to sporulate as described exactly by Agarwala et al. (Agarwala et al. 2012). Samples were collected, immediately (0 h), three (3 h), and six hours (6 h) after cells were resuspended in sporulation medium (0.3% potassium acetate). Total RNA was isolated as described in STAR METHODS and polyA⁺ RNA was purified from total RNA using the Dynabeads mRNA kit (Invitrogen). Approximately 1 µg polyA⁺ RNA was digested and analyzed by LC-MS/MS. Each chromatogram was normalized by the abundance of adenosine to allow for comparison between time points. Scale bar = 5 µm. (**D**) m⁶A is detected in 18S rRNA isolated from vegetatively growing haploid yeast cells (strains: S288C and W303). m⁶A detected in 25S (**E**) and small RNA (**F**) is likely derived from m¹A via Dimroth rearrangement. OE: overexpression. m¹A and m⁶A can be detected by the same MRM transition (282/150), but are eluted at different times. Each chromatogram was normalized by the abundance of adenosine to allow for comparison between dimensione model was normalized by the abundance of adenosine to allow for comparison between time points. Scale bar = 5 µm. (**D**) m⁶A is detected in 25S (**E**) and small RNA (**F**) is likely derived from m¹A via Dimroth rearrangement. OE: overexpression. m¹A and m⁶A can be detected by the same MRM transition (282/150), but are eluted at different times. Each chromatogram was normalized by the abundance of adenosine to allow for comparison between different conditions. The essential tRNA m¹A methyltransferase Gcd14p becomes dispensable when the initiator methionyl tRNA gene *IMT4* is overexpressed (Calvo O, et al. 1999).

Figure S2. Validation of m⁶A in yeast 18S rRNA. Related to Figure 1.

(A) Schematic of the mung bean nuclease (MBN) protection assay. (B) Detection of the expected 2'-O-methyladenosine(A_m) at 619 in 18S rRNA. oKL169 is not complimentary to any yeast RNA and thus did not yield a RNA/DNA hybrid after digestion by RNase A and MBN. (C) m^6A and m_2^6A are derived from growing yeast cells, not from contamination during sample processing. WT cells were grown from a single colony in $[^{15}N]$ SD (1.7 g L¹ yeast nitrogen base without ammonium sulfate and amino acids (BD Difco), 2% glucose, and 5 g L^{1} (¹⁵NH)₂SO₄ (ISOTEC). Cells were diluted in the same medium with a starting OD₆₀₀ ~0.01 and grown to saturation. Cells were then diluted in the same medium with a starting $OD_{600} \sim 0.1$ and grown to log phase before harvest. Total RNA was isolated and the 3' fragment of 18S rRNA was isolated using the MBN protection assay with oKL204 and analyzed by LC-MS/MS. (D) The Dim1p (E85A) mutant is still able to synthesize m^6A , but not m^6_2A . (E) Active site of *Methanocaldococcus jannaschi* Dim1. The structure was adapted from PDB#3GRY (O'Farrell et al. 2010) and prepared using Pymol (https://pymol.org). The number in parentheses corresponds to the position in S. cerevisiae Dim1p.

Α

Figure S3. Examination of rRNA modifications in yeast and mammalian cell lines. Related to Figures 2 and 3. (A) Sulfate starvation does not result in obvious changes in other methylated nucleosides in 18S rRNA. Cells were grown in complete medium to log phase and starved in sulfur free medium (-S) for 2 h. Total RNA was isolated and 18S rRNA was purified, digested, and analyzed by LC-MS/MS. Peak area of each modified nucleoside was first normalized to that of ac⁴C and to that of complete medium. Mean \pm s.d. (n = 14 biological replicates). (B) Synthesis of $m_{2}^{6}A$ under sulfate starvation. Cells were grown from a single colony in [¹⁵N] SD (1.7 g L¹ yeast nitrogen base without amino acids and ammonium sulfate (BD Difco), 5 g L¹(¹⁵NH₄)₂SO₄ (ISOTEC), and 2% glucose) to saturation and the next day cells were diluted into fresh $[^{15}N]$ SD with a starting OD₆₀₀~0.01. Cells were allowed to grow to saturation again, diluted to $[^{15}N]$ SD with a starting OD₆₀₀~0.1, and then were grown to log phase. Cells were shifted to pre-warmed $[^{14}N]$ sulfur free (-S) medium supplemented with 50 mg L¹ adenine (A) and were collected before and 2 h after the switch. Peak areas of $[U^{-14}N]$ and $[U^{-15}N]$ labeled ac⁴C for each condition were summed and used to normalize differentially labeled m⁶₂A. Normalized abundance was further divided by that of $[^{15}N]$ SD samples. Mean \pm s.d. (n =3 biological replicates). (C) In the presence of sulfur, yeast cells bear more m⁶A in the last 37 nucleotides of 18S rRNA than mammalian cell lines. Total RNA was isolated and the 3' end of 18S rRNA was isolated using oKL204 by the MBN protection assay, digested, and analyzed by LC-MS/MS. Chromatograms were normalized by the peak area of $m_{2}^{6}A$ to allow for comparison between samples. (D) Changes in modified nucleosides in 18S rRNA of *dim1* mutants under sulfate starvation. Cells were grown in complete medium and shifted to sulfur free medium (-S) for 2 h. Cells were collected and 18S rRNA was isolated, digested, and analyzed by LC-MS/MS as described in STAR METHODS. Peak area of modified nucleosides was first normalized to that of ac⁴C, and to WT grown in complete medium. Mean \pm s.d. (n = 3-7 biological replicates). (E) Abundance of Dim1p is not discernibly impacted by the E85D, E85O, or D87E mutations.

