
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors built a meta-population model with a detailed age-structure to simulate the 

transmission of COVID-19 in Santiago de Chile. They investigated the effect of social inequalities 

on the non-pharmaceutical interventions against COVID-19. The method is well established, and 

the authors have applied similar models to many other infectious diseases (e.g., A/H1N1, Ebola, 

COVID-19). This manuscript needs a substantial improvement if the authors are aiming to publish 

it in Nature Communications. Otherwise, they may consider other more health policy focused 

journals. 

 

Major comments: 

(1) Readers will ask why Santiago de Chile is a very important location to study, and what new 

insights could be obtained by analyzing data of Santiago de Chile. This is too small scale a study to 

be globally applicable or even across the South American continent. There also lacks a comparison 

between Santiago de Chile and other places in Latin America. 

 

(2) To simulate epidemic dynamics, the authors considered a SLIR compartment model for 

individuals within each subpopulation. They assumed that latent individuals will be infectious only 

after the incubation period. This assumption is acceptable for influenza or SARS. However, for 

COVID-19, it is known that a large proportion of infection (>40%) were due to pre-symptomatic 

transmissions. Therefore, the use of the SLIR model is expected to bias the estimated parameters. 

I strongly suggest the authors to use better disease models to simulate COVID-19, instead of 

using oversimplified compartment models. 

 

(3) I’m not sure if it is suitable to use the regular commuting network with a fixed time scale of 

commuting (1/3 day) to model the human movement in South American countries such as Chile. 

In Latin America, a lot of people work in informal jobs without contracts. They may not commute 

on a regular basis. It will be helpful if the authors could use their mobile phone data to first build a 

suitable mobility model before building the epidemic metapopulation model. 

 

(4) Regarding model fitting, the authors mentioned the use of the Approximate Bayesian 

Computation (ABC) approach. However, in the Methods section and supplementary materials, the 

authors did not provide any information to explain how to set up the ABC fitting method. As such, 

it is impossible to replicate their results, and readers will concern whether their method is correct. 

 

(5) The use of complex metapopulation models may overfit the time series of death data. If a 

substantial proportion of individuals in Santiago de Chile has been infected, then the local infection 

may tend to follow simple well-mixing dynamics. The authors can fit the data using simpler 

models. It will be valuable to compare the performance of your complex model to simplified 

models. Model selection tools (e.g., out-of-sample cross-validation) will be needed. Then readers 

can better understand the contribution of your complex model. 

 

(6) Prior settings often affect the posterior estimates. However, the authors did not clearly 

summarize their prior assumptions. 

 

(7) In section 4.1, the authors stated “we characterize the three phases of the outbreak in terms 

of commuting and contacts reduction”. Could you specify this point more clearly? 

 

(8) In the last paragraph of page 8, “single subpopulations in a metapopulation network.” What do 

you mean? 

 

(9) Above section 4.3, how you design the “chain binomial processes”? 

 



(10) Above section 4.3, “We simulate deaths considering the estimates of the Infection Fatality 

Rate from Ref. [19] and a delay after the transition to the Removed compartment”. What is the 

delay distribution used? Do you have a comprehensive sensitivity analysis on the delay 

distribution? 

 

(11) Readers may not be familiar with the Human Development Index (HDI). Could you give some 

discussion on why HDI but not other simpler socioeconomic index should be used to correlate with 

case counts? More sensitivity analysis using other socioeconomic indices would be needed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript titled "Estimating the effect of social inequalities on the mitigation of COVID-19 

across communities in Santiago de Chile" is an insightful study on the impact of lockdown on the 

spread of COVID-19. Using relatively abundant mobility data, census data, and well-defined 

metrics, the authors quantified the reduction of commuting between comunas resulted by the 

lockdowns, the relations between commuting drops and socialdemographic factors, eventually 

estimated the <i>R</i><sub>t</sub> and simulated epidemics under different scenarios. 

 

I recommend for publication, though there're two issues I would love to have the authors improve 

or discuss: 

 

1. I had a hard time fully understanding the model structure and how the author derived the Eqn. 

2 in the main text. 

(1) The definitions for λ<sub>ji</sub> is inconsistent with those for other parameters, e.g., 

σ<sub>ji</sub>. The authors used "comunas j" in the main text, while "population j" in the 

supplementary information. I believe λ<sub>ji</sub> indicates the force of infection that 

individuals live in comunas j was infected in comunas i. 

(2) Eqn. 3-6 in supplementary information: I think the authors used "(t)" to denote the time-

dependent variables, and others without "(t)" as values/parameters; If so, Eqn. 6 is confusing: 

<i>X</i><sub>j</sub>, as a certain compartment in the stochastic SLIR model and the sum of 

two variables <i>X</i><sub>jj</sub> and <i>X</i><sub>ji</sub>, should be a time-

dependent variable too. I understood, after a long time, that the authors first simulated the SLIR 

model, then regarded the S, L, I, R as values to derive the following equations. However, the 

notations are confusing and distracting without detailed intepretations, in both the main text and 

the supplementary information. 

