SUPPLEMENTARY FILES

Journal: Gastric Cancer

SFRP4 drives invasion in gastric cancer and is an early predictor of recurrence Rita A. Busuttil^{1,2,3}, Joshy George⁴, Colin M. House¹, Stephen Lade⁵, Catherine Mitchell⁵, Natasha S. Di Costanzo¹, Sharon Pattison⁶, Yu-Kuan Huang^{1,2,3}, Patrick Tan^{7,8}, Jae-Ho Cheong^{9,10}, Sun Young Rha¹¹ & Alex Boussioutas^{1,2,3}

¹ Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia

² Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
³ Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
⁴ Computational Sciences, Jackson Laboratory for Genomic Medicine, Farmington, Connecticut USA
⁵ Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
⁶ Department of Medicine, University of Otago, Dunedin, New Zealand
⁷ Genome Institute of Singapore, Singapore.
⁸ Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
⁹ Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
¹⁰ Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
¹¹ Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic

Corresponding author info: Professor Alex Boussioutas,Peter MacCallum Cancer Centre, 305 Grattan St, Parkville Telephone: +61 3 98559 7031, Fax: +61 3 8559 5489, Email: <u>alex.boussioutas@petermac.org</u>

Table S1: Clinical characteristics of Australian GC cases			
	Discovery cohort	Validation cohort	
Parameter	No.	No.	
Age (vears)			
Male	64 (32-83)	65.4 (32-83)	
Female	73.7 (47-85)	67 (33-86)	
Gender		(,	
Male	45	67	
Female	20	32	
Tumour location	20	JE	
GOL/Cardia	10	20	
Granter cursus body	10	20	
	10	20	
	15	1	
Anterior	5	1	
Antum	14	20	
Storing	U	1	
chemo-radiotherapy			
Adjuvant	24	10	
Adjuvant	34	40	
Adjuvant	14	46	
NU	15	15	
Pailative	25	24	
NO Pallative	23	21	
Panalive	13	24	
	12	54	
ND Pathology	15	54	
Pathology	22	20	
Diffuse	25	59	
Musel	35	50	
Adapassuameus	0	10	
	1	0	
Well	4	2	
Madasaka	4	3	
Moderate to poor	-	31	
	20	25	
Indifferentiated	20	20	
Other	20	25	
Titare	2	1	
T Stage	7	10	
	14	10	
12	14	25 62	
15	44	02	
	U	2	
	2	r	
	3	5	
U	9	14	
	14	20	
	22	23	
N/	13	22	
Linear alford	3	0	
Unspecified	1	T	
INA; type of therapy not applicable, ND; data not available			

Figure S1. Consort diagram for the selection of gastric cancer plasma samples for SFRP4 ELISA.

Figure S2. Effects of shRNA mediated knockdown of SFRP4. shRNA mediated knockdown of gastric cancer cell lines (A) AGS, (B) SNU-1 and (C) NCI-N87 was performed using the three available constructs targeting the SFRP4 gene (Supplementary Table S2) and a scramble control. Western blots were performed to confirm knockdown and the resulting immunoblots in (A-C) were quantitated by densitometric methods (D-F) using Image J. Overall construct #3 was the best performing and used for all subsequent experiments. Proliferation was determined by cell counts at 24, 48 and 72 hours (G-I) cell lines. No significant differences were observed in any of the cell lines. (J-L) Apoptosis was determined for the same cell lines using the Apoptaq kit. Representative images are shown in Fig. S3. Data are represented as mean ± SD.

Figure S3. Outcomes of functional assays **(A)** representative images from apoptosis assays (arrows represent apoptotic cells), **(B)** the effect of the addition of recombinant human SFRP4 on the invasion of AGS cells. AGS WT or AGS-SFRP4 knockdown cells were pre-incubated with varying doses of rhSFRP4 before use in an invasion assay. Data are represented as mean ± SD ,**(C)** representative images of AGS, SNU-1 and NCI-N87 cells from invasion assays shown in Fig 3. **(D)** AGS wound healing assay. AGS WT, scramble and SFRP4 knockdown cells were seeded to confluency, scratched to wound and imaged at 0- and 24-hours.Wound healing was then quantitated *p=6.8x10⁻³; t test. Data are represented as mean ± SD.

