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1 Sensitivity analysis to data and modeling parameters

In this section we provide a sensitivity analysis on the data used for model calibration, on model param-
eters, on the correlation between mobility changes and sociodemographics, and finally on the number of
days needed to reach N infections according to our estimates and official surveillance in different comunas.

Deaths Data for Calibration. We calibrate the model using COVID-19 deaths data issued by the
Department of Statistics of the Chilean Minister of Health (DEIS) [1]. In fact, while there are biases in any
indicator, the number of confirmed cases is arguably one of the most affected by varying reporting rates.
Testing capabilities and testing strategies that target only severe symptomatic individuals induce high
levels of underreporting which are also time dependent. Though not perfect, deaths (and hospitalizations)
are less prone to under-reporting than infections. The DEIS dataset includes both ”confirmed” (i.e.
supported by a clinical test, ICD code: U07.1) and ”suspected” deaths (i.e. supported only by symptoms,
ICD code: U07.2). In Supplementary Figure 1A we compare 2020 all-cause deaths with historical median
and 95% confidence intervals. We observe that, excluding only COVID-19 confirmed from 2020 deaths
we still obtain a significant anomaly. Excluding also suspected, instead, we obtain a trend that is within
confidence intervals. For this reason, we decide to calibrate the model considering both COVID-19
confirmed and suspected deaths.

Here, we perform also calibration considering only confirmed COVID-19 deaths. In Supplementary
Figure 1B we observe that the estimates for R0 obtained in this case do not change significantly (me-
dian R0 of 2.58, 95% CI: [2.50, 2.64]). Moreover, this approach leads to a worse fit of the data (median
absolute percentage error of 28% with respect to the 12% obtained considering also suspected deaths).

Supplementary Figure 1: Impact of COVID-19 on mortality rate in Santiago. A) We plot 2020
all-cause weekly deaths in the comunas of Santiago and the historical median with 95% confidence
interval computed on 2010-2019 data. We report also 2020 deaths time series excluding only COVID-19
confirmed (ICD code: U07.1) and also suspected (ICD code: U07.2) deaths. B) R0 estimates considering
only confirmed and also suspected COVID-19 deaths (based on n = 1, 000 samples from the posterior
distribution). In the boxplots, the centre of the boxes indicates the median, the bounds indicate the
interquartile range (IQR) (i.e., the range between first quartile, Q1, and third quartile, Q3), and the
whiskers indicate the minimum and the maximum defined respectively as Q1−1.5IQR and Q3+1.5IQR.

Incubation and Infectious Period. In the main text we considered an incubation period (TIC) of 4
days and an infectious period (TIF ) of 2.5 days. Here, we run simulations where we vary these param-
eters and we observe the impact on our findings. In particular, we consider estimated R0, prevalence
and increase in deaths without the full lockdown for longer incubation (TIC ∈ [5, 6] days) and infectious
periods (TIF ∈ [3, 3.5] days). In Supplementary Figure 2 we represent results of the sensitivity analysis.
From Supplementary Figure 2A we observe that the median R0 for the different parameters explored
remains in the range [2, 3]. Also, from Supplementary Figure 2B we note that the median projected
prevalence as of August 1, 2020 in Santiago varies of at most 5.9%. Finally, the results of the counterfac-
tual analysis in which we do not introduce the full lockdown are very robust across different parameters
explored. Indeed, the median projected increase in deaths as of August 1, 2020 varies of at most 3.0%.

2



Supplementary Figure 2: Results of sensitivity analysis A) Basic reproductive number estimates for
different parameters explored in the sensitivity analysis (based on n = 1, 000 samples from the posterior
distribution). B) Model projections of prevalence in Santiago as of August 1, 2020 for different parameters
(based on n = 5, 000 stochastic realizations). C) Increase in deaths (in percentage) as of August 1, 2020
without the full lockdown for different parameters (based on n = 5, 000 stochastic realizations). In
the boxplots, the centre of the boxes indicates the median, the bounds indicate the interquartile range
(IQR) (i.e., the range between first quartile, Q1, and third quartile, Q3), and the whiskers indicate the
minimum and the maximum defined respectively as Q1− 1.5IQR and Q3 + 1.5IQR.

ABC Tolerance. In the main text we used the median absolute percentage error as an error metric
for the ABC calibration with a tolerance of ε = 20%. We here repeat the calibration with two different
ε (15%, 25%) as a sensitivity check. Results are displayed in Supplementary Figure 3. We observe that
changes in the tolerance do not impact significantly the posterior distribution of the basic reproduction
number R0.