Figure S4. m⁶A-bearing ribosomes engage in active translation. Related to Figure 3.

(A) m^6A/m_2^6A resides close to the ribosome P-site. Structures of initiation and elongation complexes were adapted from PDB#3J81 (Hussain et al. 2014). and PDB#6Q8Y (Tesina et al. 2019), respectively, and prepared using Pymol (https://pymol.org). tRNA (P) and tRNA (E) occupy the P- and E-sites of the ribosome, respectively. (B) 20S rRNA is absent from polysome fractions under sulfate-replete and -starvation conditions. Cells were grown in complete medium to log phase and starved of sulfate for two hours. Samples were collected for polysome profiling as described in STAR METHODS. Sucrose fractions were extracted with an equal volume of phenol (pH 4.3)/chloroform and nucleic acids were precipitated with an equal volume of isopropanol. Northern blot was performed as described in STAR METHODS.

Figure S5. Analysis of ribosome biogenesis in dim1 mutants. Related to Figure 4.

(A) Polysome profiling. SSU: small subunit (40S); LSU: large subunit (60S). Cells were grown in SFM and starved of methionine in SF for 2 h. Samples were collected for polysome profiling as described in STAR METHODS. (B) Ribosome subunit profiling. Cells were grown in SFM and collected without cycloheximide (CHX), and were lysed in the absence of magnesium to separate the two subunits.

Figure S6. Analysis of rRNA processing in yeast and human cell lines. Related to Figure 4.

(A) Simplified schematic of rRNA processing in yeast. Only relevant processing intermediates and cleavage sites were shown. Probes used for Northern blot were also indicated. The 22S pre-rRNA is thought to arise from cleavage at A3 of the 33S pre-rRNA, observed when Dim1p is depleted (Lafontaine et al., 1995). (B) The E85Q mutation, but not the D87E mutation causes rRNA processing defects. (C) Examination of rRNA processing in WT yeast cells grown with methionine and without methionine (2 h) using Northern blot. (D) Examination of rRNA processing in mammalian cell lines grown with and without methionine (6 h) using Northern blot.

(A) Schematic of ribosome profiling experiment. Cells were grown in SFM and starved of methionine in SF for 2 h. Samples were collected by rapid filtration followed by immersion in liquid nitrogen. See STAR METHODS for details. (B) Size distribution of ribosome-protected RNA fragments. One replicate is shown for each strain. (C) RP and RNA-seq data are highly reproducible between replicates. WT is shown as an example. (D) Impact of *dim1* mutations on the transcriptome under methionine-replete and -starvation conditions. Shown are relative mRNA changes compared to WT. A 10% false discovery rate $(-\log_{10}(P_{adj}) \ge 1)$ and 2-fold change were considered significant (highlighted in black). (E) Transcripts of *RPS22B/snR44* and *RPS9A* are lower in the E85Q mutant. Shown are RNA-seq tracks under methionine-replete conditions (two replicates for each genotype). (F) Rps22Bp and Rps9Ap are lower in the E85Q mutant. Cells were grown in SFM and collected for Western blot as described in STAR METHODS. The *rps22B/snR44* mutant (G) and *rps9A* mutant (H) exhibit defects in SSU biogenesis. Cells were grown in SFM and collected for polysome profiling as described in STAR METHODS. (I) Examination of rRNA processing in *rps9A* and *rps22B/snR44* using Northern blot. Cells were grown in SFM and collected for Northern blot as described in STAR METHODS.

