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Supplementary Note 1: Molecular morphing

Morphing operations are encoded as ”Reaction SMARTS” that describe the changes in connectivity between a
product and reactant molecule. In detail, when applying a morphing operation to a molecular graph, substructures
that could be modified according to the rule are first identified. If found, the encoded modification is carried out.
If the substructure could be identified multiple times, all possible outcomes are enumerated. Note, that for every
morphing operation, a similar reverse operation is included in our set, carrying out the backwards transformation.

All morphing operations were derived by the fragmentation of 30 well-known OSCs shown in Supplementary Figure
1 (excluding sidegroups). A full list of all employed morphing operations is given in Supplementary Figure 2, their
effects can be summarized as follows

• Ring annelation (10) allows for the construction of simple core structures such as linear Acenes (Naphtha-
lene to Pentacene or Picene). Biphenylic addition (2) can then be used to build structures like Rubrene or
Diphenylanthracene (DPA).

• Morphing operations (3),(4),(8) add linkers to an aromatic Car −H, leading to Car−C−−C−Ph, Car−C−−−C−Ph,
Car−NH−Ph (Ph = Phenyl). The former linkers are included in pMSB, BDTTE or BPEA. Operation (8) was
introduced as an intermediate that can be further morphed to triphenylamine moeities by (9).

• Larger annelated ring systems (i.e. Corannulene, Pyrene, Perylene, Coronene) can be derived from additional,
more tailored annelation rules (11), (12), (13).

• Exchanging carbon atoms in of 6- and 5-membered rings for N, O or S, using operations (5),(20),(19),(21),(22)
opens routes to Thienoacenes (DNTT, BDTT, BDTTE), carbazoles or Azaacenes (N-PENT structures). 5-
membered heteroaromatic rings can thereby be derived by first contracting 6-membered rings (1).

• Tailored operations are included for the formation of diimides (NTCDI, PTCDI), dianhydrides (NTCDA,
PTCDA). An exemplaric pathway is shown in Figure 1 in the main text for NTCDI. This process could start
from pyrene, introducing 2-pyrones by applying (14) twice. NTCDA can be derived by applying (15) twice and
repeated replacement of O by N is possible through (7), leading to NTCDI.

• Formation of Quinacridone-like structures follows a similar route but forming 4-pyrones using (6) and then (7),
shown as simple pathway in Figure 1 of the main text.

• Formation of structures like DB-TTF is also possible by a separate rule. First a Fulvalene structure can be
formed from single 5-membered ring CH2 using rule (16). From thereon, applying (17) twice allows to build the
core TTF structure. By analogy we decided to include (18), from which the tetraoxo derivative could be built.

• For all morphing operations, a corresponding reverse operation is included, cf. section .

While these morphing operations overall tend to give reasonable results, invalid molecules due to erroneous chemical
bonding encoded in the molecular graph, can occur. The main source of these errors are the more general substructure
definitions encoded in the operations. Among morphing operations that tend to produce these errors are (1) Ring
contraction, (5) N 6-ring substitution (reverse), (10) 6-ring annelation, (14) 2-Pyrone formation, (15) Dianhydride
formation (incl. reverse), (21,19,20) N/O/S- 5-ring CH2 substitution. Most commonly the molecule cannot be correctly
represented in a Kekulé form, hinting to missing explicit hydrogens or radical structures, or potentially leading to the
generation of non-unique SMILES identifiers. To avoid over-engineering of morphing operations, while maintaining
a chemical space of formally valid molecules, detected errors in RDKit1 molecular sanitation lead to removal of
the molecule. Note, all cheminformatics-related tasks were carried out using RDKit, called from python 3.7, if not
otherwise stated.

a)Electronic mail: reuter@fhi-berlin.mpg.de
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Supplementary Figure 1: Set of typical OSC-materials, collected for this work. Morphing operators for library
enumeration were derived from this set.
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Operations (1)-(6)

Supplementary Figure 2: List of morphing operations.

Operations (7)-(12)
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Operations (13)-(18)

Supplementary Figure 2: Continued.

