Genomic Profile of Advanced Breast Cancer in Circulating Tumor DNA

Supplemental Figures and Tables

Supplementary Figures 1 - 16

Supplementary Tables 1 - 4

Supplementary Fig. 1. plasmaMATCH trial design

a) PlasmaMATCH trial scheme: Advanced breast cancer patients with disease progression after prior therapy, and following consent, were offered ctDNA testing by droplet digital PCR (ddPCR) for the presence of actionable mutations in *ESR1*, *HER2*, *PIK3CA* and *AKT1* or targeted sequencing. Patients were enrolled into one of the five interventional arms based on the mutations detected in plasma, which is reported separately¹, with cohort E *ongoing.

b) Circulating tumor DNA (ctDNA) testing for patients in plasmaMATCH. Droplet digital PCR (ddPCR) tested for hotspot mutations in *ESR1*, *HER2*, *PIK3CA* and *AKT1* while targeted sequencing employed a duplex sequencing 73/74 gene panel (Guardant360)². Of 800 patients who underwent targeted sequencing, 364 did so prospectively as part of the trial, and 436 retrospectively from banked baseline plasma ("Methods").

Supplementary Fig. 2: Degree of elevated gene copy number in circulating tumor DNA

Copy number (CN) in plasma for indicated genes in patients with elevated plasma copy number, by breast cancer subtype, to identify genes likely amplified at high copy number (HR+HER2- N=515, HER2+ N=72, TNBC N=138). Data are presented as a boxplot, where the middle line is the median, the lower and upper hinges represent the 25th and 75th centiles respectively and the whiskers extend from the hinge to the smallest and largest value, respectively, no further than 1.5 x IQR (interquartile range) from the lower or upper hinge. Data outside of these ranges are plotted individually.

Kingston et al

Supplementary Fig.	3:	Sensitivity	and	l specificity	of	Guardant360	targeted	sequencin	g
--------------------	----	-------------	-----	---------------	----	-------------	----------	-----------	---

All mutation ca	ddPCR			
All mutation ca	Positive	Negative		
Targeted	Positive	492	77	
Sequencing	Negative	49	9841	

	ddPCR				
	Positive	Negative			
Targeted	Positive	161	77		
Sequencing	Negative	38	9841		

	%
Sensitivity	90.9
Specificity	99.2
ppv	86.5
npv	99.5

	%
Sensitivity	80.9
Specificity	99.2
рру	67.6
npv	99.6

Sensitivity and specificity of targeted panel sequencing (Guardant360) compared to droplet digital PCR (ddPCR) in N=682 patients who underwent testing for hotspot mutations within *PIK3CA, ESR1, HER2* and *AKT1* (Supplementary Fig. 1b) using both technologies. The upper table represents all mutations at all allele frequencies (AF). The lower table includes mutations with ddPCR AF<1%. The sensitivity of targeted sequencing in identifying mutations is 90.9%, and remains high at 80.9% for mutations at low AF.

Kingston et al

Supplementary Fig. 4: Co-occurrence and mutual exclusivity of mutations in HR+HER2- breast

cancer

HR+HER2-

	ESR1	PIK3CA	TP53	GATA3	ARID1A	PTEN	HER2	NF1	KRAS	AKT1	RB1
RB1											
AKT1											
KRAS		0.022									
NF1						0.023					
HER2				0.009							
PTEN			0.023					-			
ARID1A									- C-	0.00110.00	
GATA3		0.028					wittually	EXClusive	2 0	-occuren	
TP53	0.002						q value	e < 0.05	q va	alue < 0.0	5
PIK3CA				-			p valu	e < 0.05	p va	alue < 0.0	5
ESR1											

Association analysis for most frequent mutated genes in HR+HER2- breast cancer (N=515 patients) with two-sided Fisher's exact test p values. Green genes showing mutual exclusivity, and purple co-occurrence with dark colours indicating significance following false discovery correction.