Table S2: Genes corr	elated with SFRP4																							
Australian dataset																				TCGA dataset			<u>Cc</u>	ommon genes
Gene	Pearson Score		Gene	Pearson Score		Gene	Pearson Score		Gene	Pearson Score		Gene	Pearson Score		Gene	Pearson Score	Gene		Pearson Score	Gene Symbol	Pearson Score		Ge	ene Symbol
ACTA2		0.71	CNN1		0.60	FAM20C		0.72	ISM1		0.70	MRAS	0.1	76 1	PROS1	0.6	STON	1	0.78	ADGRA2		0.61	AL	DGRAZ
ACTN1		0.72	CNRIP1		0.65	FAM229B		0.62	ITGA1		0.60	MRC2	0.3	78 1	PRRX1	0.7	SULF1		0.76	AEBP1		0.67	AE	EBP1
ADAMTS2		0.62	COL10A1		0.73	FAP		0.81	ITGBS		0.68	MRGPRF	0.1	69 1	PRSS23	0.6	SVIL		0.67	ANTXR1		0.69	Al	NTXR1
ADARB1		0.64	COL12A1		0.61	FBLN1		0.68	ITGBL1		0.90	MRVI1	0.0	66 1	PTGFR	0.6.	SYNC		0.74	ASPN		0.66	AS	SPN
ADGRAZ		0.63	COLI4A1		0.64	FBLNZ		0.75	JAM3		0.73	MSL-AS1	0.	/1	PIGS	0.7	SYNDU	61	0.60	AZINZ		0.63	BL	3N
ADGRD1		0.65	COLIBAI		0.65	FBN1		0.84	JAZF1		0.60	M5KB3	0.		PIGL	0.6	51111		0.68	BGN		0.7	E)	
AEBP1		0.83	COL1A1		0.60	FBXL7		0.68	KANK2		0.63	MXRA7	0.:	76 (QKI	0.6	TAGLN	N.	0.72	BICC1		0.62	ci	LR
AKAP12		0.62	COL3A1		0.75	FBXO 32		0.71	KATNAL1		0.65	MXRAS	0.1	80 1	RAB23	0.7	TBCEL		0.61	C1QTNF5		0.61	ci	LS
AKT3		0.73	COLSAI		0.72	FERMT2		0.74	KCNE4		0.64	MYH10	0.	79 1	RAB31	0.8	TCEAL	.7	0.63	CIR		0.67		0H11
AMOTEI		0.74	COLSAZ		0.67	FELI		0.67	KCNU8		0.65	MILS	0.1	00 1	KA014	0.6	ILP4		0.72	cis .		0.84		winds
ANGPTL2		0.73	CO16A1		0.61	FGF7P3		0.63	KCTD10		0.68	MYLK	0.3	70 1	RARRES2	0.7	TENM	4	0.70	CDH11		0.78	00	DL8A1
ANKRD10		0.61	CO16A2		0.78	FGFR1		0.72	KDELC1		0.67	NALCN	0.1	66 1	RASL12	0.6	TGFB1	111	0.71	CMTM3		0.7	ст	THRC1
ANO51		0.77	COL6A3		0.64	FIBIN		0.66	KIAA1755		0.65	NAP1L3	0.3	72 1	RASSF8	0.74	TGFB3	3	0.64	COL8A1		0.73	DA	ACT1
ANTXRI		0.89	COLSAI		0.92	FKBP14		0.60	KIDINS220		0.63	NAV3	0.1	53 1	RASSE8-AS1	0.6	TUDCO	(1)	0.66	CP2		0.67		JKS
4053		0.68	015613		0.65	FRDF7		0.75	KIF1B		0.04	NEW	0.		RBFUX2	0.6	TUDCO		0.87	DICT		0.62		.wz
ADICS		0.63	COLECIZ		0.66	FLINA		0.00	KIRRELI		0.74	NEXN	0.1	67 I	00051	0.6	TUDEA		0.73	DACIT		0.00	Er	EWIP2
AP 132		0.87	COMP		0.00	FINOI		0.60	KLCI		0.68	NIDZ	0.1		KBN155	0.6	THDS4	•	0.73	DOKS		0.83		
ARLIO		0.73	00872		0.90	ENDC1		0.72	LAMAA		0.68	NISCH	0.1	61 1	RECK	0.6	TIMPI		0.78	ECM2		0.6		W1343
APACY2		0.61	007741		0.69	ECOVE2		0.61	LAMP2		0.68	NOTCH2	0.	71	RERG	0.6	TIMPO		0.13	EI N		0.69		e 1N1
ASDN		0.94	CRYM2		0.79	ERMOG		0.77	LAMCI		0.65	NOVA	0.	72	RETN1	0.6	TIMPO		0.03	EAMTONE		0.62	5	(DC1