Mobility and Sociodemographics. In the main text, we showed that the change in mobility correlates
with the Human Development Index (HDI) of different comunas. Here, we show that this pattern holds
for other economic and development indicators too. In particular, we consider separately the components
of the HDI, namely the Life Expectancy Index (LEI), the Education Index (EI), and the Income Index
(II) [2]. In Supplementary Figure 4 we see that the correlation between these indicators and the average
mobility drop after 16/03 of the 37 comunas considered is still high, significant, and consistent with the
results presented in the main text for the HDI.

Also, in the main text we showed the significant correlation between HDI and the average percentage
decrease in mobility after March 16th, 2020. Here, we show that this finding hold also for absolute
mobility decreases. This sensitivity check is needed since a higher percentage decrease does not imply
necessarily a lower mobility after the introduction of NPIs (for example, the mobility baseline of wealth-
ier comunas can be generally higher). We define the outflow as the average number of outgoing travels
per device observed for a comuna during a given period. In Supplementary Figure 5 we represent (left)
the outflow before March 16th, 2020 versus the HDI of different comunas. We observe no significant
correlation (ρ = 0.01, p = 0.94). On the right, instead we represent the scatter plot of the absolute
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Supplementary Figure 3: Different ABC tolerance. We show the calibrated R0 for different ABC
tolerance: 20% (used in the main text), 15%, and 25% (based on n = 1, 000 samples from the posterior
distribution). In the boxplots, the centre of the boxes indicates the median, the bounds indicate the
interquartile range (IQR) (i.e., the range between first quartile, Q1, and third quartile, Q3), and the
whiskers indicate the minimum and the maximum defined respectively as Q1−1.5IQR and Q3+1.5IQR.

Supplementary Figure 4: Correlation between mobility and sociodemographics. We represent
the scatter plot and the correlations between average percentage drop in mobility after 16/03 and the
Life Expectancy Index (LEI), the Education Index (EI), and the Income Index (II). We display regression
line, 95% CI and the Pearson correlation coefficient ρ.

reduction in outflow before/after March 16th, 2020 versus the HDI of comunas. In this case we find
a strong, positive, and significant correlation (ρ = 0.55, p < 0.0001), hinting that wealthier comunas
reduced more their mobility also in absolute terms.

Projected cases. In the main text, we assessed the performance of the model comparing via the Kendall
rank correlation coefficient the number of days (since 2020/01/01) needed to reach 200 infections in
different comunas according to our projections and official surveillance. We found a good, significant
correlation and we remarked that dates estimated through modeling were generally earlier to those
officially reported. In Supplementary Figure 6 is shown that this pattern holds also for different numbers
of infections. In particular, we consider the amount of days needed to reach 50, 100, 200, and 500
infections.
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Supplementary Figure 5: HDI and absolute mobility changes. On the left, scatter plot of outflow
(normalized) before March 16th, 2020 versus HDI of different comunas. On the right, scatter plot of the
absolute reduction in outflow after March 16th, 2020, versus HDI of different comunas. Points size is
scaled according to population. We display regression line, 95% CI, the Pearson correlation coefficient ρ
and p-values.

Supplementary Figure 6: Days to reach N infections in different comunas. We consider the
number of days since 2020/01/01 needed to reach 50, 100, 200, and 500 infections in different comunas
as projected by our model and as confirmed by official surveillance. We display regression line, 95% CI
and the Kendall rank correlation coefficient τ .
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Supplementary Table 1: Alternative compartmental structure - Parameters
Parameter Value Source
Latent period, ε (time spent in E) 3.7 days [8, 9]
Prodromal stage, δ (time spent in P) 1.5 days [8, 9]
Fraction of asymptomatic carriers, r 0.2, 0.4 [10, 11]
Ratio of transmission rate of I vs P/A, α 0.55 [12]
Infectious period, µ (time spent in A, I) 2.5 days [13, 14]

2 Sensitivity to the modeling framework

Alternative Compartmental Structure. In the main text, we used a SLIR compartmentalization
setup. Although this approach has been previously used in several modeling studies focused on COVID-19
[3–5], we acknowledged the simplicity of the compartmental structure as one of the possible limitations.
Indeed, the dynamics of infectious diseases is much more complex than the one depicted by a SLIR
model. In the context of COVID-19, both pre-symptomatic and asymptomatic transmissions have be-
come of great concern. To include these aspects in our analysis, we propose the following alternative
compartmental structure and we repeat the analyses of the main text. The findings are confirmed also
considering different compartmental structures.