Supplementary Fig. 5: Correlation of ESR1 and MAPK pathway mutation allele frequency from the

same patient

Correlation of allele frequency of *ESR1* and *MAPK* pathway mutations from the same patient, in patients with single *ESR1* and *MAPK* mutations (N=10). Spearman correlation coefficient -0.264, p=0.017 (two-sided). Includes all patients with HR+HER2- disease and single mutations in both.

Supplementary Fig. 6: Mutational profile of plasmaMATCH compared to TCGA

Mutational profile of ctDNA in plasmaMATCH compared to published large primary breast cancer tissue sequencing dataset (TCGA)³. Red dots indicate significant change in frequency after false discovery adjusted two-sided Fishers exact test (HR+HER2-: *ESR1* q<0.0001, *PIK3CA* q<0.0001, *AKT1* q=0.006, *ARID1A* q=0.04). Included are genes with an incidence 1.5% in both data sets. N indicates the number of patients included in each group.

Supplementary Fig. 7: Validation of rare and hotspot mutations in HER2 by droplet digital PCR

Association between allele frequency in ctDNA sequencing and validation analysis with plasma DNA droplet digital PCR (ddPCR), N=24 *HER2* mutation assays. 22/24 (91.7%) mutations were validated by ddPCR. Spearman correlation coefficient 0.76, P<0.0001 (two-sided). ND, not detected.

Supplementary Fig. 8: Prior therapy and mutations prevalence in HR+HER2- advanced breast cancer

a) Mutation incidence in HR+HER2- breast cancer with (N=68 patients) and without (N=447 patients) prior exposure CDK4/6 inhibitor. Genes with an incidence of 1.5% or more in either group are shown.

b) Mutation incidence in HR+HER2- breast cancer with (N=83 patients) and without (N=432 patients) prior exposure mTOR inhibitor everolimus.

D538G TotalCount Y537S-10 20 30 Y537C ESR1 mutation 2 40 Y537N percent 1.00 0.95 L536R 0.90 0.85 L536P-0.80 L536H · Y537C -536H L536P -536R Y537S D538G Y537N ESR1 mutation 1

Supplementary Fig. 9: Cis-trans analysis of *ESR1* mutations

In patients with assessable multiple *ESR1* mutations (N=290), the fraction of mutation pairs that occur in trans.

Supplementary Fig. 10: Clonality of mutations with time from diagnosis of early breast cancer

The proportion of clonally dominant to subclonal mutations (N=1974 SNVs/indels with assessable clonality) does not significantly alter with time from diagnosis of early breast cancer (p=0.3, Chi-squared test). ns, not significant

Supplementary Fig. 11. Mutational signature analysis in HER2 positive breast cancer

Bootstrap mutational signature analysis on aggregated mutations from all HR-HER2+ (*top*, N=29 clonal mutations, N=29 subclonal mutations) and HR+HER2+ (*bottom*, N=41 clonal mutations, N=97 subclonal mutations) and breast cancers, for clonally dominant and subclonal mutations. Data are presented as a boxplot, where the middle line is the median, the lower and upper hinges represent the 25th and 75th centiles respectively and the whiskers extend from the hinge to the smallest and largest value, respectively, no further than 1.5 x IQR (interquartile range) from the lower or upper hinge. Data outside of these ranges are plotted individually. Although analysis is underpowered, similar patterns are observed compared to TNBC and HR+HER- disease, respectively.

Supplementary Fig. 12: SigMA analysis of mutational signatures in clonally dominant and subclonal mutations in HR+HER2- and TNBC disease

Signature analysis using SigMA⁴ for clonally dominant (HR+HER2- N=328; TNBC N=121) and subclonal mutations (HR+HER2- N=968; TNBC N=190) in HR+HER- and TNBC breast cancer. NNLS (non-negative least squares) exposure and Cosine similarity are two orthogonal methods which identify mutational signatures within sequencing data, whilst Likelihood describes the mutational signatures ascertained as present by the SigMA software. SigMA identifies APOBEC as strongly present in all HR+HER2- disease, whilst NNLS exposure and Cosine similarity both identify

Kingston et al

Supplementary Information

signature 13 more strongly in subclonal disease than in clonally dominant disease. In TNBC, agerelated signature 1 is more strongly identified by NNLS exposure and Cosine similarity in subclonal disease than clonally dominant disease.