(A) The E85Q mutant grows slightly more slowly under nutrient replete condition. Cells were grown in SFM medium to log phase and washed with sterile water. Cells were adjusted to a final OD_{600} of 0.5 and serially diluted in water, before being plated onto an SD agar plate. (B) Levels of amino acids in *dim1* mutants under methionine-replete and -starvation conditions. Mean \pm s.d. (n = 2 biological replicates). (C) Examination of rRNA processing in *tsr3* Δ mutant using Northern blot. Cells were grown in SFM and collected for Northern blot as described in STAR METHODS. (D) Changes in modified nucleosides in 18S rRNA. Cells were grown in SFM and shifted to SF for 2 h. 18S rRNA was isolated, digested, and analyzed by LC-MS/MS as described in STAR METHODS. Peak area of modified nucleosides was first normalized to that of adenosine and to WT with methionine. m⁶A and m⁶A from the E85Q mutant were at background levels and thus not shown. Mean \pm s.d. (n = 2 biological replicates).

Data S1. Chromatograms of MBN protection assay targeting $m^6A(A)$, $G_m(B)$, $ac^4C(C)$, $A_m(D)$, $m_2^6A(E)$, $m^7G(F)$, and $U_m(G)$. Related to Figure 1. All the modified nucleosides were detected in the expected regions of 18S rRNA according to Taoka et al. (2016). It should be noted that the A_m modification at 541 was not detected in oKL213-protected region (541..600), but in oKL212-protected region (481..540) and oKL281-protected region (540..579). This discrepancy is likely due to the imprecise trimming of the corresponding RNA/DNA ends in MBN protection assay.