(3) Page 5 in supplementary information: by the definition of σ<sub>ji</sub>, isn't 

∑<sub>j</sub>σ<sub>ji</sub>=1, since it also include σ<sub>jj</sub>? 

(4) What's the reason for using the equilibrium value of <i>X</i><sub>jj</sub> and 

<i>X</i><sub>ji</sub> to derive the expression of λ<sub>j</sub> and 

<i>N*</i><sub>j</sub>? 

(5) If I don't get it wrong, the only parameters that the authors estimated using ABC and the 

metapopulation SLIR model is the transmission rate β, right? 

 

2. For figure 2: it's a little uncommon to fit the model to the death data, instead of the reported 

cases. Intuitively, the number of infections is closely related to the contacts, while the number of 

deaths can be affected by factors like medical care level, etc. I wonder, can the authors compare 

the simulated trend of infections to the weekly reported confirmations? If not, can the authors 

discuss it? 

 

 

 

Reviewer #3: 

Remarks to the Author: 



Thank you for the opportunity to read and review this interesting article. My comments include: 

 

1. This article mentioned “real-time mobility” twice in the introduction but few information was 

given in the following sections. How “real-time mobility” was implemented using mobile-phone 

data? Is it through a real-time data stream APIs provided by “Telefonica Movistar”? If yes, what 

was the performance of conducting modelling from this real-time streaming data? 

 

2. Figure 1B is quite interesting. I observed no change in commuting rates at the inner region 

(e.g., commute from Padre Hurtado to Padre Hurtado). Is it because no changes or current 

mobile-phone dataset cannot capture inner region changes? Also, what is the method or 

parameters to extract commuting travels from general travels? 

 

3. Regarding the third limitation in the discussion section, the Point of Interest (POI) dataset could 

be very helpful to tackle this challenge. 

 

4. The eXtended Detail Records (XDR) dataset seems like a classic mobile phone sightings dataset. 

If not, please verify. A major issue about this type of mobile-phone data is that the spatial 

resolution of data analysis is largely depends on the spatial distribution of antennas. Could authors 

provide general information such as what is the distribution of antennas? How often the a devices 

is recorded by a antennas in this dataset (e.g., 1 seconds? or 1 hour? ) 

 

5. Although the dataset is anonymous and no gender/age information was available, anonymous 

personal-level trajectories were still exposed to authors, which is forbidden in some countries by 

laws. If possible, the authors can provide additional ethical information e.g., what types of 

agreement was in place with “Telefonica Movistar”, what was done to make sure individuals stay 

anonymous, what additional measures were taken to make sure each cell phone users are not 

identifiable. 

 

6. In method, the “contact” was estimated by the number of users co-located in the same 

antenna, which is reasonable in many locations such as shopping mall, bus station and parks. 

However, this method is also problematic in residential areas. For example, 1K people stay at 

home all days during the lockdown. Also large number of users co-located in this antenna, they 

should have few social contact. 

 

7. In the SLIR modelling, the choose of parameters is critical to simulation results. Although the 

parameters (e.g. 4 days incubation period, and 2.5 days infectious period) came from recent 

research, there are still debates. Authors should mentioned different chose of SLIR parameters 

many largely impact the simulation results in this research. 

 

8. According to reference No.35, it seems that the Telefonica Movistar data can well represent the 

socio-demographic in Santiago. Does it introduce other bias? For example, is the spatial 

distributions of users proportional to the distribution of population? 

 

 



Reviewer #1 
 
We would like to thank the reviewer for the time spent reading and analyzing our paper. The 
constructive criticisms and suggestions raised have been important to improve the quality 
and clarity of the manuscript.  
 

(1) Readers will ask why Santiago de Chile is a very important location to study, and what 
new insights could be obtained by analyzing data of Santiago de Chile. This is too small 
scale a study to be globally applicable or even across the South American continent. There 
also lacks a comparison between Santiago de Chile and other places in Latin America. 
 

We thank the reviewer for this comment.  
 
Even though it received less attention from the media with respect to other cities around the 
world, during the first wave of COVID-19, Santiago became one of the most affected urban 
areas globally. In fact, as of August 1, 2020, just in the Metropolitan Area of Santiago were 
reported more cases (256’628) than those reported in the whole Italy (247’832). Thus, even 
considering this point alone, we believe it is inherently important to characterize the spread 
of SARS-CoV-2 in one of the most affected cities of the world. 
 
Santiago is characterized by marked social inequalities. Indeed, while being regarded as a 
high-income country, Chile is one of the most unequal. Unfortunately, this makes Santiago a 
natural case study to investigate the link between socio-economic disparities and the burden 
of the pandemic, which is one of the goals of the paper. 
 
We would like to point out that research on similar “local” scales of study has been 
conducted and reported in the literature. Examples are the cases of Boston, Wanzhou, New 
York City and London. Indeed, while COVID-19 is a global issue, the measures put in place 
to mitigate or suppress its spread have been quite heterogeneous across countries as well 
as subregions within a country. Hence, we believe it is important to model and understand 
the effect of such non-pharmaceutical interventions in specific contexts as we do here. 
 