Supplementary Fig. 13: Validation of novel subclonal mutations in *PIK3CA* by droplet digital PCR

a) PIK3CA mutations at both common and novel hotspots. Illustration from https://proteinpaint.stjude.org⁵.

b) Association between allele frequency in ctDNA sequencing and validation analysis with plasma DNA droplet digital PCR (ddPCR), n=20 *PIK3CA* mutation assays. 16/20 (80.0%) of mutations were validated by ddPCR. Spearman correlation coefficient 0.44, P=0.05 (two-sided). ND, not detected.

Supplementary Fig. 14: Analysis of PIK3CA mutation multiplicity

For each individual *PIK3CA* mutation, the proportion of patients with that mutation with multiple *PIK3CA* mutations, and plot of individual *PIK3CA* mutation cancer fraction versus indicated partner *PIK3CA* mutation.

Supplementary Fig. 15: Classes of PIK3CA mutation in advanced breast cancer

a) PIK3CA mutation classes in ctDNA from 293 patients with PIK3CA mutations detected.

Left 83% patients (242) have clonally dominant *PIK3CA* mutations, with 62% (183) having a single dominant mutation, 11% having at least two dominant mutations (multiple dominant-dominant: 8% [23] with 2 mutations, 3% [9] with >2 mutations) and 9% having a single dominant mutation with second subclonal mutations (multiple dominant-subclonal: 7% [20] have 2 subclonal mutations and 2% [7] >2 subclonal mutations). Future research will be required to investigate whether response rates to PI3 kinase inhibition vary by class.

Right 17% (51) have subclonal *PIK3CA* mutations, with 13% (38) having a single subclonal mutation and 4% have multiple subclonal mutations (multiple subclonal: 9 with 2 mutations, and 4 with multiple)

b) Examples cancer fractions of two patients; *left* multiple dominant-dominant class in a patient with two clonally dominant mutations in ctDNA; *right* multiple dominant-subclonal class in a patient with a single clonally dominant mutation and multiple subclonal mutations. Number indicates cancer fraction for indicated mutation.

Kingston et al

Supplementary Fig. 16: Association between allele frequency and copy number in ctDNA sequencing

No association between mutation allele frequency and copy number, for indicated genes, Pearson correlation coefficient r=-0.05, p=0.56 (two-sided).

Supplemental Tab. 1: Clinical and pathological features of patients enrolled in the plasmaMATCH

trial with ctDNA sequencing data

	N=	800
	n	%
Age group (years) at registration		
<50	215	26.9
50-59	263	32.9
60-69	209	26.1
≥70	113	14.1
Metastatic disease present at diagnosis	117	14.6
Time since primary diagnosis (years)		
<1 year	35	4.4
1-3 years	170	21.2
3-5 years	153	19.1
≥5 years	421	52.6
Not known/Missing	21	2.6
Tumor characteristics at initial diagnosis:		
Pathological invasive tumor size (cm)		
≤2cm	223	29.1
2-5cm	252	31.5
>5cm	87	10.9
Not known/Missing	238	29.8
Nodal status		
N0	212	26.5
N1-3	191	23.9
N4+	164	20.5
Not known/Missing	233	29.1
Histological type		
Ductal	577	72.1
Lobular	79	9.9
Mixed ductal & lobular	30	3.8
Other invasive	15	1.9
DCIS	2	0.3
Not known/Missing	97	12.1
Tumor grade		
G1	35	4.4
G2	319	39.9