Operations (19)-(22)
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Supplementary Note 2: Methods

Symmetry detection: To focus on symmetric molecules —potentially more promising to be used
as OSC materials—, the simple molecular morphing strategy was modified as shown in Figure 1 d)
in the main text. In detail, full graph symmetry (1) was detected for a molecule if all heavy-atom
environments occur at least two times. Environments are thereby compared by hashed subgraphs,
extracted up to a bond radius of 5 around the central atom using the circular Morgan fingerprint ma-
chinery of RDKit. An asymmetric part of the molecule (2) can further by symmetrically substituted,
and the molecule then still counts as symmetric. Central fragments that potentially allow for this
type of symmetry to occur are bonded to more than one other fragment. Starting from these central
fragments, the connections to all others are cleaved one by one, and the canonical SMILES strings2

for the remaining part were recorded. If every resulting smiles string were found at least two times,
the central fragment was symmetrically substituted according to our definition. In cases where the
number of substitution sites on the central fragment was odd, substitution by an additional single
fragment of at maximum 10 atoms was allowed without loosing the symmetry assignment. The
size-limit was necessary to keep the symmetric part a large part of the molecule. Prosymmetry (3)
was detected if at least one pair of similar carbon environments occurred and the central C atom
was attached to at least one implicit H atom. Given that the tested molecule consisted of one core
fragment the substituted molecule should then fall in class (1) or (2).

Enumeration of molecular test space: The test space of flexible π-conjugated OSC candidates
was fully enumerated to benchmark the AML algorithm in a realistic setting. Enumeration started
from benzene (generation 0). All morphing operations were then applied iteratively (generation by
generation) to previously obtained full set of molecules. The so obtained offspring-molecules were
kept when they were detected as being valid, symmetric and when satisfying molecular bounds as
described in the main text. 65.552 unique molecules (identified by their canonical SMILES) were
then exhaustively generated over the course of 14 generations, while no new molecules outside of the
predefined bounds could be identified after, see Supplementary Figure 3 a).

Note also, that inclusion of reverse operations was found to increase inter-connectivity and the
number of molecules that can overall be generated, as also shown in Supplementary Figure 3 a). Gen-
erated molecules were finally stored as canonical SMILES strings in a relational dataset containing
parent-offspring information.

Supplementary Figure 3: a) Unique molecules and parent-offspring connections found in each fully enumerated
generation. To probe the effect of reverse operations, the test-space used in this work is compared to a similar one
enumerated without reverse operations. For the latter space, in total 55.771 unique molecules and 146.144 connec-
tions were found. Already after 10 generations no new molecules were found. b) Size-evolution of fully enumerated
chemical spaces by number of compounds Nc as a function of the maximally allowed number of atoms Nat. R2 ap-
plies for log-space.
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Visualization of molecular test-space: The test space morphing network was visualized in
a two-dimensional layout: An initial coordinate guess was obtained from Principal Components
Analysis of the Graph3 as implemented in the graphpca 0.54 python package. The final layout
was then generated with the force-directed algorithm Force-Atlas 2 5, implemented in Gephi 0.9.26.
Gravity (of 40.0) and scaling (of 1.0) deviated from default values. Repulsion modification to prevent
overlap was switched on in the final stages of layouting, spreading crowded parts over a larger area for
better visibility. Note that these settings are given for completeness, affecting the final representation
of the graph, but not the underlying morphing network.

Size estimation of virtually unlimited search space: The accessible number of compounds
Nc in the virtually unlimited search space was estimated by extrapolation. Following Polishchuk et
al.7 we fitted the function log(Nc) = a · Nat · log(Nat) + b to reproduce the Nc progression of fully
enumerated spaces bounded by a maximum number of atoms Nat in each molecule (including H),
see Supplementary Figure 3 b). Given the imposed symmetry bounds and a finite set of morphing
operations, the progression is flatter than originally reported by Polishchuk and co-workers, but does
show a similar combinatorial explosion.