We agree with the reviewer that these points need to be crystal clear. Hence, we added a 
more detailed discussion in the introduction.  
  
 
(2) To simulate epidemic dynamics, the authors considered a SLIR compartment model for 
individuals within each subpopulation. They assumed that latent individuals will be infectious 
only after the incubation period. This assumption is acceptable for influenza or SARS. 
However, for COVID-19, it is known that a large proportion of infection (>40%) were due to 
pre-symptomatic transmissions. Therefore, the use of the SLIR model is expected to bias 
the estimated parameters. I strongly suggest the authors to use better disease models to 
simulate COVID-19, instead of using oversimplified compartment models. 
 

The pre-symptomatic transmission is effectively accounted for by the choice of parameters 
regulating the generation time. In other words, the infection dynamics considered deals with 
the pre-symptomatic transmission since the infectious compartment includes both 
symptomatic and pre-symptomatic carriers (which we assume for simplicity to be equally 
infectious). This approach is found in a wide range of published work. Two examples are the 
following highly influential articles: 
 



Zhou, Y., Xu, R., Hu, D., Yue, Y., Li, Q. and Xia, J., 2020. Effects of human mobility 
restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile 
phone data. The Lancet Digital Health, 2(8), pp.e417-e424. 
 
Tian, H., Liu, Y., Li, Y., Wu, C.H., Chen, B., Kraemer, M.U., Li, B., Cai, J., Xu, B., Yang, Q. 
and Wang, B., 2020. An investigation of transmission control measures during the first 50 
days of the COVID-19 epidemic in China. Science, 368(6491), pp.638-642. 
 
Including explicitly a pre-symptomatic compartment would be extremely important in 
approaches aimed at modeling contact tracing and isolation strategies, issues we are not 
addressing in the manuscript. Nevertheless, we also acknowledged this point as one of the 
limitations, the model we used is simple in comparison to others found in the literature.  
 
Hence, following the reviewer’s suggestion, we extended our approach considering also a 
more complex disease dynamic. In particular, beside a SLIR model we now study a more 
refined compartmentalization.  
 
Susceptible (S) individuals after interacting with infectious transit to the Latent compartment 
(L). After the latent period, L individuals enter the prodromal phase (P). P individuals then 
evolve either in the asymptomatic (A) or the symptomatic stage (I) (the length of time 
including L and P stages is the incubation period).  Both I and A individuals after the 
infectious period enter the Recovered compartment (R). We compute deaths considering 
only on the Recovered resulting from the I compartment (i.e., symptomatic). The infectious 
compartments are P, A, I. We assume that P and I have lower infectiousness with respect to 
symptomatic I.  

 
Similar approaches have been employed in other modeling studies. These are two 
examples: 
 
Di Domenico, L., Pullano, G., Sabbatini, C.E. et al. Impact of lockdown on COVID-19 
epidemic in Île-de-France and possible exit strategies. BMC Med 18, 240 (2020) 
 
Hao, X., Cheng, S., Wu, D., Wu, T., Lin, X. and Wang, C., 2020. Reconstruction of the full 
transmission dynamics of COVID-19 in Wuhan. Nature, 584(7821), pp.420-424. 
 
We set some of the key epidemiological parameters from the literature (which we cite in the 
main text and in the SI): 
 



Latent period (time spent in E): 3.7 days  
Prodromal stage (time spent in P): 1.5 days 
Fraction of asymptomatic carriers: r = 0.2, 0.4    
Ratio of transmission rate of I vs P, A infectious: α = 0.55 
Infectious period (time spent in A, I): 2.5 days   
 

Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., 
Bonsall, D. and Fraser, C., 2020. Quantifying SARS-CoV-2 transmission suggests epidemic 
control with digital contact tracing. Science, 368(6491) 
 
Lavezzo, E., Franchin, E., Ciavarella, C., Cuomo-Dannenburg, G., Barzon, L., Del Vecchio, 
C., Rossi, L., Manganelli, R., Loregian, A., Navarin, N. and Abate, D., 2020. Suppression of 
a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature, 584(7821), pp.425-429. 
 
Mizumoto, K., Kagaya, K., Zarebski, A. and Chowell, G., 2020. Estimating the asymptomatic 
proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess 
cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 25(10), p.2000180. 
 
Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W. and Shaman, J., 2020. Substantial 
undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-
2). Science, 368(6490), pp.489-493.  
 
Backer, J.A., Klinkenberg, D. and Wallinga, J., 2020. Incubation period of 2019 novel 
coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 
2020. Eurosurveillance, 25(5), p.2000062.  
 
Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H. and Lipsitch, M., 2020. Projecting the 
transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 
368(6493), pp.860-868. 
 
The main findings obtained with the SLIR model hold also in the case of the more complex 
compartmentalization setup just described. The explicit addition of pre and asymptomatic 
transmission does not improve the fit with the data. While we present the more parsimonious 
model in the main text In the SI we now include the results of the simulations considering the 
more complex compartmentalization of the disease stages. We are thankful to the reviewer 
for proposing this important check/modification which undoubtedly adds value to the paper.  
 