Susceptibles (S) individuals after interacting with infectious transit to the Latent compartment (L).
After the latent period (ε−1), L individuals enter the prodromal phase (P ) that refers to pre-symptomatic
and infectious individuals. These then evolve either in the asymptomatic (A) or the symptomatic stage
(I) at rate δ (the length of time including L and P stages is the incubation period). The fraction of
individuals transiting towards I or A is regulated by the probability of being asymptomatic r. Both I
and A individuals after the infectious period enter the Recovered compartment (RI , RA). We compute
deaths considering only on the Recovered resulting from the I compartment (i.e., symptomatic). The
infectious compartments are P , A, I. We assume that P and I have lower infectiousness with respect
to symptomatic I. We indicate the ratio of the transmission rate of I and P , A infectious with α < 1.
In the following, we will refer to this model as SLPIAR and to the model used in the main text simply
as SLIR. It is also important to notice that the SLPIAR model has a new definition of the basic
reproduction number R0 = β · ρ(C) · (αδ + 1−α

µ + α·r
µ ). In Supplementary Figure 7 we report a schematic

representation of the SLPIAR compartmental structure. Similar approaches have been employed in
other modeling studies [6, 7]. In Tab. 1 we report the values of the parameters used and the related
sources. In particular we explore two values of the probability of being asymptomatic r = 0.2, 0.4.
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Supplementary Figure 7: Alternative compartmental structure. With respect to the structure
used in the main text, we added the compartments P and A to include both pre-symptomatic and
asymptomatic transmission.

We repeat part of the analyses presented in the main text with this new compartmental setup. We
perform also for the SLPIAR model an Approximate Bayesian Calibration on weekly deaths using the
median absolute percentage error as an error metric. For convergence reason, we used a threshold of 30%
with respect to 20% used in the main text. Results are summarized in Supplementary Figure 8. In panel
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A we represent a boxplot for the fitted values of R0. In the case of the SLIR model we obtain a median
R0 of 2.66 (95% CI: [2.58, 2.72]), while for the SLPIAR model we obtain a median of 2.92 (95% CI:
[2.86, 3.00]) and 3.02 (95% CI: [2.98, 3.10]) for r = 0.2 and r = 0.4 respectively. These differences should
not surprise. Indeed, the basic reproductive number is strongly dependent on the modeling setup and
small variation are expected across different approaches. In panel B, we represent the reported weekly
deaths along with simulated weekly deaths from the three models. Across the board, also the SLPIAR
model is able to reproduce well the evolution of deaths in the region. In terms of median absolute per-
centage error, we obtain an average of 23% for r = 0.2 and of 28% for r = 0.4. In the main text, for a
SLIR model, we obtained 12%. In panel C, we represent the correlation between reported and simulated
prevalence in different comunas at the 1st of August, 2020. Similarly to what obtained in the main text
(SLIR model), we obtain also for the SPLIAR model a high significant Pearson correlation coefficient
of 0.86 when r = 0.2 and of 0.87 when r = 0.4. Finally, in panel D we represent the simulated attack
rate and the HDI of different comunas. Also for the SPLIAR model we obtain a negative significant
correlation of −0.69 for both values of r.

Model without mobility coupling. In the main text we presented our metapopulation approach to
model the spreading of SARS-CoV-2 in Santiago de Chile. In this setting, the comunas are represented
as distinct subpopulations connected through the movements of people in a metapopulation network. We
showed that the force of infection (i.e., the probability of infection) in different comunas is a function of
the mobility coupling between them (more details in the following Section 4). To assess the importance
of accounting for such coupling, we consider here, as comparison, a simpler modeling approach in which
we completely disregard the mobility between comunas. Said differently, we study the different comunas
as 37 disconnected populations. As a result, the force of infection reduces to a much simpler expression.
Since we also consider age-structured populations, for age group k in comuna j it reads as:

λkj = β
∑
k′

Cjkk′
Ijk′

N j
k′

(1)

Despite we completely drop the mobility network, to account - at least partially - for the effects of
restrictions, we still take into account the contacts reduction parameters rpartialj and rfullj derived in
the main text and that multiply the contacts matrix of comuna j on the establishment, respectively, of
the partial and full lockdown. With this setup, we repeat the calibration step on total weekly deaths
observed in Santiago over the period March-August 2020 through the ABC procedure.