Strains					
Name	Genotype	References			
WT ^a	MATa CEN.PK	(van Dijken et al., 2000)			
KL139	$MATa/\alpha$ CEN.PK	(van Dijken et al., 2000)			
S288C	MATalpha SUC2 mal mel gal2 CUP1 flo1 flo8-1 hap1	ATCC [®] 204508			
W303	$MATa \ bud4\Delta::BUD4(S288C) \ can1-100$	(Korolev et al., 2012)			
WT ^b	MATa ho:: kanMX6-DIM1 dim1:: hygMX6	This work			
E85Q	MATa ho:: kanMX6-dim1 ^{E85Q} dim1:: hygMX6	This work			
E85D	MATa ho:: kanMX6-dim1 ^{E85D} dim1:: hygMX6	This work			
D87E	MATa ho:: kanMX6-dim1 ^{D87E} dim1:: hygMX6	This work			
E85D D87E	MATa ho:: kanMX6-dim1 ^{E85D D87E} dim1:: hygMX6	This work			
E85A	MATa ho:: kanMX6-dim1 ^{E85A} dim1:: hygMX6	This work			
E85W	MATa ho:: kanMX6-dim1 ^{E85W} dim1:: hygMX6	This work			
E85F	MATa ho:: kanMX6-dim1 ^{E85F} dim1:: hygMX6	This work			
E85Y	MATa ho:: kanMX6-dim1 ^{E85Y} dim1:: hygMX6	This work			
E85C	MATa ho:: kanMX6-dim1 ^{E85C} dim1:: hygMX6	This work			
E85G	MATa ho:: kanMX6-dim1 ^{E85G} dim1:: hygMX6	This work			
E85V	MATa ho:: kanMX6-dim1 ^{E85V} dim1:: hygMX6	This work			
E85I	MATa ho:: kanMX6-dim1 ^{E851} dim1:: hygMX6	This work			
E85L	MATa ho:: kanMX6-dim1 ^{E85L} dim1:: hygMX6	This work			
E85S	MATa ho:: kanMX6-dim1 ^{E855} dim1:: hygMX6	This work			
E85T	MATa ho:: kanMX6-dim1 ^{E85T} dim1:: hygMX6	This work			
E85N	MATa ho:: kanMX6-dim1 ^{E85N} dim1:: hygMX6	This work			
E85K	MATa ho:: kanMX6-dim1 ^{E85K} dim1:: hygMX6	This work			
E85R	MATa ho:: kanMX6-dim1 ^{E85R} dim1:: hygMX6	This work			
E85P	MATa ho:: kanMX6-dim1 ^{E85P} dim1:: hygMX6	This work			
E85M	MATa ho:: kanMX6-dim1 ^{E85M} dim1:: hygMX6	This work			
E85H	MATa ho:: kanMX6-dim1 ^{E85H} dim1:: hygMX6	This work			
$sam1\Delta sam2\Delta$	MATa sam1::kanMX6 sam2::hveMX6	This work			
WT-lacZ	MATa ho::kanMX6-DIM1 dim1::hvgMX6 x2::Ptef1-Ec lacZ-Tcvc1-natMX6 ^c	This work			
E85D-lacZ	MATa ho::kanMX6-dim1 ^{E85D} dim1::hvgMX6 x2::Ptef1-Ec lacZ-Tcvc1-natMX6 ^c	This work			
E85O-lacZ	MATa ho::kanMX6-dim1 ^{E85Q} dim1::hvgMX6 x2::Ptef1-Ec lacZ-Tcvc1-natMX6 ^c	This work			
D87E-lacZ	MATa ho::kanMX6-dim1 ^{D87E} dim1::hvgMX6 x2::Ptef1-Ec lacZ-Tcyc1-natMX6 ^c	This work			
WT-FLAG	MATa ho:: kanMX6-DIM1-FLAG dim1::hveMX6	This work			
E85D-FLAG	MATa ho:: kanMX6-dim1 ^{E85D} -FLAG dim1:: hvgMX6	This work			
D87E-FLAG	MATa ho:: kanMX6-dim1 ^{D87E} -FLAG dim1:: hveMX6	This work			
E850-FLAG	MATa ho:: kanMX6-dim1 ^{E85Q} -FLAG dim1:: hvgMX6	This work			
gcd14A IMT4 OE	MATa gcd14::hvgMX6 2 micron-IMT4-kanMX6	This work			
rrn8A vbr141cA	MATa rrn8::kanMX6 vbr141c::hvgMX6	This work			
$WT rns22B-3 \times FLAG$	MATa ho:: kanMX6-DIM1 dim1:: hveMX6 rps22B::3×FLAG-natMX6	This work			
$F850 rns^{22}B^{-3} \times FLAG$	$MATa ho$ kanMX6-dim 1^{E85Q} dim 1 hy MX6 rs $22B$ · $3 \times FIAG$ -natMX6	This work			
WT $rns9A-3 \times FLAG$	MATa how kanMX6-DIM1 dim1 hvoMX6 rns9A3×FLAG-natMX6	This work			
$F850 rns9A-3 \times FLAG$	MATa how kanMX6-dim1 ^{E85Q} dim1 why8m10 (ps91).00 (1210) (aminto MATa how kanMX6-dim1 ^{E85Q} dim1 why8MX6 (ps91).00 (2010) (2010)	This work			
rns 22BA nKL 23 (H245R)	MATa hou kanMX6-DIM1 dim1 hyghino iponiio in the mainico MATa hou kanMX6-DIM1 dim1 hyghino iponiio in the mainico	This work			
rns22BA pKL23 (112451()	MATa ho:: kanMX6-DIM1 dim1:: hygMX6 rps22B::natMX6 urd5:: Sh ble pKL25 MATa ho:: kanMX6-DIM1 dim1:: hygMX6 rps22B::natMX6 urd5:: Sh ble pKL24	This work			
rns94A nKI 23 (H245R)	MATa ho:: kanMX6_DIM1 dim1:: hygMX6 rps22B::nauMX6 ura3:: Sh ble pK123	This work			
rns944 pKL23 (11245K)	MATa ho:: kanMX6_DIM1 dim1:: hygMX6 rps9A::natMX6 ura3:: Sh ble pKL23 MATa ho:: kanMX6_DIM1 dim1:: hygMX6 rps9A::natMX6 ura3:: Sh ble pKL24	This work			
WT nKI 23 (H245R)	MATa ho:: kanMX6-DIM1 dim1:: hygMX6 ips9A:.natMX6 nKL23 MATa ho:: kanMX6-DIM1 dim1:: hygMX6 ura3:: natMX6 nKL23	This work			
F850 pKL23 (H245R)	MATa ho:: kanMX6-dim1 ^{E85Q} dim1:: hygMX6 wrd3:: natMX6 pKL23	This work			
D87E pKL23 (H245R)	MATa ho:: kanMX6-dim1 ^{D87E} dim1:: hygMX6 ura3:: natMX6 pKL23	This work			
WT nKL 24 (control)	MATa hou kanMX6-DIM1 dim1 hygnixo urus natMX6 pKL25	This work			
F850 nKL 24 (control)	MATa hou kanMY6 dim 1 ^{E85Q} dim 1 hygnixo ura 3 natMY6 nKI 21	This work			
D87E pKL 24 (control)	MATa ho.: kanMY6-dim ^{1D87E} dim ¹ hyaMY6 ura3 natMY6 nKI 24	This work			
tsr34 nKI 23 (H245P)	MATa hou kanMY6.DIM1 dim1 hygiriA0 urus huliriA0 pKL24 MATa hou kanMY6.DIM1 dim1 hygiriA0 ter?natMY6 ura? Sh hla nK12?	This work			
tsr34 pKL 24 (control)	MATa hou kanMY6. DIM1 dim1 hygniau isi3 huillau inus Sh bla nVI 24	This work			
	Plasmide				

 Table S4. Strains, plasmids, antibodies, and primers.
 Related to START METHODS.