(3) I’m not sure if it is suitable to use the regular commuting network with a fixed time scale 
of commuting (1/3 day) to model the human movement in South American countries such as 
Chile. In Latin America, a lot of people work in informal jobs without contracts. They may not 
commute on a regular basis. It will be helpful if the authors could use their mobile phone 
data to first build a suitable mobility model before building the epidemic metapopulation 
model.  
 
It is important to stress how the mobility data we use takes into account *all* movements by 
the users in the area of Santiago. Commuting (intended as work or school related mobility) 
will definitely be there but we also capture other types of mobility.  
 
Our modeling approach is based on the assumption that movements relevant for the 
epidemic spread take place over a time-scale that is shorter than the time-scale marking the 
progression of the simulations, the disease and the temporal resolution of the epidemic 
data.  



In the Supplementary Information we have added a plot that confirms this: the average 
duration of trips outside the home comuna is 4.5 hours. Furthermore, 85% of such trips take 
place within 8 hours. Although users may travel outside of their comuna for more than 8 
hours, the probability of a trip to last more than 1 day is less than 3%. 
 
Hence, the effects of human mobility on the epidemic can be captured through an effective 
force of infection (see Keeling & Rohani. Estimating  spatial  coupling in epidemiological 
systems: a mechanistic approach. Ecology Letters 2002). 
The expression of the force of infection assumes that the dynamics of the coupling between 
comunas (i.e., movements) is faster, and it can be considered at equilibrium with respect to 
the dynamics that describe the spread of the disease (i.e., transition rates).  
 
Mobility data that have been used to feed similar epidemic models is indeed often based on 
commuting which takes place within ⅓ day. However, this can vary depending on the type of 
data available. Other mobility types taking place within the same time-scale (or even at 
faster time-scales) can be factored in without any change to the formulation of the model.  
 
We used the word “commuting” too liberally in the initial submission. In the revised version of 
the manuscript, we make this important point clear and speak about mobility between 
comunas rather than “commuting” which better characterize our data. Furthermore, we now 
explain in more details the assumptions, approximations and the limits of validity of the 
model in the Methods. 
 
(4) Regarding model fitting, the authors mentioned the use of the Approximate Bayesian 
Computation (ABC) approach. However, in the Methods section and supplementary 
materials, the authors did not provide any information to explain how to set up the ABC 
fitting method. As such, it is impossible to replicate their results, and readers will concern 
whether their method is correct. 
 
We thank the reviewer for pointing this out.  
 
Regrettably we realized that in the formatting process we missed to paste this section. We 
use the ABC rejection algorithm to find the posterior distribution of the two free parameters: 
the basic reproductive number and the delay in deaths after the transition to the Removed 
compartment. We set on both parameters a flat uniform prior. More in detail, we explore 
values of R0 between 2 and 4, and values of Delta between 14 and 21 days. As a distance 
metric we use the median absolute percentage error with a tolerance of 20%. We run 
140’000 iterations which correspond to about 200 stochastic realizations for each possible 
parameter set. 
 
We amended the mistake. In the Materials and Methods section of the revised version, we 
included the details about ABC Calibration. 
 
(5) The use of complex metapopulation models may overfit the time series of death data. If a 
substantial proportion of individuals in Santiago de Chile has been infected, then the local 
infection may tend to follow simple well-mixing dynamics. The authors can fit the data using 
simpler models. It will be valuable to compare the performance of your complex model to 
simplified models. Model selection tools (e.g., out-of-sample cross-validation) will be 
needed. Then readers can better understand the contribution of your complex model. 
 

We respectfully disagree with the idea that the model is overfitting the time series of death 
data. In fact, the model has only two free parameters: the basic reproductive number and the 
delay in deaths after the transition to the Removed compartment. Except for the 



epidemiological parameters borrowed from the literature, all other elements such as coupling 
between comunas and contact reductions within them are observed from data. Thus, the 
model simulates the spreading of the disease in the system given the set of parameters, 
empirical mobility and contacts rates. 
 
Nevertheless, following the reviewer’s suggestion, we also run a simplified model. In 
particular, we model each comuna as a single population disregarding commuting and we 
use the data-driven contacts reduction parameters. We include the results in the SI. We 
obtain a much worse fit of the data, indicating that the mobility network is actually important 
in modeling the spread of COVID-19 in the area considered. These results, we believe, 
clearly show the importance of accounting for mobility patterns to capture the unfolding of 
the outbreak. 
 
Following the reviewer's comment further, we thought to implement an even simpler model 
considering the whole area, hence the 37 comunas, as a single population. This approach 
has been used quite often in the literature to model the spread of SARS-CoV-2 in cities, 
regions, and countries. However, the model would be agnostic about the differences in 
disease burden between comunas. Understanding such heterogeneities/differences, which 
are also clear in the epidemiological data, is a key aspect of our study hence we opted for 
skipping this approach.  
 
Finally, we would like to stress that the goal of the paper is not producing forecasts or 
projections about the spreading of SARS-CoV-2 in the area. Our aim is focused on 
developing an understanding of the outbreak capturing, retrospectively, the first wave and 
identifying the effects of non-pharmaceutical interventions and social inequalities. Hence, we 
believe that out-of-sample cross validation approaches, though key when comparing/testing 
predictive frameworks, are beyond the scope of our research.  
 