Descriptor calculation: For the calculation of electronic descriptors λh and εHOMO, initial 3D
coordinates were generated from 2D molecular graphs using the default EKTDG8 method imple-
mented in RDKit. We relied on a protocol9 implemented in the conformer generator deepchem
2.3.010: While at maximum 5 rotatable bonds occur in the test-space (see below) we embedded a
large number of 50 conformers for each molecular graph and initially relaxed them with the Merck
Molecular Force Field (MMFF94)11 as implemented in RDKit12. Note, for the production run, larger
molecules are generated, and the number of embedded conformers was subsequently increased to the
proposed maximum9. Duplicate geometries were then removed by a pruning step with an RMSD-
threshold of 0.35 Å. The resulting conformers were kept, forming the initial conformer-ensemble
of force-field geometries. The computationally efficient density functional tight-binding method –
GFN1-xTB– of Grimme and co-workers13,14 (v6.2.3) was then used for energy-based selection: All
conformers were relaxed with the internal ANCOPT optimizer at the default geometry convergence
criterion, selecting the lowest-energy structure and passing it to descriptor calculation.

Descriptors for the molecular test-space were then calculated for the lowest-energy vacuum geom-
etry employing again the GFN1-xTB method. For λh the four-point scheme15 was employed, while
εHOMO was obtained for the neutral geometry. All GFN1-xTB results reported in the manuscript
were then scaled to best fall in the range of DFT values obtained with the B3LYP16–18 exchange-
correlation functional. A comparison to DFT-B3LYP λh and εHOMO showed, that a reasonable
scaling could be achieved by applying a linear correction to respective GFN1-xTB predictions, see
Supplementary Figure 4 a) and b). As clearly not free from outliers, the linear fit was obtained
by outlier-robust linear-regression using the RANSAC algorithm implemented in scikit-learn.19,20

Deviating from default settings, residual thresholds of 50 meV and 0.3 eV were thereby chosen for
λh and εHOMO , with at mininum 20 samples chosen randomly from original data. Note that B3LYP
values for εHOMO were thereby obtained for the relaxed GFN1-xTB geometry.

In production runs, descriptor values were calculated for the lowest-energy vacuum geometry ob-
tained from GFN1-xTB (v6.3.2), employing here the very tight geometry convergence criterion. For
the large-molecules occuring in this setting, conformer-embedding could fail at default settings, and
hence was restarted from random coordinates. The DFT-B3LYP level of theory was used as imple-
mented in the FHI-aims code, employed with its established numeric atomic-orbital basis-sets and
integration grid settings.21,22 For λh computation, electronic wavefunctions were expanded in a tier
1 basis set and at light integration settings, employing for local optimizations the Broyden-Fletcher-
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Supplementary Figure 4: Calibration of the GFN1-xTB method against DFT-B3LYP results of λh and εHOMO

for 30 molecules contained in the set of typical OSC materials, see Supplementary Figure 1. The obtained linear fit
is used to correct the raw GFN1-xTB results to the corrected values used throughout the present work. Outliers
found by RANSAC linear regression are marked in orange.

Goldfarb-Shanno (BFGS) implemented in FHI-aims with a force convergence criterion fmax < 0.025
eV/Å. Dispersive forces were in the geometry relaxations were accounted for by the Tkatchenko-
Schefer (TS)23 method. We thereby slightly increased the aggregated energy tolerance to 10−3 eV,
allowing small uphill steps during relaxation of flexible molecules. Based on this equilibrium struc-
ture, εHOMO predictions were obtained with an extended version of the tier 1 basis set24 and light
integration setting. Relativistic effects were treated on the level of the atomic zero-order regular
approximation (atomic ZORA)21.

Surrogate model: Gaussian Process Regression (GPR),25,26 was used for surrogate modeling. A
separate model was fitted for each descriptor (d = λh or εHOMO), using a training set D = {X,yd}
of the N labelled molecules contained in the current population. X = {x1, ...,xN} denote molecular
descriptors (stored in vectors) and yd = {yd,1, ..., yd,N} descriptor values. Facq is then calculated for
the candidates of every learning step, using predictions and corresponding uncertainty estimates σλh
and σεHOMO

obtained from the separately fitted models. Assuming λh and εHOMO to be uncorrelated,
the necessary combined uncertainty σ is estimated by linear uncertainty propagation, as