	N=	:800
	n	%
G3	322	40.3
Not known/Missing	122	15.3
¥		
Molecular subtype		
HR+, HER2-	515	64.4
HR+, HER2+	46	5.8
HR-, HER2+	26	3.3
TNBC	138	17.3
HR+, HER2 unknown	31	3.9
Other	9	1.1
Not known/Missing	35	4.4
Disease sites		
Visceral	627	78.4
Soft tissue/nodal	143	17.8
Bone Only	11	1.4
	ļ	
Treatment received for locally advanced/metastatic disease prior to study registration		
Chamatharapy	542	67.0
Chemotherapy	202	25.4
	203	10.0
2 11103	107	12.4
	107	13.4
Endocrine therapy	520	65.0
	253	31.6
2 lines	168	21.0
3 lines	91	11.4
>3 lines	8	1.0
		1.0
Total lines of treatment received (chemotherapy and endocrine therapy combined)		
0	77	9.6
1	220	27.5
2	189	23.6
3	134	16.8
4	84	10.5
5	57	7.1
>5	39	4.9
Other systemic therapy		
Anti-HER2 therapy	64	8.0
mTOR inhibitor (everolimus, vistusertib)	93	11.6

	N=	800
	n	%
CDK4/6 inhibitor (palbociclib, ribociclib, abemaciclib)	77	9.6
Immunotherapy (atezolizumab, pembrolizumab)	15	1.9
Denosumab	68	8.5
Bisphosphonate	38	4.8
Other	33	4.1

Breast Cance	er Subtype	plasm	naMATC	MSK-	р			
		n cases	n	%	n cases	n	%	value
HR+HER2-	Ductal	376	515	73.0	428	584	73.3	0.0003
	Lobular	63	515	12.2	107	584	18.3	
	Other/missing	76	515	14.8	49	584	8.4	
HR+HER2+	Ductal	35	46	76.1	56	75	74.7	0.28
	Lobular	2	46	4.3	9	75	12.0	
	Other/missing	9	46	19.6	10	75	13.3	
HR-HER2+	Ductal	20	26	76.9	35	43	81.4	0.62
	Lobular	1	26	3.8	3	43	7.0	
	Other/missing	5	26	19.2	5	43	11.6	
TNBC	Ductal	110	138	79.7	125	151	82.8	0.04
	Lobular	6	138	4.3	14	151	9.3	
	Other/missing	22	138	15.9	12	151	7.9	

Supplementary Tab. 2: Comparison of MSK-IMPACT and plasmaMATCH cohorts

p values from Chi-squared test

Supplementary Tab. 3: Comparison of Clinico-pathological characteristics of patients with and without ctDNA alterations.

		Patients wi	th alterations	Patie a			
Clinical	Characteristic	n =	= 743		n = 57	p value	
		n	%	n	%		
Breast	HR+HER2-	484	65.1	31	54.4		
cancer	HR+HER2+	40	5.4	6	10.5	0.10	
oustype	HR-HER2+	22	3.0	4	7.0		
	TNBC	130	17.5	8	14.0		
	Unknown	67	9.0	8	14.0		
Histology	Ductal	534	71.9	43	75.4		
	Lobular	75	10.1	4	7.0	0.83	
	Other	43	5.8	4	7.0		
	Not known	91	12.2	6	10.5		
Disease	Visceral	586	78.9	41	71.9		
burden	Soft tissue/nodal	131	17.6	12	21.1	0.44	
	Bone	10	1.3	1	1.8	0.41	
	Not known	16	2.2	3	5.3		
Number of	0	67	9.0	10	17.5		
lines prior	1-2	374	50.3	35	61.4	0.02	
	3-4	209	28.1	9	15.8	0.02	
	5+	93	12.5	3	5.3		

p values from Chi-squared test

Supplementary Tab. 4. Primers used for ddPCR assessment of mutation status for plasmaMATCH screening and sequencing validation