We obtain a median R0 of 2.72 (95% CI: [2.60, 2.84]), compatible with the result obtained in the
main text. However, from Supplementary Figure 9 immediately emerges that the obtained model’s pro-
jections interpolate the reported data with an inferior performance with respect to the results from the
metapopulation approach. More quantitatively, we obtain a median absolute percentage error of 38%
with respect to 12% obtained for the metapopulation model. Furthermore, we obtain a drop in the
correlation between simulated and reported prevalence in different comunas (from ρ=0.84 to ρ=0.63).
These findings highlight the importance of consider the coupling between areas via mobility to capture
the spatial spread of SARS-CoV-2 in the Metropolitan Region of Santiago.

Single Population Model. Here, we study a simpler approach modeling Santiago de Chile as a
single population rather than a network of connected subpopulations (i.e., comunas). This methodology
has been widely proposed in the literature to study the COVID-19 pandemic at different geographical
resolutions such as cities [15], regions [6], or countries [16]. In the same spirit of what presented above,
the goal is to evaluate the performance of simpler approaches and alternative data sources. We consider
the population of Santiago divided into the 16 age groups and we consider the country-specific contacts
matrix to describe the rates of contacts between age brackets. The disease dynamics is modeled through
the SLIR framework used in the main text. In this settings, the force of infection for age group i at time
t reduces to:

λi(t) = β
∑
j

Cij(t)

Nj
Ij(t). (2)

More in detail, we study two distinct models. In the first one, we characterize contacts reduction
in Santiago, following NPIs, using our mobile phone data. In the main text, we computed contacts
reduction parameters for each comuna j for the partial and the full lockdown: rpartialj , and rfullj . Here,
we compute the weighted average (according to the population of different comunas) of these parameters
to obtain two, overall, contacts reduction parameters: rpartial, and rfull. Following the approach of the
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main text, between 16/03 and 15/05 (partial lockdown) we multiply the contacts matrix by rpartial, and
by rfull after 15/05 (full lockdown).
In the second model, we use alternative data sources to evaluate contacts reductions in different locations
following the restrictions. Indeed, the contacts matrix is made up of four contributions: contacts that
happen at school, workplace, home, and other locations. In general, the overall contacts matrix C(t) is
a linear combination of the four terms:

C(t) = ω̃h(t)home+ ω̃s(t)school + ω̃w(t)work + ω̃o(t)otherlocations (3)

Where the ω̃l(t) are the location-specific, time-varying contacts reduction coefficients. We use the
Google COVID-19 Community Mobility Report [17] to characterize contacts variations at home, work-
place, and other locations. Let ωl(t) be the general entry of the Report, representing the percentage
change of the number of visits (with respect to a pre-pandemic baseline) to specific location l on day
t. We turn this quantity into a contacts reduction parameter as follows: ω̃l(t) = (1 + ωl(t)/100)2. In-
deed, the number of contacts between individuals scales with the square of the number of individuals.
For contacts reduction in workplaces we consider the field “workplaces percent change from baseline”
of the Report, and the average of the fields “retail and recreation percent change from baseline” and
“transit stations percent change from baseline” for other locations. For contacts at home we consider
the field “residential percent change from baseline” but we omit in this case the square in the previous
formula since this entry is a proxy for additional time spent at home rather than actual visits. Fi-
nally, we model contacts reduction at school using the Oxford COVID-19 Government Response Tracker
[18, 19]. We consider the quantity “C1 School closing” from this dataset, an ordinal index that goes
from a maximum of 3 (i.e., requires school closing at all levels), to a minimum of 0 (i.e., no restrictive
measures in place). We turn this quantity into a contacts reduction parameter for school as follows:
ω̃s(t) = 1− C1 School closing/3.
In both models we explore the same free parameters mentioned above: the basic reproductive number R0

and the delay in deaths ∆. The calibration is performed also in this case through Approximate Bayesian
Computation rejection algorithm.