σ2 ≈

∥∥∥∥∥F−2 ·w4 ·
(

λh · σλh
εalign · σεHOMO

)2
∥∥∥∥∥

1

, (1)

with dots denoting element-wise products.
In the employed GPR models value-prediction f(x′) for a datapoint x′ is not scalar, but follows

the predictive Gaussian distribution

fd(x
′) ∼ N (µd(x

′), σ2
d(x

′)) (2)

This allows for simultaneous predictive uncertainty σd(x
′) estimation for the predicted property

µd(x
′), as

µd(x
′) = k(x′, X)[K + σ2

nI]−1yd (3)

σ2
d(x

′) = k(x′,x′)− k(x′, X)[K + σ2
nI]−1k(X,x′) (4)

Here, k(x,x′) is the covariance- or kernel function, measuring the similarity between x and x′. K
thereby is defined by Ki,j = k(Xi, Xj) and known as the covariance or kernel matrix of the training
set. Morgan fingerprints27 as implemented in RDKit were used to generate descriptors x, encoding
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each molecule by the 2D molecular substructures present in it. Specifically, molecular substructures
around each atom are extracted up to a bond radius of 2 and counted.

The covariance function is based on the MinMax kernel28 kmd

k(x,x′) = σ2
v k

m
d (x,x′) (5)

and closely related to the well-known Tanimoto kernel for molecular similarity computation on
binary vectors29. While this choice, in contrast to other popular kernels does not feature adjustable
hyperparameters fitted to the dataset, we found it to perform reasonably well for the prediction
and uncertainty quantification, see below. The two model hyperparameters (noise level σn and
vertical scale σv) are determined during model fitting, by log marginal likelihood maximization on
the training-set25. Local optimization using L-BFGS as implemented in scipy is started 5 times with
randomly (uniformly) sampled initial values, choosing the best final result. σn and σv were bounded
between (0.001, 1.0) and (0.1, 3.0) respectively, and descriptor values yd were scaled to zero mean
and unit variance during internal use in the model. Our custom GPR implementation is based on
respective code from scikit-learn.20
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Supplementary Note 3: Intricacies of chemical space generation and descriptor cal-
culation

A 2D molecular graph-based exploration of the huge chemical space of small organic molecules holds a number of
potential pitfalls such as a potentially incomplete treatment of conformers or tautomeric forms.

c)a) b)

Supplementary Figure 5: a) Number of flexible bonds Nf. found for molecules in the test-space. b) Variance in
descriptor values for 120 molecules selected randomly from the molecular test-space, computed at the GFN1-xTB
level of theory (corrected).

Confomers and tautomers: In a strict sense, descriptor values for λh and εHOMO are related to a specific
conformer, as relative spatial orientations of molecular parts influence these electronic properties. Descriptors were
here evaluated for the lowest-energy conformer identified in vacuum, and we correspondingly assume that the molecular
graph encodes this structure. This approach should allow for a good first assessment of the studied molecular
properties, with the caveat that the predominant solid-state conformation can be influenced by packing effects30–32.
For the molecular test-space, a first assessment of conformer-related variance in λh and εHOMO occurring over the
initial conformer-ensembles is here provided. At maximum 5 rotatable bonds occur in the test-space molecules, defined
as single bonds not contained in a ring. Additional conformational flexibility can arise from stereocenters, that we
did not specifically assign during morphing. Stereoisomers can however be generated during conformer search and the
outcome is decided by energetic ranking. Stereocentres on tetrahedral (sp3) carbon atoms are not incorporated during
morphing, one (two) exocyclic double-bonds are however present in 7.318 (9.987) molecules, each potentially giving
rise to E-/Z-Isomerism. A number of flexible bonds Nf. is therefore here defined as the sum of occuring rotatable and
exocyclic double-bonds in the molecule (see distribution in Supplementary Figure 5 a). At maximum 7 flexible bonds
occur in the test-space molecules, and we randomly tested variance in λh and εHOMO for 15 molecules of each bin (0
to 7), see Supplementary Figure 5 b) and c). As expected, larger numbers of flexible bonds lead to larger spreads in
descriptor values, but λh values for lowest-energy conformers quite favorably seem to provide a lower bound. A similar
rule of thumb cannot be directly found for εHOMO, but the magnitudes of variances allow for a realistic estimate based
on the lowest-energy conformer.