137521 pKL2+ (control)	MATU NO.: KUMANO-DIMIT UMIT.: NYGMAO ISIS.: NUMANO UTUS.: SH DIE PAL24	THIS WOLK			
Plasmids					
Name	Description	References			
pFA6a-hphMX6	To replace a gene of interest with the <i>hphMX6</i> gene	(Longtine et al., 1998)			
pFA6a-kanMX6	To replace a gene of interest with the kanMX6 gene	(Longtine et al., 1998)			

pFA6a-natMX6	To replace a gene of interest with the <i>natMX6</i> gene	(Longtine et al., 1998)
pUG66	To replace a gene of interest with the Sh ble gene	(Gueldener et al., 2002)
HO-kanMX6-HO	To ectopically express a gene of interest at the HO locus	(Voth et al., 2001)
Control (aka. pDB722 or pKL24)	Control Dual-Luciferase reporter	(Keeling et al., 2004)
H245R (aka. pDB868 or pKL23)	Dual-Luciferase reporter for miscoding	(Salas-Marco and Bedwell, 2005)
2 micron IMT4-kanMX6	To express IMT4 with its 5' (~500 bp) and 3' (~300 bp) UTRs on a 2 micron plasmid	This work
HO-kanMX6-DIM1-HO	To ectopically express DIM1 with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO-kanMX6-dim1 ^{E85A} -HO	To ectopically express dim1 ^{E85A} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85G} -HO	To ectopically express dim1 ^{E85G} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85D} -HO	To ectopically express dim1 ^{E85D} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85V} -HO	To ectopically express dim1 ^{E85V} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85R} -HO	To ectopically express dim1 ^{E85R} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85S} -HO	To ectopically express dim1 ^{E855} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85K} -HO	To ectopically express <i>dim1^{E85K}</i> with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85N} -HO	To ectopically express dim1 ^{E85N} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85T} -HO	To ectopically express dim1 ^{E85T} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85M} -HO	To ectopically express dim1 ^{E85M} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E851} -HO	To ectopically express dim1 ^{E851} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85Q} -HO	To ectopically express dim1 ^{E85Q} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85H} -HO	To ectopically express dim1 ^{E85H} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85P} -HO	To ectopically express dim 1 ^{E85P} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85L} -HO	To ectopically express dim 1 ^{E85L} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85C} -HO	To ectopically express dim 1 ^{E85C} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85Y} -HO	To ectopically express dim1 ^{E85Y} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85F} -HO	To ectopically express $dim l^{ESSF}$ with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85W} -HO	To ectopically express dim1 ^{E35W} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85D D87E} -HO	To ectopically express dim1 ^{E85D D87E} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{D87E} -HO	To ectopically express dim 1 ^{D87E} with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-DIM1-FLAG-HO	To ectopically express DIM1-FLAG with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85D} -FLAG-HO	To ectopically express dim 1 ^{D85D} -FLAG with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{E85Q} -FLAG-HO	To ectopically express dim1 ^{D85Q} -FLAG with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
HO- kanMX6-dim1 ^{D87E} -FLAG-HO	To ectopically express dim I ^{D87E} -FLAG with its 5' (~500 bp) and 3' (~300 bp) UTRs	This work
p417-P _{TEF1} -lacZ-T _{CYC1} -natMX6	To express Escherichia coli lacZ	This work
-	Antibodies	

Antibodies			
Name	Description	Cat. #	
α-FLAG	To detect the FLAG epitope	Sigma F1804	
α-G6pdh	To detect G6pdhp	Sigma A9521	
α-Rpn10	To detect Rpn10p	Abcam ab98843	
Primers			