In Figure 10 we show weekly deaths as reported by official surveillance along with the simulated time
series by the two models in Santiago (median and 95% CI). We observe that the model with contacts
estimated on our mobile phone data performs significantly better with respect to the one using other
data sources (median absolute percentage error of 18% with respect to 43%). Nonetheless, it has a lower
performance than the metapopulation model presented in the main text, which shows a median absolute
percentage error of 12%. It is worth stressing that these simpler models are agnostic to the differences in
disease burden between comunas. Understanding such heterogeneities/differences, which are also clear
in the epidemiological data, is a key aspect of our study.

Comparing models’ performance. In Supplementary Table 2 we summarize the performance of all
models considered by comparing their median absolute percentage errors. The best model is the one pre-
sented in main text: a SLIR metapopulation framework informed by the mobile phone data to estimate
variations in mobility and contacts. The second is the model that considers the whole metropolitan area
as a single, age-structured, population and uses mobile phone data to estimate variations in the contact
matrix. Despite the good performance, by construction, this model is agnostic about the heterogeneities
in the spreading patterns of the virus across comunas. The third is the metapopulation model based on
a SLPIAR compartmentalization for r = 0.2. This is followed closely by the same modeling structure
but for r = 0.4. In fifth position we find the model that considers comunas as separated, age-structured,
subpopulations hence neglecting the mobility coupling between them. In last position we find the model
that studies the whole metropopolitan area as single, age-structured, population and adopts Google Mo-
bility Reports as well as the Oxford COVID-19 Government Response Tracker to estimate the variation
in the contact matrices.
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MdAPE
Metapopulation Models with Mobility

SLIR 12%
SLPIAR (r=0.2) 23%
SLPIAR (r=0.4) 28%

Comunas as separated subpopulations
No Mobility 38%

Single Population Models
Single Pop. (TEF) 18%
Single Pop. (Alternative data) 43%

Supplementary Table 2: Performance of different models. We report here the performance (in terms
of median absolute percentage error) of the different models considered
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Supplementary Figure 8: Alternative compartmental structure - Sensitivity analysis. We com-
pare the results obtained for the alternative compartmental structure (for two values of r) with those
obtained in the main text. A) Fitted R0 (based on n = 1, 000 samples from the posterior distribution).
In the boxplots, the centre of the boxes indicates the median, the bounds indicate the interquartile range
(IQR) (i.e. the range between first quartile, Q1, and third quartile, Q3), and the whiskers indicate the
minimum and the maximum defined respectively as Q1− 1.5IQR and Q3 + 1.5IQR. B) Fitted and re-
ported weekly deaths (median and 95% CI). C) Real and projected prevalence on 2020/08/01 (regression
line and 95% CI displayed; the Pearson correlation coefficient ρ is reported in legend). D) Correlation
between attack rate and HDI in different comunas (regression line and 95% CI displayed; the Pearson
correlation coefficient ρ is reported in legend).
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Supplementary Figure 9: Model without mobility - Deaths fit. We compare the median and 95%
CI of weekly deaths projected by the simpler model with those projected by the metapopulation model
with mobility and with real observed data.
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Supplementary Figure 10: Single population models. We consider a simpler approach in which
we model Santiago as a single population. In the first model (TEF) we use our mobility dataset to
infer contacts changes in Santiago following restrictions. In the second model (Alternative data) we
insights from the Google COVID-19 Community Mobility Report and the Oxford Policy Tracker. We
report median and 95% CI for the weekly deaths projected by the two models along with weekly deaths
reported by official surveillance.
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3 Homogeneous NPIs Effect - Counterfactual Scenario

In the main text we present a hypothetical scenario in which we assign to all comunas the average
decrease in mobility rates and contacts observed after the partial lockdown for the 4th quartile of HDI
(i.e. 25% comunas with higher HDI). In Supplementary Figure 11A we represent the percentage change
in total COVID-19 deaths and cases as of 2020/05/15, date of the 2nd lockdown. We observe that the
effect on the spreading is significant: -83.8% (95% CI: [-77.6%, -88.6%]) fewer cases and -70.5% (95%
CI: [-55.0%, -80.9%]) fewer deaths. In Supplementary Figure 11B we represent the percentage change in
COVID-19 cases as of May 15th in different comunas. We observe that, in general, the uniform reduction
in mobility and contacts brings benefits also to comunas with higher HDI. This hints that a more equal
distribution of behavioral responses to the NPIs in place would be advantageous not only for the most
vulnerable but to the community as a whole.
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Supplementary Figure 11: Homogeneous NPIs Effect - Counterfactual Scenario. A) Drop (%) in
total number of COVID-19 deaths and cases as of 2020/05/15, date of the 2nd lockdown (based on n =
5, 000 stochastic realizations). In the boxplots, the centre of the boxes indicates the median, the bounds
indicate the interquartile range (IQR) (i.e., the range between first quartile, Q1, and third quartile, Q3),
and the whiskers indicate the minimum and the maximum defined respectively as Q1 − 1.5IQR and
Q3 + 1.5IQR. b) Drop (%) in COVID-19 cases in different comunas (based on n = 5, 000 stochastic
realizations).
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4 Metapopulation Model with Age Structure