													0.			0.8			0.73					
ATL3		0.64	CRI5PLD1		0.81	FSTL1		0.84	LARP6		0.64	NR2F1-AS1	0.1	62	RGL1	0.6	TMEM	1173	0.61	FAP		0.6	FS	TL1
ATP10A		0.73	CRTC3		0.62	FTO		0.61	LATS2		0.64	NREP	0.	75	RGMA	0.6	TMEM	(43	0.67	FBN1		0.63	63	FPT2
														П										
ATP882		0.61	CRYAB		0.66	FUT11		0.71	LAYN		0.70	NRK	0.1	62	RHOQ	0.6	TMEM	(45A	0.62	FNDC1		0.71	GI	1152
ATXN1		0.63	CSGALNACT2		0.75	FXYD6		0.65	LBH		0.65	NRP2	0.3	70 1	RILPL1	0.6	TMEM	647	0.65	FSTL1		0.61	GI	LT8D2
BACE1		0.61	CTHRC1		0.73	FZD1		0.73	LGALS1		0.72	NRXN3	0.1	67 1	RIMKLB	0.6	TNRCE	6C	0.60	GFPT2		0.6	IG	FBP7
BGN		0.83	CTSK		0.79	GAL3ST4		0.64	LHFPL6		0.71	NTM	0.1	61 1	RNF144A	0.7	TNS1		0.71	GGT5		0.64	ISI	LR
BHLHE22		0.65	CYBRD1		0.60	GAS1		0.73	LINC01279		0.73	NUAK1	0.3	72 1	RNF146	0.6	TPM1		0.67	GLI1		0.7	m	GBL1
BICC1		0.82	CYP1B1		0.73	GAS7		0.74	LOCIL		0.71	OLFML1	0.1	62 1	RNF150	0.6	TPM2		0.70	GLIS2		0.64	K).	AA1755
BMPR2		0.68	CYP2U1		0.63	GFPT2		0.71	LOC101929122		0.65	OLFML2B	0.1	74 1	RNF217	0.7	TRIO		0.66	GLT8D2		0.63	LC	DXL1
BNC2		0.75	DAB2		0.67	GJA1		0.62	LOX		0.63	OMD	0.1	67 1	ROBO1	0.6	TRPC1		0.71	HIC1		0.63	LR	IRC32
BNIP2		0.63	DACT1		0.75	GL12		0.63	LOXL1		0.66	PALLD	0.1	74 1	ROR2	0.6	TRPS1		0.66	HTRA3		0.63	LT	BP2
BOC		0.76	DCLK1		0.64	GLI3		0.72	LRCH2		0.61	PARD3B	0.1	62 1	RSPO3	0.6	TSHZ2		0.72	IGFBP7		0.63		л
C14orf132		0.61	DCLK2		0.61	GLIPR1		0.63	LRP12		0.61	PARVA	0.3	70 1	RTN1	0.6	TSHZ3		0.74	IGFBP7+AS1		0.62	м	MP2
Clorf216		0.60	DCN		0.74	GLISZ		0.77	LRRC32		0.69	PBX3	0.1	63 1	RUFY3	0.6	TSPAN	44	0.64	ISLR		0.77	м	OXD1
Clort54		0.63	DDR2		0.75	GLT8D2		0.79	LRRN4CL		0.65	PCOLCE	0.1	68 1	RUNX1T1	0.8	TSPAN	(9	0.65	ISLR2		0.62	м	RC2
C107073			DENNIDEA		0.68	CNAL						00534					7110		0.63			0.63		×747
CIQINES		0.03	DENNUSA		0.68	GNAL		0.05	LINNE		0.65	PDESK	0.1	64 3	51785	0.6	TUDAT		0.62	TCRU		0.02		A.646
C15		0.78	DEPPI		0.68	GRC6		0.62	LTBP1		0.75	PDGFC	0.1	74	SCARE?	0.6	TURRE	c	0.78	VIAA1755		0.76	N	ALCN DYA
3		0.62	DKK3		0.68	GPX8		0.75	ITRP3		0.66	PDGERI	0.	76	SCRG1	0.6	TWIST	-	0.62	1011		0.64	N	REP
C4orf3		0.65	DNM3OS		0.70	GREM1		0.75	LUM		0.79	PDLIM2	0.1	62	SDC2	0.6	TWSG	1	0.60	LRRC32		0.72	0	LFML2B
C8orf88		0.60	DOCK11		0.67	GUCY1A3		0.74	MACF1		0.63	PDLIM3	0.3	75	SELENOM	0.6	UBE2E	E2	0.72	LTBP2		0.71	01	MD
CALD1		0.82	DOK5		0.67	GUCY1B3		0.74	MAFB		0.66	PDLIM4	0.1	63	SERPINE2	0.6	UBE20	Q2	0.63	LUM		0.71	PE	OGFRB