Name	Sequence (5' to 3')	Note
oKL169	ATCCCCGGGTTAATTAAGGCGCGCCAGATCTGTTTAGCTTGCCTCGTCCC	
oKL203	AGACATGCATGGCTTAATCTTTGAGACAAGCATATGACTACTGGCAGGATCAACCAGATA	160^{d}
oKL205	ATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACTGTATAAATTGCTTATACTT	61120 ^d
oKL206	TTAAGCATGTATTAGCTCTAGAATTACCACAGTTATACCATGTAGTAAAGGAACTATCAA	121180 ^d
oKL207	AGAGTCCGAAGACATTGATTTTTATCTAATAAATACATCTCTTCCAAAGGGTCGAGATT	181240 ^d
oKL208	TTGAATGAACCATCGCCAGCACAAGGCCATGCGATTCGAAAAGTTATTATGAATCATCAA	241300 ^d
oKL209	TTACCCGTTGAAACCATGGTAGGCCACTATCCTACCATCGAAAGTTGATAGGGCAGAAAT	301360 ^d
oKL210	TCCTTGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCCGGAATCGAACCCTTATTCCCCG	361420 ^d
oKL211	CGTTATTTATTGTCACTACCTCCCTGAATTAGGATTGGGTAATTTGCGCGCCTGCTGCCT	421480 ^d
oKL212	CCTCGTTAAGGTATTTACATTGTACTCATTCCAATTACAAGACCCGAATGGGCCCTGTAT	481540 ^d
oKL213	ATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCCCTCCAATTGTT	541600 ^d
oKL214	CGGACCGGCCAACCGGGCCCAAAGTTCAACTACGAGCTTTTTAACTGCAACAACTTTAAT	601660 ^d
oKL215	CAAGGACTCAAGGTTAGCCAGAAGGAAAGGCCCCGTTGGAAATCCAGTACACGAAAAAAT	661720 ^d
oKL216	TACGCCTGCTTTGAACACTCTAATTTTTTCAAAGTAAAAGTCCTGGTTCGCCAAGAGCCA	721780 ^d
oKL217	AACCAACAAAATAGAACCAAACGTCCTATTCTATTATTCCATGCTAATATATTCGAGCAA	781840 ^d
oKL218	TCTGACAATTGAATACTGATGCCCCCGACCGTCCCTATTAATCATTACGATGGTCCTAGA	841900 ^d
oKL219	AAACGTCCTTGGCAAATGCTTTCGCAGTAGTTAGTCTTCAATAAATCCAAGAATTTCACC	901960 ^d
oKL220	TTAAGACTACGACGGTATCTGATCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGA	9611020 ^d
oKL221	AAGGTGCCGAGTGGGTCATTAAAAAAACACCACCCGATCCCTAGTCGGCATAGTTTATGG	10211080 ^d
oKL222	CTTTAAGTTTCAGCCTTGCGACCATACTCCCCCAGAACCCAAAGACTTTGATTTCTCGT	10811140^{d}
oKL223	CCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAATTC	11411200 ^d