(6) Prior settings often affect the posterior estimates. However, the authors did not clearly 
summarize their prior assumptions. 
 
We completely agree with the reviewer, as stated in point (4) we added this information. We 
set on both parameters a flat uniform prior. More in detail, we explore values of R0 between 
2 and 4, and values of Delta between 14 and 21 days. 
 

(7) In section 4.1, the authors stated “we characterize the three phases of the outbreak in 
terms of commuting and contacts reduction”. Could you specify this point more clearly? 
 
By considering the governmental response and observing variations in the overall mobility 
we identified three phases of non-pharmaceutical interventions. Before 16/03 we have the, 
business as usual, baseline. Between 16/03 and 15/05 the first set of NPIs interventions was 
put in place. After 15/05 the metropolitan area was put in full lockdown. These three phases 
translate in the model in three different regimes of mobility among comunas, and contacts 
reduction within them. In other words, we have three mobility matrices and contact reduction 
rates for each phase. The details are described in section 2, material and methods section 
and in the SI.  
 
(8) In the last paragraph of page 8, “single subpopulations in a metapopulation network.” 
What do you mean? 
 
In that section we describe the metapopulation network which is formed by subpopulations 
(i.e., comunas) connected by means of mobility. The word “single” is probably confusing but 
was there to highlight how each comuna is considered a subpopulation without any other 



stratification except for the age-structure. In the revised version of the manuscript, we 
clarified the sentence  
 
(9) Above section 4.3, how you design the “chain binomial processes”? 
 
We adopted the classic stochastic approach used in compartmental models. Given the set of 
parameters which are either static (i.e., recovery rate) or dynamic (i.e., force of infection) the 
transitions between compartments are modelled with chains of binomial extractions 
modulated by the number of individuals in each compartment and the transition rates. We 
added further clarification to this statement together with some general references. 
 
(10) Above section 4.3, “We simulate deaths considering the estimates of the Infection 
Fatality Rate from Ref. [19] and a delay after the transition to the Removed compartment”. 
What is the delay distribution used? Do you have a comprehensive sensitivity analysis on 
the delay distribution? 
 
Unfortunately, this point was cut from the manuscript due an editing mistake. We used a flat 
uniform prior between 14 and 21 days for the delay in deaths and we fit it through ABC 
calibration. 
 
We added this information. 
 
(11) Readers may not be familiar with the Human Development Index (HDI). Could you give 
some discussion on why HDI but not other simpler socioeconomic index should be used to 
correlate with case counts? More sensitivity analysis using other socioeconomic indices 
would be needed. 
 

In the revised version of the manuscript, we extended the paragraph “Measuring 
Socioeconomic Differences” in Materials and Methods section adding further details on the 
HDI and on its usage. Furthermore, the Supplementary Information includes sensitivity 
analysis regarding the correlation of mobility changes and other socio-demographic 
indicators, such as the Life Expectancy Index, the Education Index, and the Income Index. 
Our findings are consistent also using these different indices. 
 

Reviewer #2 
 
We would like to thank the reviewer for their detailed reading of the manuscript. The 
comments and suggestions have helped improve the manuscript. 
 
The manuscript titled "Estimating the effect of social inequalities on the mitigation of COVID-
19 across communities in Santiago de Chile'' is an insightful study on the impact of lockdown 
on the spread of COVID-19. Using relatively abundant mobility data, census data, and well-
defined metrics, the authors quantified the reduction of commuting between comunas 
resulted by the lockdowns, the relations between commuting drops and socialdemographic 
factors, eventually estimated the Rt and simulated epidemics under different scenarios. 
 
I recommend for publication, though there're two issues I would love to have the authors 
improve or discuss: 
 
1. I had a hard time fully understanding the model structure and how the author derived the 
Eqn. 2 in the main text.  
. 



(1) The definitions for λji is inconsistent with those for other parameters, e.g., σji. The 
authors used "comunas j" in the main text, while "population j" in the supplementary 
information. I believe λji indicates the force of infection that individuals live in comunas j was 
infected in comunas i.  
 
We thank the reviewer again for the time spent understanding our work. We apologize for 
the source of confusion.  
 
The interpretation of the force of infection is correct. We (implicitly) used the terms 
“population” and “comuna” as synonyms. In the revised version we used only the term 
“comuna” to avoid confusion 
 
(2) Eqn. 3-6 in supplementary information: I think the authors used "(t)" to denote the time-
dependent variables, and others without "(t)" as values/parameters; If so, Eqn. 6 is 
confusing: Xj, as a certain compartment in the stochastic SLIR model and the sum of two 
variables Xjj and Xji, should be a time-dependent variable too. I understood, after a long 
time, that the authors first simulated the SLIR model, then regarded the S, L, I, R as values 
to derive the following equations. However, the notations are confusing and distracting 
without detailed intepretations, in both the main text and the supplementary information. 
 
We thank the reviewer for pointing out the confusion on this point. 
 