The model presented here is largely based on Ref. [20]. We consider N comunas and K age groups. We
introduce the matrix Cj ∈ RK×K whose element Cjkk′ indicates the contacts rate between age group k
and k′ in comuna j. Similarly, we introduce the matrix σ ∈ RN×N , whose element σji indicates the
mobility rate from comuna j to i. We also define τ as the return rate of travelling individuals to the home
comuna. We consider a SLIR compartmentalization setup with traveling Infectious, analogous to the
case described in the main text (Tab. 3). In the next paragraphs we present the integration of mobility
dynamics, the derivation of the force of infection, and how mobility restrictions are reflected in our model.

Time scale separation and integration of mobility. Simulations and disease progression evolve
with the time scale of the day. However, the mobility between comunas happens at a faster pace (set
by the return rate τ). This is clear in Supplementary Figure 12 where we plot the probability density
function of trips’ duration. To simplify the visualization we do not show the density for trips lasting more
than 7 days (about 0.2% of the travels). We can see that around 85% of inter-comunas travels happen
within 8 hours. Furthermore, the average trip duration of 4.5 hours and the probability of observing
travels lasting more than 24 hours is smaller than 3% (note the logarithmic scale on the y-axis).

Supplementary Figure 12: Travel duration. We represent the probability density function of trip
duration (expressed in hours). Vertical dashed line indicate 8 hours, while solid vertical lines indicate
days progression. The probability density function is computed from about 97M travels between March
and June 2020 in Santiago Metropolitan Region.

Considering this observation we use a time-scale separation technique that allows to integrate the
short-time mobility dynamics and factor in its effective contributions to the slower processes (in our case,
the progression of the disease) [21]. We note that this time-scale separation is exact only in the limit of
infinitely fast mobility dynamics (τ−1 → 0). However, it remains valid as long as the mobility time scale
is much smaller than the typical transition rates of the disease dynamics. Here, we aim to consider the
temporal evolution of number of individuals in different comunas, connected by mobility flows, and to
evaluate their equilibrium configuration with respect to the slower dynamics (i.e, the progression of the
simulation and of the disease).

For a general compartment X (here X ∈ [S,L, I,R,N ]), we indicate with Xk
jj(t) the number of people

from comuna j (in age group k) actually located in j at time t, and with Xk
ji(t) the number of people

from j (in age group k) located in a connected comuna i at time time t [22]. For consistency, hold the
following relation:

Xk
j = Xk

jj(t) +
∑
i

Xk
ji(t) (4)

The number of people living in comuna j, in compartment X, and age group k (Xk
j ) changes at a time-

scale driven by the transition rates of the disease and by the temporal resolution of the simulations (i.e.,
a day). Hence, it is considered at equilibrium respect to the faster dynamics driving the mobility flows.
In fact, the time t in the equation captures the time-scale of mobility which takes places within a day.
For Xk

jj(t) and Xk
ji(t) we can write the following rate equations:

dtX
k
jj(t) = −

∑
i

σjiX
k
jj(t) + τ

∑
i

Xk
ji(t) (5)
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dtX
k
ji(t) = σjiX

k
jj(t)− τXk

ji(t) (6)

From Eq. 4 we derive
∑
iX

k
ji(t) = Xk

j −Xk
jj(t). We substitute this expression in Eq. 5 and we define

the total mobility rate of comuna j as σj =
∑
i 6=j σji:

dtX
k
jj = τXk

j − (σj + τ)Xk
jj(t) (7)

We solve Eq. 7 for Xk
jj(t):

Xk
jj(t) =

τXk
j

σj + τ
+

[
Xk
jj(0)−

τXk
j

σj + τ

]
e−τ(1+σj/τ)t (8)