CALHM2		0.75	DPYSL3		0.85	GXYLT2		0.77	MAGI2-AS3		0.71	PDZRN3	0.1	69	SER PINF 1	0.8	VAT1		0.64	LZTS1		0.61	PL	XDC2
CALHMS		0.71	DSE		0.73	HDGFL3		0.76	MAN1C1		0.65	PEA15	0.3	77 9	SERPING1	0.7	VCAN		0.79	MMP2		0.63	sc	CARF2
CAMSAP2		0.63	DZIP1		0.69	HECTD2		0.68	MAPIA		0.68	PEAK1	0.1	62 9	SETBP1	0.6	VEGFC		0.61	MOXD1		0.74	SE	RPINF1
CAP2		0.64	ECM2		0.75	HEG1		0.75	MAP1B		0.66	réG3	0.1	ь2 !	ыкР2	0.74	VGLL3		0.70	MKC2		0.63	SP	ARL
CARMN		0.63	EDNRA		0.69	HEYL.		0.65	MAP3K20		0.66	PHLDA3	0.1	64	SGCD	0.6	VIM		0.68	MXRA8		0.71	Th	1852
CAVIN1		0.79	EFEMP1		0.67	HMCN1		0.81	MAP3K3		0.67	PHLDB2	0.1	63 !	SGCE	0.6	VSTM	4	0.66	NALCN		0.7	Th	191
CAVINS		0.61	EEEMD3		0.85	ноокз		0.65	MAPA		0.65	PKD2		78	SH3PXD2A		MICON		0.50	NOX4		0.74		MP2
CAVINS		0.61	EPEMP2		0.65	HOUKS		0.65	NUAP-4		0.65	PKD2	0.	/0 :	SHSPADZA	0.8.	WISPI		0.05	NUX4		0.74		MP2
CCDC80		0.78	EFS		0.65	HOX82		0.67	MARVELD1		0.74	PLAGL1		62	SH3PXD2B	0.6	WWT	R1	0.70	NREP		0.68		CAN
CD109		0.61	EIDI		0.63	HSD1181		0.64	MDEIC		0.62	PL PDP4	0.	67 1		0.6	70103	10	0.10	OLEMI 28		0.62	VE	GEC .
					0.01						0.00		0.1			0.8	10/62		0.80			0.05	VE	
CDC42EP3		0.65	ELN		0.71	HSPB2		0.65	MEIS1		0.65	PLXDC1	0.0	60	SLC24A3	0.7	ZBTB4		0.61	OMD		0.61	Z1	(F521
CDH11		0.87	EMILIN1		0.72	HTRA1		0.62	MEOX2		0.65	PLXDC2	0.1	84	SLIT2	0.7	ZCCHC	24	0.75	PDGFRB		0.66		
CDK14		0.63	EML1		0.69	IFF01		0.63	MFAP2		0.67	PMP22	0.1	66	SMOC2	0.7	ZEB1		0.74	PLXDC2		0.67		
CD01		0.61	ENOX1		0.61	IGFBP4		0.66	MFAPS		0.66	PODN	0.1	67	SOCSS	0.7	ZFH03	3	0.64	SCARF2		0.66		
CDON		0.61	EPDR1		0.63	IGFBP6		0.67	MGP		0.77	PRDM2	0.1	63	SPARC	0.8	ZEPM	2	0.74	SERPINF1		0.65		
CHRDL1		0.60	EPHA3		0.66	IGFBP7		0.72	MIR100HG		0.74	PRDM6	0.1	65	SPARCL1	0.6	ZNF25	5	0.68	SPARC		0.63		
CLEC11A		0.73	EVC		0.83	IL17RD		0.62	MIR99AHG		0.67	PRELP	0.3	75	SPART	0.6	ZNF42	23	0.73	THB52		0.7		
CLIC4		0.74	EVC2		0.61	IL1R1		0.60	MMP2		0.74	PRICKLE1	0.1	69	SPIN1	0.6	ZNF43	6	0.73	THY1		0.6		
CLIP3		0.62	FAM198A		0.62	INHBA		0.73	MN1		0.76	PRICKLE2	0.1	ь2 : тс	SPUCK1	0.8	ZNF52		0.66	IIMP2		0.65		
CLIP4		0.63	FAM198B		0.75	indit i		0.66	MURH4L1		0.65	PRKD1	0.3	/0	sruw1	0.6	ZNF53	52	0.63	VCMN		0.61		
CIMP		0.66	FAMIOAS		0.69	IRF2RPI		0.67	MOXD1		0.82	PRKG1		64	SSPN		716/1	57:451		VEGEC		0.6		
CLAIP		0.00	PAM1240		0.05			3.67	MOAD1		0.62	10/01	0.1	-		0.74	Znerbb		0.61			0.0		
carran		0.75	54143004		0.00			0.07	1007		0.74	0010			TECHNACT.	0.0				THEFT OF		0.0		