The time-scale marking the evolution of the simulations, the progression of the disease, and 
the temporal resolution of the epidemic data is a day. However, the mobility patterns we 
observe from data take place at a faster pace. For example, commuting for work is typically 
considered as ⅓ of a day. Movements linked to grocery runs and other activities are even 
faster. In the Supplementary Information we have added a plot to support this intuition. In 
particular, we show the duration of trips outside home comunas. Interestingly, the average is 
4.5 hours and 85% of such trips take place within 8 hours. Although users may travel 
outside of their comuna for more than 8 hours, the probability of a trip to last more than 
one day is less than 3%. 
 
In our model we adopt a time-scale separation technique and approximation to integrate the 
faster dynamics (i.e., mobility) estimating their effective contributions to the slower 
processes (i.e., progression of the disease). 
  
The “(t)” causing confusion describes times within a day. Quantities such as Xj are obtained 
integrating the effects of mobility (i.e., faster dynamics) over such times and thus are 
considered at equilibrium within a day. In doing so, we estimate the effective contributions 
to the force of infection from visitors and locals without having to simulate their actual 
movements within the day.  
 
This approximation was originally introduced by Keeling and Rohani (Keeling M J, Rohani P, 
2002, Estimating spatial coupling in epidemiological systems: a mechanistic approach. 
Ecology Letters 5: 20−29.), and allows to consider each subpopulation j as having an 
effective number of individuals Xji in contact with the individuals of the connected 
subpopulation i.  
 
The mobility time scale is separated from the other time scales (i.e., disease dynamics). The 
approximation is exact only in the case of infinitely fast dynamics. However, it holds as long 
as the faster time-scale is much smaller than the typical transition rates of the disease 
dynamics. For COVID-19, as well as for other diseases, these are on the order of days.  
 



We realized this point was far from clear in the first version of the manuscript. Hence, in the 
Materials and Methods we now provide a more detailed discussion about the force of 
infection and the ideas behind the derivation such as the time-scale separation. 
Furthermore, in the SI, we added a more streamlined and clear derivation of all the 
quantities.  
 

(3) Page 5 in supplementary information: by the definition of σji, isn't ∑jσji=1, since it also 
include σjj? 
 
We thank the reviewer for pointing out the confusion on this point. Actually, ∑jσji is in 
general different from 1.  
 
Indeed, intra-comuna mobility is not considered in the calculation of the force of infection. 
Each node of the metapopulation network is a comuna, therefore we are interested only in 
movements between different comunas, while we consider within a single comuna a mixing 
dynamics modulated by the contact matrices.  
 
More precisely we defined σji as “the fraction of devices living in comuna j that visited i on a 
day t”. Hence, in general, this fraction is smaller than the total population of each comuna 
 
We clarified the equation and fixed the notation explicitly excluding j from the summation in 
the new version of the SI. 
 
(4) What's the reason for using the equilibrium value of Xjj and Xji to derive the expression of 
λj and N*j? 
 

As mentioned in more details above, the basic idea behind the computation is to derive an 
expression for the force of infection in each subpopulation accounting for the effective 
contribution of infectious individuals from other comunas. To this end, we assume that 
mobility takes place at a faster time-scale with respect to the progression of simulations and 
disease (day). Hence, we consider the equilibrium values obtaining an effective expression 
which allows us to avoid considering “fractional” time-steps (to account for transients) within 
each day. We have added an explanation about this point on the Material and Methods 
sections and in section 3 of the SI 
 
(5) If I don't get it wrong, the only parameters that the authors estimated using ABC and the 
metapopulation SLIR model is the transmission rate β, right? 
 
We fit both the transmission rate β and the delay in reported deaths Delta. In the Materials 
and Methods section, we added details on the fitting procedure to specify all the details. 
 
2. For figure 2: it's a little uncommon to fit the model to the death data, instead of the 
reported cases. Intuitively, the number of infections is closely related to the contacts, while 
the number of deaths can be affected by factors like medical care level, etc. I wonder, can 
the authors compare the simulated trend of infections to the weekly reported confirmations? 
If not, can the authors discuss it? 
 

While some articles consider cases rather than deaths, the most recent trends in the 
literature lean more towards the use of confirmed deaths and/or hospitalizations. In fact, 
while there are biases in any indicator, the number of confirmed cases is arguably one of the 
most affected by varying reporting rates. Testing capabilities and testing strategies that 



target only severe symptomatic individuals induce high levels of underreporting which are 
also time dependent.  
Though not perfect, deaths/hospitalizations are less prone to underreporting than infections. 
We added a sentence to make this clear in the SI.  
 
In Fig. 2C we show that, while the simulated number of infections well correlates with the 
official number reported by the Ministry of Health, we also note that the simulated number is 
much higher than the official one. This is not uncommon in the context of COVID-19. Indeed, 
seroprevalence studies conducted, for example, in the United States, Spain, Italy, Brazil, 
and Iran showed that the actual number of COVID-19 infections is several times (factors 
vary from 4 to 20) those reported by the official surveillance. We discuss this aspect also in 
Section 2.2. 
 