Assay use	Gene	Mutatio	Alteration	Singlepl	Assay	Primer F	Sequence	Primer R	Sequence	WT Probe	Mutant Probe
		n		ov/multi	л						
				exiliulu							
				plex							
PlasmaMATCH	PIK3CA	E542K	c.1624G>	Multiplex		PIK3CA.E542K_fw	AAGCAATTTCT	PIK3CA.E542K_rev	GTGCACTTAC	TCTCTGAAATCA	ТСТСТСТААААТСА
trial screening			А				ACACGAGA		CTGTGAC	CTGAGCAG	CTGAGCA
		E545K	c.1633G>	Multiplex		PIK3CA.E545K_fw	AAGCAATTTCT	PIK3CA.E545K_rev	GTGCACTTAC	TCTCTGAAATCA	CTGAAATCACTAAG
			А				ACACGAGA		CTGTGAC	CTGAGCAG	CAGGAG
		H1047R	c.3140A>	Multiplex		PIK3CA.H1047R_fw	AAGAGGCTTT	PIK3CA.H1047R _rev	CCAATCCATTT	TGCACATCATGG	ATGCACGTCATGGT
			G				GGAGTATTTC		TTGTTGTCC	TGGC	GG
		H1047L	c.3140A>	Multiplex		PIK3CA.H1047L_fw	AAGAGGCTTT	PIK3CA.H1047L _rev	CCAATCCATTT	TGCACATCATGG	ATGCACGTCATGGT
			т				GGAGTATTTC		TTGTTGTCC	TGGC	GG
	ESR1	E380Q	c.1138G>	Multiplex	dHsa						
			С		MDXE						
					91450						
					042						
		1526D	o 1607T	Multiplay	dilloo						
		LOJOK	C.16071>	wuitipiex	ansa						
			G		MDXE						
					91450						
					042						
		Y537C	c.1610A>	Multiplex	dHsa						
			G		MDXE						
					91450						
					042						
					J						

Supplementary Information

		D538G	c.1613A>	Multiplex	dHsa						
			G		MDXE						
					91450						
					042						
-	ESR1	S463P	c.1387T>	Multiplex	dHsa						
			С		MDXE						
					65719						
					815						
		Y537N	c.1609T>	Multiplex	dHsa						
			А		MDXE						
					65719						
					815						
		Y537S	c.1610A>	Multiplex	dHsa						
			с		MDXE						
					65719						
					815						
-	AKT1	E17K	c.49G>A	Singlepl	dHsaC						
				ex	P2000						
				-	031						
					and						
					dHsaC						
					P2000						
					022						
-		00405	- 0000 T	Oissiasi	032		01001140404		0770700400	A000700A00A	1000700101110
	HEK2	5310F	C.929C>1	Singlepi		ERBB2.5310F_fW		ERBBZ.5310F_rev	GIIGIGCAGG	AGGGTGCAGGA	AGGGTGCAGAATC
				ex			ACTACCTTTC		GGGC	ICCC	CCA