Α

Β

Pathway name		En	Reactions			
		ratio	p-value	FDR	found	ratio
Extracellular matrix organisation	14/329	0.023	1.07E-09	3.63e-07	77/318	0.025
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)	9/127	0.009	1.85e-08	3.14e-06	9/14	0.001
Elastic fibre formation	6/46	0.003	1.49e-06	1.68-05	12/17	0.001
Post-translational protei phosphorylation	7/109	0.008	1.48e-06	1.11e-04	1/1	8.01e-05
Molecules associated with elastic fibres	5/38	0.003	1.64e-06	1.11e-04	5/10	8.01e-04
ECM proteoglycans	5/79	0.005	5.42e-05	0.003	5/23	0.002
Diseases associated with glycosaminoglycan metabolism	4/55	0.004	1.86e-04	0.009	12/29	0.002
Degradation of extracellular matrix	5/148	0.01	9.55e-04	0.026	34/105	0.008

Figure S4. Genes and pathways correlated with SFRP4. (A) Genes commonly expressed in the Australian and TCGA cohorts were identified (Pearson correlation >0.6). **(B)** Top 8 functional pathways found to be enriched after further analysis of these genes using Reactome.

Figure S5. Correlation of SFRP4 expression with EMT related genes. Affymetrix U133 plus 2 mRNA data from the Australian dataset was used to correlate expression of SFRP4 with key EMT related genes

Figure S6. Swimmer plots outlining timelines for sample collection, recurrence and patient prognosis in the Australian cohort (n= 67). Zero months indicates the date of surgery. Key: Red= plasma sample collections; blue= time of clinically documented recurrence; black = overall survival; pink =lost to follow up