oKI 224	Δ Δ Δ ΔΤC Δ Δ G Δ Δ G Δ G CTCTC Δ ΔΤCTCTC Δ ΔΤCCTT ΔΤΤCTCGTCTGGΔCCTGGTGΔGTTTC	1201 1260 ^d
oKL224		12011200 1261 1320 ^d
oKL225		1321 1380 ^d
oKL220		13211300 1291 1440d
0KL227		13611440 [*]
0KL228		14411500 [°] 1501_1552d
0KL229		15011552 ⁻
0KL199		15531601 ^a
0KL230		16021661ª
oKL231	IGAGAIGGAGIIGCCCCCIICICIAAGCAGAICCIGAGGCCICACIAAGCC	16621712 ^u
oKL201	TIACGACITITIAGTICCICITAAAIGACCAAGTIGICCAAATICICCGCIC	1713.1763 ^u
oKL204	TAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTG	17641800 ^a
oKL235	CCTACGGAAACCTTGTTACGACTTTTAGTTCCTCTAAATGACCAAGTTTG	17291778 ^d
oKL236	TCACCTACGGAAACCTTGTTACGACTTTTAGTTCCTCTAAATGACCAAGTTTG	17291781 ^a
oKL237	TICACCTACGGAAACCTIGITACGACTITTAGITCCICTAAATGACCAAGTITG	17291782 ^d
oKL242	TCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTAGTTCCTCTAAATGACCAAGTTTG	17291790 ^d
oKL243	TTCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTAGTTCCTCTAAATGACCAAGTTTG	17291791 ^a
oKL246	TAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTAGTTCCTCTAAATGACCAAGTTTG	17291800 ^d
oKL261	GCAAAAAACGTAGTGGCAGTA <u>GCA</u> ATGGATCCCAGAATGGCTGC°	$dim I^{EASA}(f)$
oKL262	GCAGCCATTCTGGGATCCATTGCTACTGCCACTACGTTTTTTGC	$dim l^{E85A}(\mathbf{r})$
oKL506	AACGTAGTGGCAGTA <u>TGG</u> ATGGATCCCAGAATG ^e	$dim l^{E85W}(f)$
oKL507	CATTCTGGGATCCATCCATACTGCCACTACGTT	$dim 1^{E85W}(\mathbf{r})$
oKL625	AACGTAGTGGCAGTA <u>GGT</u> ATGGATCCCAGAATG ^e	$dim I^{E85G}(f)$
oKL626	CATTCTGGGATCCATACCTACTGCCACTACGTT	$dim1^{E85G}(\mathbf{r})$
oKL627	AACGTAGTGGCAGTA <u>GAT</u> ATGGATCCCAGAATG ^e	$dim1^{E85D}(f)$
oKL628	CATTCTGGGATCCATATCTACTGCCACTACGTT	$dim1^{E85D}(\mathbf{r})$
oKL629	AACGTAGTGGCAGTA <u>GTT</u> ATGGATCCCAGAATG ^e	$dim 1^{E85V}$ (f)
oKL630	CATTCTGGGATCCATAACTACTGCCACTACGTT	$dim1^{E85V}(\mathbf{r})$
oKL631	AACGTAGTGGCAGTA <u>AGA</u> ATGGATCCCAGAATG [®]	$dim1^{E85R}$ (f)
oKL632	CATTCTGGGATCCATTCTTACTGCCACTACGTT	$dim1^{E85R}(\mathbf{r})$
oKL633	AACGTAGTGGCAGTA <u>TCT</u> ATGGATCCCAGAATG ^e	$dim1^{E85S}(f)$
oKL634	CATTCTGGGATCCATAGATACTGCCACTACGTT	$dim I^{E85S}(\mathbf{r})$
oKL635	AACGTAGTGGCAGTA <u>AAA</u> ATGGATCCCAGAATG [®]	$dim I^{E8K}(f)$
oKL636	CATTCTGGGATCCATTTTTACTGCCACTACGTT	$dim 1^{E85K}(\mathbf{r})$
oKL637	AACGTAGTGGCAGTA <u>AAT</u> ATGGATCCCAGAATG ^e	$dim 1^{E85N}$ (f)
oKL638	CATTCTGGGATCCATATTTACTGCCACTACGTT	$dim l^{E85N}(\mathbf{r})$
oKL639	AACGTAGTGGCAGTA <u>ACT</u> ATGGATCCCAGAATG ^e	$dim1^{E85T}$ (f)
oKL640	CATTCTGGGATCCATAGTTACTGCCACTACGTT	$dim l^{E85T}(\mathbf{r})$
oKL641	AACGTAGTGGCAGTA <u>ATG</u> ATGGATCCCAGAATG ^e	$dim 1^{E85M}(f)$
oKL642	CATTCTGGGATCCATCATTACTGCCACTACGTT	$dim l^{E85M}(\mathbf{r})$
oKL643	AACGTAGTGGCAGTA <u>ATT</u> ATGGATCCCAGAATG ^e	$dim1^{E85I}$ (f)
oKL644	CATTCTGGGATCCATAATTACTGCCACTACGTT	$dim l^{E85I}(\mathbf{r})$
oKL645	AACGTAGTGGCAGTA <u>CAA</u> ATGGATCCCAGAATG ^e	$dim1^{E85Q}(f)$
oKL646	CATTCTGGGATCCATTTGTACTGCCACTACGTT	$dim1^{E85Q}(\mathbf{r})$
oKL647	AACGTAGTGGCAGTA <u>CAT</u> ATGGATCCCAGAATG ^e	$dim1^{E85H}$ (f)
oKL648	CATTCTGGGATCCATATGTACTGCCACTACGTT	$dim1^{E85H}(\mathbf{r})$
oKL649	AACGTAGTGGCAGTA <u>CCA</u> ATGGATCCCAGAATG ^e	$dim1^{E85P}(f)$
oKL650	CATTCTGGGATCCATTGGTACTGCCACTACGTT	$dim1^{E85P}(\mathbf{r})$
oKL651	AACGTAGTGGCAGTA <u>TTG</u> ATGGATCCCAGAATG ^e	$dim1^{E85L}$ (f)
oKL652	CATTCTGGGATCCATCAATACTGCCACTACGTT	$dim1^{E85L}(\mathbf{r})$
oKL653	AACGTAGTGGCAGTA <u>TGT</u> ATGGATCCCAGAATG ^e	$dim l^{E85C}(f)$
oKL654	CATTCTGGGATCCATACATACTGCCACTACGTT	$dim 1^{E85C}(\mathbf{r})$
oKL655	AACGTAGTGGCAGTA <u>TAT</u> ATGGATCCCAGAATG ^e	$dim l^{E85Y}(f)$
oKL656	CATTCTGGGATCCATATATACTGCCACTACGTT	$dim1^{E85Y}(\mathbf{r})$
oKL657	AACGTAGTGGCAGTA <u>TTT</u> ATGGATCCCAGAATG ^e	$dim1^{E85F}(f)$
oKL658	CATTCTGGGATCCATAAATACTGCCACTACGTT	$dim l^{E85F}(\mathbf{r})$
oKL700	GTGGCAGTAGAAATG <u>GAA</u> CCCAGAATGGCTGCA ^e	$dim l^{D87E}(f)$
oKL701	TGCAGCCATTCTGGGTTCCATTTCTACTGCCAC	$dim1^{D87E}(\mathbf{r})$
oKL698	GTGGCAGTA <u>GAT</u> ATG <u>GAA</u> CCCAGAATGGCTGCA ^e	$dim 1^{E85D,D87E}$ (f)
oKL699	TGCAGCCATTCTGGGTTCCATATCTACTGCCAC	$dim1^{E85D,D87E}$ (r)
	Probes for Northern blot	
Name	Sequence (5' to 3')	Target region
a	[btn]TACTTAGACATGCATGGCTTAATCTTTGAGACAAGCATATGACTACTGGC	yeast 18S rRNA