Reviewer #3  
 
We would like to thank the reviewer for the careful read and analysis of our work. The 
comments and suggestions have been very useful to clarify and improve the manuscript.  
 

Thank you for the opportunity to read and review this interesting article. My comments 
include:  
 
1. This article mentioned “real-time mobility” twice in the introduction but few information was 
given in the following sections. How “real-time mobility” was implemented using mobile-
phone data? Is it through a real-time data stream APIs provided by “Telefonica Movistar”? If 
yes, what was the performance of conducting modelling from this real-time streaming data?  
 
We thank the reviewer for noticing this. We have deleted references to “real-time mobility” in 
the manuscript since it’s not exactly real-time. In any case, so as to satisfy curiosity: we have 
mobile phone data automatically copied to a shared repository, which is then loaded to a 
cloud instance of a column-store database with secret keys managed by Telefonica. The 
stream deposits data every day, with a two-day lag. For example, on Tuesday, December 15 
there is a new batch of data up until, and including, Sunday, December 13; on Wednesday, 
December 16, there is a new batch up until December 14, and so on. 
 
2. Figure 1B is quite interesting. I observed no change in commuting rates at the inner 
region (e.g., commute from Padre Hurtado to Padre Hurtado). Is it because no changes or 
current mobile-phone dataset cannot capture inner region changes? Also, what is the 
method or parameters to extract commuting travels from general travels? 
 
Intra-comuna mobility is not considered. Each node of the metapopulation network is a 
comuna, therefore we are interested only in mobility between different populations, while we 
consider within a single population a homogeneous mixing dynamic. As described in section 
4.1 we use travels within the same comuna to estimate contact changes. Given the structure 
of the data, we are not able to distinguish commuting travels from general travels.  
 
3. Regarding the third limitation in the discussion section, the Point of Interest (POI) dataset 
could be very helpful to tackle this challenge.  
 
We completely agree with the reviewer, but this is, unfortunately, not available. Hopefully, 
we will be able to add this dimension in future work.  
 



4. The eXtended Detail Records (XDR) dataset seems like a classic mobile phone sightings 
dataset. If not, please verify. A major issue about this type of mobile-phone data is that the 
spatial resolution of data analysis is largely depends on the spatial distribution of antennas. 
Could authors provide general information such as what is the distribution of antennas? How 
often the a devices is recorded by a antennas in this dataset (e.g., 1 seconds? or 1 hour? ) 
 

XDRs are one of the mobile phone streams that telcos have access to. It is one order or 
magnitude more temporally fine grained than Call Detail Records, the real “classic” mobile 
phone stream, and one order or magnitude less fine-grained than the control plane stream, 
which records all the network events associated with a device.  
 
However, as the reviewer points out, all these streams are dependent on the distribution of 
antennas. Antennas are distributed by “demand” (more antennas where there’s more 
demand for signal, more phones at certain times of the day), and to a lesser extent by 
coverage (not leaving certain areas without mobile phone signal, like in rural areas). 
 
Devices are recorded once every 15 minutes or 30 minutes (depending on the Base 
Transceiver Station technology), or after ~30MB have been downloaded. This effectively 
means that there is no overestimation of trips where antennas are denser.  
 
Our mobility data suffers from the same limitations of the rest of the literature deriving 
mobility from mobile phone data (except maybe GPS, which is not done by Telcos but by 
apps). However, some of the issues mentioned by the reviewer are, at least partially, solved 
by the geographical level of aggregation we use here which is that of comunas.  
 
We added a point about this in the limitations.   
 
5. Although the dataset is anonymous and no gender/age information was available, 
anonymous personal-level trajectories were still exposed to authors, which is forbidden in 
some countries by laws. If possible, the authors can provide additional ethical information 
e.g., what types of agreement was in place with “Telefonica Movistar”, what was done to 
make sure individuals stay anonymous, what additional measures were taken to make sure 
each cell phone users are not identifiable.  
 
Privacy and confidentiality are always of utmost importance for us as researchers and 
Telefónica. The dataset the telco shares with us is a tuple with the anonymized phone 
number (hashed), the latitude and longitude of the tower where the transaction took place 
(not the azymuth of the antenna mounted on that tower, for example, which makes trips 
even more underdetermined) and the timestamp. Also, only one of the authors (affiliated 
with Telefonica R&D) had access to the anonymized dataset. The access and mining of the 
data follow strictly the Chilean laws and the privacy preserving standards. Only aggregated 
mobility patterns across municipalities were provided to researchers outside Telefonica and 
only these have been used for the results presented. Together with the fact that there isn’t 
any demographic or other individual information, the study was deemed exempt (IRB #20-
10-05) by the Northeastern University Internal Review Board. 
 
6. In method, the “contact” was estimated by the number of users co-located in the same 
antenna, which is reasonable in many locations such as shopping mall, bus station and 
parks. However, this method is also problematic in residential areas. For example, 1K 
people stay at home all days during the lockdown. Also large number of users co-located in 
this antenna, they should have few social contact.  
 