Supplementary Information

	HER2	S310Y	c.929C>A	Singlepl	ERBB2.S310Y_fw	CTCCTTAGACA	ERBB2.S310Y_rev	GTTGTGCAGG	AGGGTGCAGGA	AGGGTGCAGTATC
				ex		ACTACCTTTC		GGGC	тссс	ССА
	HER2	L755S	c.2264T>	Singlepl	ERBB2.755_fw	GAGAATGTGA	ERBB2.755_rev	TAGCAGGAGA	TGTTTTCCCTCA	TCCCTCGACACTTT
			с	ex		AAATTCCAGTG		GGGTGG	ACACTTTG	GATG
	HER2	V777L	c.2329G>	Singlepl	ERBB2.777_fw	CAGCGTACCC	ERBB2.777_rev	AGAAGGCGGG	TGGCTGGTGTG	ATGGCTGGTTTGG
			т	ex		TTGTCC		AGACAT	GGC	GC
	HER2	P780_Y	c.2339_23	Singlepl	ERBB2.GSP_fw	CAGCGTACCC	ERBB2.GSP_rev	GTCAGGCAGA	TGCTTCGTGCAC	GGGCTCCCCGGGC
		781insG	40ins	ex		TTGTCCC		TGCCCAGA	ACGGTGC	тссс
		SP								
	HER2	A775_G	c.2325_23	Singlepl	ERBB2.YVMA_fw	CAGCGTACCC	ERBB2.YVMA_rev	GTCAGGCAGA	TGCTTCGTGCAC	ATACGTGATGGCTT
		776insY	26ins	ex		TTGTCCC		TGCCCAGA	ACGGTGC	ACGTGATGGCTG
		VMA								
Mutation	РІКЗСА	E545K	c.1633G>	Singlepl	PIK3CA.E545K_fw	AAGCAATTTCT	PIK3CA.E545K_rev	GTGCACTTAC	ТСТСТБАААТСА	CTGAAATCACTAAG
Validation			А	ex		ACACGAGA		CTGTGAC	CTGAGCAG	CAGGAG
	РІКЗСА	E542Q	c.1624G>	Singlepl	PMV_01_F	AGCTCAAAGC	PMV_01_R	CTGTGACTCC	CCTCTCTCTGAA	ССТСТСТСТААААТ
			С	ex		AATTTCTACAC		ATAGAAAATCT	АТСА	СА
						GAGAT		ттстсст		
	PIK3CA	E726K	c.2176G>	Singlepl	PMV_03_F	CATTAACTTAA	PMV_03_R	ААСАСАААСТА	AGAAGAAGGAT	AGAAGAAGGATAAA
			А	ex		CTGACATTCTC		GAGTCACACA	GAAACAC	ACAC
						AAACAGG		CCTTT		
	РІКЗСА	E545Q	c.1633G>	Singlepl	PMV_02_F	TCAAAGCAATT	PMV_02_R	CACTTACCTGT	TCTCCTGCTCAG	CTCCTGCTGAGTGA
			С	ex		TCTACACGAG		GACTCCATAG	TGATT	тт
						АТССТ		AAAATCT		
	РІКЗСА	H1047R	c.3140A>	Singlepl	PIK3CA.H1047R_fw	AAGAGGCTTT	PIK3CA.H1047R _rev	CCAATCCATTT	TGCACATCATGG	ATGCACGTCATGGT
			G	ex		GGAGTATTTC		TTGTTGTCC	TGGC	GG

HER2	G727A	c.2180G>	Singlepl	PMV_07_F	AGACGGAGCT	PMV_07_R	CCTTGTAGACT	AAGGTGCTTGG	AAGGTGCTTGCATC
		С	ex		GAGGAAGGT		GTGCCAAAAG	ATCTG	TG
							с		
HER2	E717D	c.2151G>	Singlepl	PMV_06_F	GCGCAGATGC	PMV_06_R	CAGATCCAAG	TCAGCTCCGTCT	AGCTCCGTGTCTTT
		с	ex		GGATCCT		CACCTTCACCT	СТТТ	
							т		
HER2	Q711H	c.2133G>	Singlepl	PMV_05_F	GGAGCGATGC	PMV_05_R	CCTCAGCTCC	ATCCGCATCTGC	CCGCATGTGCGCC
		с	ex		CCAACCA		GTCTCTTTCAG	GCC	
HER2	L786V	c.2356C>	Singlepl	PMV_09_F	TGTGGGCTCC	PMV_09_R	GCTGCACCGT	CCGCCTTCTGG	CGCCTTGTGGGCA
		G	ex		CCATATGTCT		GGATGTCA	GCAT	т
HER2	1628M	c.1884C>	Singlepl	PMV_04_F	GGAGGGCGCA	PMV_04_R	GCAGAAAAGA	TTGCCCCATCAA	TTGCCCCATGAACT
		G	ex		TGCCA		CCGTTGGACT	CTG	G
							CA		
HER2	D1105N	c.3313G>	Singlepl	PMV_14_F	GGGCTGCAAA	PMV_14_R	TCCTCACTGTA	CCCACACATGAC	CCCACACATAACCC
		А	ex		GCCTC		CCGCTGTAGA	CCCAG	CAG
HER2	S1002N	c.3005G>	Singlepl	PMV_12_F	GGGCCCAGCC	PMV_12_R	CATCGTCCTC	TTGGACAGCAC	CTTGGACAACACCT
		A	ex		AGTCC		CAGCAGTGA	СТТС	тс
HER2	L800R	c.2399T>	Singlepl	PMV_10_F	GGCATCTGCC	PMV_10_R	GTTTTCCCGG	ACACAGCTTATG	ACAGCGTATGCCC
		G	ex		TGACATCCA		ACATGGTCTAA	CCC	
							GAG		
HER2	L800P	c.2399T>	Singlepl	PMV_11_F	GGCATCTGCC	PMV_11_R	GTTTTCCCGG	TGACACAGCTTA	TGACACAGCCTATG
		с	ex		TGACATCCA		ACATGGTCTAA	TGCC	сс
							GAG		