b [btn]GACTCTCCATCTTGTCTTGTCTTGCCCAGTAAAAGCTCTCATGCTCTTGC c [btn]CTCTGGGCCCCGATTGCTCGAATGCCCAAAGAAAAGTTGCAAAGATATG d [btn]GTTACTAAGGCAATCCCGGTTGGTTTCTTTTCCTCCGCCTTATTGATATGC e [btn]CCTCGCCCTCCGGGCTCCGTTAATGATCCT

^aThis strain was used throughout this work except when mutant *dim1* strains were investigated.

^bThis strain was used only for comparison with mutant *dim1* strains.

^cThe *x*² site is the integration site for the *E. coli lacZ* gene on chromosome X, between *NCA3* and *ASF1*, precisely

encompassing from 605 to 646 nucleotides upstream of the NCA3 start codon. It was previously examined by Mikkelsen et

al., who reported that ectopic expression at this site did not cause growth defects (Mikkelsen et al., 2012).

^dNumbers correspond to nucleotide positions in yeast 18S rRNA.

^eThe mutated codon is underlined in the forward primer. (f): forward primer; (r): reverse primer

	complete	-C	-N	-P	-S (sulfur free)	
salts (g L ⁻¹)						
CaCl ₂ •2H ₂ O	0.1	0.1	0.1	0.1	0.1	
NaCl	0.1	0.1	0.1	0.1	0.1	
MgCl ₂ •6H ₂ O	0.412	0.412	0.412	0.412	0.412	
$(NH_4)_2SO_4$	5	5	0	5	0	
Na_2SO_4	0	0	5.4	0	0	
NH ₄ Cl	0	0	0	0	4.05	
KH ₂ PO ₄	1	1	1	0	1	
KCl	0	0	0	0.55	0	
	met	als (mg L	-1)			
boric acid			0.5			
$CuCl_2•2H_2O$			0.027	73		
KI			0.1			
FeCl ₃ •6H ₂ O	0.2					
MnCl ₂ •4H ₂ O	0.4684					
$Na_2MoO_4\bullet 2H_2O$	0.2					
ZnCl ₂ •H ₂ O	0.1895					
vitamins (mg L ⁻¹)						
biotin	0.002					
calcium pantothenate	0.4					
folic acid	0.002					
inositol	2					
niacin	0.4					
4-aminobenzoic acid	0.2					
pyridoxine HCl	0.4					
riboflavin	0.2					
thiamine-HCl	0.4					

 Table S5. Medium formula^a. Related to STAR METHODS.

^aFormula is based on Miller et al. (Miller et al., 2013) with sulfate ions replaced by chloride ions.

Compounds	Q1	Q3	[U- ¹⁵ N]-Q1	[U- ¹⁵ N]-Q3
N^6 -methyladenosine (m ⁶ A)	282	150	287	155
N^4 -acetylcytidine (ac ⁴ C)	286	154	289	157
N^6 , N^6 -dimethyladenosine (m ⁶ ₂ A)	296	164	301	169
N^1 -methyladenosine (m ¹ A)	282	150		
2'-O-methyladenosine (A _m)	282	136		
2'-O-methylguanosine (G _m)	298	152		
2'-O-methyluridine (U _m)	259	113		
N^7 -methylguanosine (m ⁷ G)	298	166		
adenosine	268	136		
cytidine	244	112		
uridine	245	113		
guanosine	284	152		
cysteine	122	59		
methionine	150	104		
homocysteine	136	90		
cystathionine	223	134		
SAM	399	250		
SAH	385	136		
GSH	308	179		
GSSG	613	355		
proline	116	70		
arginine	175	116		
histidine	156	110		
serine	106	60		
threonine/homoserine	120	74		
isoleucine	132	69		
(iso)leucine	132	86		
valine	118	55		
tryptophan	205	188		
phenylalanine	166	103		
tyrosine	182	136		

Table S6. MRM transitions for nucleosides and metabolites. Related to STAR METHODS.