We completely agree with the reviewer. However, we do not have locations of POIs (such as 
shopping malls) in our dataset. Nevertheless, we point out that our definition of contacts 
reduction is i) a ratio (therefore it is simply a relative reduction in contacts), and ii) it is made 
of a contribution from the local population and possible visitors (therefore the possible 
problem pointed out by the reviewer should be accounted by our definition). 
 
7. In the SLIR modelling, the choose of parameters is critical to simulation results. Although 
the parameters (e.g. 4 days incubation period, and 2.5 days infectious period) came from 
recent research, there are still debates. Authors should mentioned different chose of SLIR 
parameters many largely impact the simulation results in this research.  
 
In the Supplementary Information, we include sensitivity analysis on the epidemiological 
parameters. We show that changing the epidemiological parameters do not substantially 
impact the findings. We added a mention to this sensitivity analysis in the main text.  
 
8. According to reference No.35, it seems that the Telefonica Movistar data can well 
represent the socio-demographic in Santiago. Does it introduce other bias? For example, is 
the spatial distributions of users proportional to the distribution of population? 
 

For all 342 comunas of continental Chile, the Pearson correlation coefficient of census data 
and “home location” as described in the main manuscript, is R² value: 0.96. We added this 
information in the discussion and a detailed plot in the SI. 
 
Furthermore, mobile phone data penetration is very high in Chile: 136 devices over 100 
people according to the Subsecretary of Transport and Telecommunications, and 
smartphones are universally available, together with free “bags of data” and most 
applications like whatsapp, instagram, facebook, twitter (though not Spotify or Netflix) are 
free. There are, surely, other biases as we mention in our limitations, but none of them are 
obvious enough and are not unlike the ones found in other similar studies. 
 
 



Reviewers' Comments: 

 

Reviewer #1: 

None 

 

Reviewer #2: 

Remarks to the Author: 

I would love to thanks the authors for carefully reading and addressing my comments and revising 

the manuscript. All of my comments are well addressed and I recommend for publication. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

My concerns regarding the research have been addressed. However, the 5th comment from 

reviewer #1 should be carefully looked into. 

 



 

Reviewer #2 
 
We would like to thank the reviewer for their detailed reading of the revised manuscript. 
 

1) I would love to thank the authors for carefully reading and addressing my comments 
and revising the manuscript. All of my comments are well addressed and I 
recommend for publication. 

 
We are glad our revisions addressed all points raised by the referee. We would like to thank 
the referee one more time for all comments, suggestions, and constructive criticisms as they 
really help improve the manuscript.  
 
Reviewer #3 
 
We would like to thank the reviewer for the time spent reading our revisions.  
 
 

1) My concerns regarding the research have been addressed. However, the 5th 
comment from reviewer #1 should be carefully looked into.  
 

 
We are happy that our revisions addressed the comments raised by the referee in the first 
round. They were all very helpful and allowed us to improve our work. 
 
The 5th comment from reviewer #1 was: 
  
(5) The use of complex metapopulation models may overfit the time series of death data. If a 
substantial proportion of individuals in Santiago de Chile has been infected, then the local 
infection may tend to follow simple well-mixing dynamics. The authors can fit the data using 
simpler models. It will be valuable to compare the performance of your complex model to 
simplified models. Model selection tools (e.g., out-of-sample cross-validation) will be needed. 
Then readers can better understand the contribution of your complex model. 
 
To address these points, in the first revision of the paper, we have run a simplified model. In 
particular, we considered each comuna as a single population disregarding commuting and 
we used the data-driven contacts reduction parameters. We found a much worse fit of the 
data, indicating that the mobility network is actually important in modeling the spread of 
COVID-19 in the area considered. 
 
While the referee does not suggest any specific points we should be looking into more 
carefully, the comment suggests the need for further analysis.  
To this end, we have implemented two additional simpler models. Following approaches that 
have been used quite often in the literature to model the spread of SARS-CoV-2 in cities, 
regions, and countries both models consider the whole metropolitan area as a single, age-
structured, population. The first, adopts the mobile phone data to estimate the variations to 
the contact matrices as a function of the non-pharmaceutical interventions. In the second 
instead, such variations are estimated using the Google Mobility Reports and the Oxford 
COVID-19 Government Response Tracker. The first model performs much better than the 



 

second. However, it is important to mention how its performance is inferior to the main model 
proposed in the article. Furthermore, this simpler model is agnostic to the differences in 
disease burden between comunas. Understanding such heterogeneities/differences, which 
are also clear in the epidemiological data, is a key aspect of our study.  
Overall, the comparison of our main model with these three simpler approaches confirms 
how capturing the spatio-temporal spreading of the virus within and across comunas is 
crucial to obtain a deeper and more precise description of the pandemic in the area  
 
As already mentioned in the first round of revision, the goal of the paper is not producing 
forecasts about the spreading of SARS-CoV-2 in the area. Our aim is focused on developing 
an understanding of the outbreak by capturing, retrospectively, the dynamics of the first 
wave and by identifying the effects of non-pharmaceutical interventions and social 
inequalities. Hence, we believe that out-of-sample cross validation approaches, though key 
when comparing/testing predictive frameworks, are beyond the scope of our research.  

 
 