The relaxation to the equilibrium value of Xk
jj is controlled by the exponential term via the characteristic

time [τ(1 + σj/τ)]−1. This expression reduces to 1/τ in case σj/τ << 1. The total mobility rate σj is
always smaller than 1 - since not everyone is travelling - and it is generally much smaller than τ = 3 day−1

(that we set to account for commuting as well as other movements). We can then approximate the
characteristic time to 1/τ . This is in turn smaller than the time-scale of simulation and disease progression
(in the case of COVID-19, both the latency ε−1 and infectious µ−1 period are larger than 1 day).
Therefore, when t tend to the time-scale of the simulation we can considerXk

jj(t) relaxed to its equilibrium
value:

Xk
jj =

Xk
j

1 + σj/τ
(9)

Similarly, we derive the equilibrium value for Xk
ji(t). We take Eq. 6 and we impose the equilibrium

condition σjiX
k
jj − τXk

ji = 0. Then, substituting the result just derived, we obtain the equilibrium value

also for Xk
ji:

Xk
ji =

Xk
j σji/τ

1 + σj/τ
(10)

Force of infection. We define the force of infection λkj as the probability that a susceptible individual
in age group k and in comuna j transit to the Latent compartment in the unit of time. This force
of infection has two contributions, from the contacts occurred in the home comuna (λkjj) and in other

connected comunas (λkji). These can be written down as:

λkjj =
β

N∗j

[∑
k′

Cjkk′I
k′

jj +
∑
i

∑
k′

Cjkk′I
k′

ij

]
(11)

λkji =
β

N∗i

[∑
k′

Cikk′I
k′

ii +
∑
l

∑
k′

Cikk′I
k′

li

]
(12)

Where β is the probability of becoming infected as a result of a single contact, and N∗j is the effective
number of individuals in comuna j (said differently, the actual number of individuals staying in comuna
j). This is, by definition, the sum of the number of individuals from j actually located in j and the
number of individuals from a connected comuna i located in j, namely Nj = Njj +

∑
i 6=j Nij . In the

time scale separation, this expression can be written as:

N∗j =
Nj

1 + σj/τ
+

∑
i

Niσij/τ

1 + σi/τ
. (13)

Substituting the equilibrium values resulting from the time scale separation also for Ik
′

jj and Ik
′

ij we obtain:

λkjj =
β

N∗j

[∑
k′

Cjkk′
Ik

′

j

1 + σj/τ
+

∑
i

∑
k′

Cjkk′
Ik

′

i σij/τ

1 + σi/τ

]
(14)

λkji =
β

N∗i

[∑
k′

Cikk′
Ik

′

i

1 + σi/τ
+

∑
l

∑
k′

Cikk′
Ik

′

l σli/τ

1 + σl/τ

]
(15)

Then, the total force of infection λkj can be written as the the sum of these two contributions weighted,
respectively, by the probability of finding a susceptible in age group k from comuna j in the home
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Supplementary Table 3: Transitions between compartments
Transition Type Rate
Skj → Lkj Contagion λkj
Lkj → Ikj Spontaneous ε
Ikj → Rkj Spontaneous µ

population (Skjj/S
k
j = 1/(1 + σj/τ) using Eq. 9), and in a connected comuna i (Skji/S

k
j = (σji/τ)/(1 +

σj/τ) using Eq. 10):

λkj =
λkjj

1 + σj/τ
+

∑
i

λkjiσji/τ

1 + σj/τ
(16)

The impact of restrictions. Mobility restrictions are implemented changing the mobility matrix σ at
the start of the partial and the full lockdown. Contacts reduction, instead, is implemented multiplying
the contacts matrix Cj of each comuna by the respective parameter. For example, the general element
of the contacts matrix Cj during the partial lockdown for comuna j is rpartialj Cjkk′ .
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5 Mobile Phone Users Geographical Distribution

Supplementary Figure 13 shows a scatter plot of the number of mobile users in our dataset and the
resident population from official census (2017) for the 342 comunas of continental Chile. Because of the
agreements with mobile phone data provider, Telefónica Movistar, we cannot report raw numbers, there-
fore we have normalized values with respect to their maximum. We observe a high Pearson correlation
of ρ = 0.97, indicating that the geographical distribution of our user base well represents the real one.

Supplementary Figure 13: Correlation between Telefónica Movistar mobile phone users and
official census. We show the correlation in the 342 comunas in continental Chile. We display the
regression line, 95% CI and the Pearson correlation coefficient ρ.
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