HER2	Q1206K	c.3616C>	Singlepl	PMV_16_F	GGAGAACCCC	PMV_16_R	GGCTGAAGGC	TGCCCCTCAGC	TGCCCCTAAGCCC
		А	ex		GAGTACTTGA		AGGAGGAG	CCCA	СА
					C				
					C				
HER2	R1153Q	c.3458G>	Singlepl	PMV_15_F	CAGAATATGT	PMV_15_R	GGGCAGCAGG	CCTTCGCCCCG	CTTCGCCCCAAGA
		А	ex		GAACCAGCCA		CAGAGG	AGAGG	GG
					GATGT				
HER2	E1079K	c.3235G>	Singlepl	PMV_13_F	AGGCCCCCAG	PMV_13_R	TTCCCAGGTC	CTGGCACCCTC	TGGCACCCTCCAAA
		А	ex		GTCTCC		АССАТСАААТА	CGAAGG	GG
							CATC		
HER2	V777M	c.2329G>	Singlepl	PMV_08_F	GTCCCCAGGA	PMV_08_R	CAGAAGGCGG	ATGGCTGGTGT	ATGGCTGGTATGG
		A	ex		AGCATACGT		GAGACATATG	GGGCT	GCT
							G		
UED2		c 2205G>	Singlop	2205C C E		2205C C P	GICCITCCIGI	CTTACGTCTAAG	TTACGTGTAAGATT
	Drosit	0.230302	Singlepi	23030_0_1		23030_0_1			
		С	ex		AAGCCAACAA		CCTCCTAGCA	ATTIC	
					А				
HER2	D769Y	c.2305G>	Singlepl	2305G_T_F	GGAAAACACA	2305G_T_R	GTCCTTCCTGT	CAAAGAAATCTT	CAAAGAAATCTTAT
		т	ex		TCCCCCAAAG		CCTCCTAGCA	AGACGTAAGC	ACGTAAGC
					с				
HER2	L755S	c.2264T>	Singlepl	ERBB2.755_fw	GAGAATGTGA	ERBB2.755_rev	TAGCAGGAGA	TGTTTTCCCTCA	TCCCTCGACACTTT
		с	ex		AAATTCCAGTG		GGGTGG	ACACTTTG	GATG
HER2	1767M	c.2301C>	Singlepl	ERBB2.767_fw	GAGAATGTGA	ERBB2.767_rev	TAGCAGGAGA	AAGAAATCTTAG	AAGAAATGTTAGAC
		G	ex		AAATTCCAGTG		GGGTGG	ACGTAAGCC	GTAAGCC
HER2	S310F	c.929C>T	Singlepl	ERBB2.S310F_fw	CTCCTTAGACA	ERBB2.S310F_rev	GTTGTGCAGG	AGGGTGCAGGA	AGGGTGCAGAATC
			ex		ACTACCTTTC		GGGC	тссс	CCA
									1

Supplementary References

- 1. Turner, N.C., *et al.* Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. *The Lancet Oncology*.
- Lanman, R.B., *et al.* Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. *PLoS One* **10**, e0140712 (2015).
- 3. Comprehensive molecular portraits of human breast tumours. *Nature* **490**, 61-70 (2012).
- 4. Gulhan, D.C., Lee, J.J.-K., Melloni, G.E.M., Cortés-Ciriano, I. & Park, P.J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. *Nature Genetics* **51**, 912-919 (2019).
- 5. Zhou, X., *et al.* Exploring genomic alteration in pediatric cancer using ProteinPaint. *Nature Genetics* **48**, 4-6 (2016).