Finally, in our approach tautomers of the same molecule are recognized as separate entities owing to the uniqueness
of the employed canonical SMILES strings. Given that the stability of each tautomer depends on the experimental
conditions, a detailed exploration of them is far beyond the scope of this work.

Outliers after descriptor calculation: To check that the chemical integrity in the majority of molecules is
preserved after the GFN1-xTB relaxation, we verified that bonding topologies still match with molecular graphs. We
therefore read molecular SMILES and xyz-coordinate information in Open Babel33,34 and compare resulting SMILES
them after changing bond-orders to 1, and removing aromatic labels. Thereby, mismatches that could arise from
differing assignments made due to varying interatomic distances in the xyz are circumvented30,35. We only found a
negligible number of 16 molecules, in which this consistency check failed. The same test was carried out for relaxed
structures of the charged molecular state, obtained during λh calculation with 599 structures failing the test. The
latter usually manifests in high λh , regularly above 1000 meV. A second type of outlier could be identified, with 8
molecules showing a negative λh. There, neutral state geometry relaxation seems to have ended in a local minimum
and restarting local relaxation from the charged state geometry lead to a different neutral state and positive λh. Due
to the overall small number of outliers (< 1 %), and since this reflects a realistic situation in an unknown discovery
task, we treated them as regular datapoints, with the added benefit of not disrupting the exhaustively enumerated
morphing operation based network.
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Supplementary Figure 6: Performance evaluation of AML-discovery, carried out at different hyperparameters.
Candidates have thereby been generated by a one-fold application of all morphing operations to the current popula-
tion. A twodimensional grid in the ranges of κ = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0, and of Nbatch = 50, 100
and 200 was evaluated.
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Supplementary Figure 7: See Supplementary Figure 6 for description. Candidates have thereby been generated
by a two-fold application of all morphing operations to the current population.

Supplementary Table I: AML discovery success S(5179) for size-restricted candidate sets, determined by Ndeep

and dsearch, see text. Each cell provides the median values of S(5179) obtained over 5 runs, while a maximum devia-
tion of only ± 0.06 was found between runs and separate sampling errors are not stated. For comparison note again
that S(5179) values of 0.78 and 0.85 are found upon one-fold/two-fold full application of all morphing operations.
The setting marked in bold letters was finally used for exploration in a virtually unlimited space

Ndeep 100 250 500 1000

dsearch = 1 0.50 0.64 0.70 0.72

dsearch = 2 0.63 0.72 0.78 0.80

dsearch = 3 0.68 0.78 0.82 0.84

dsearch = 4 0.71 0.77 0.82 0.83

dsearch = 5 0.70 0.79 0.82 0.83

dsearch = 10 0.73 0.81 0.81 0.83
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Supplementary Figure 8: Sensitivity analysis of AML discovery success with respect to the specific weight vec-
tor w (equation 1), shown as boxplots of the respective distributions. The interquartile range (IQR) of the data is
shown by the boxes, while black lines in them denote the distribution-medians. Whiskers (vertical lines extending
beyond boxes) show the spread of the data extending to the 5 % and 95 % percentiles. As only the overall shape of
the distributions is here relevant, data points beyond these limits have been omitted from the visualization. Within
the range of studied variation, the discovery success remained stable and was biased to the useful region of descrip-
tor values. The analysis was carried out in the exhaustive molecular test space for the intermediate value pair of
(Nbatch, κ) = (100, 2.5) and onefold application of all morphing operations as described in the text. Note to allow
for direct comparison, F values displayed in a) were calculated using w = (1.0, 0.7)> as stated in the text. The
respective default run applying these weights during discovery is highlighted by frames. A background distribution
for the molecular test space is shown as the rightmost boxplot.
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the text.
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Supplementary Note 4: First-principles AML discovery in a virtually unlimited OSC
chemical space
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Supplementary Figure 10: First-principles AML discovery in a virtually unlimited space, re-executed to study
its robustness. The layout thereby closely follows Fig. 4 of the main text and comments given therein apply. In a),
results of the re-execution are shown as an orange trace, while the blue trace reproduces the results of the AML
discovery run presented in the main text (Fig. 4).

To assess the robustness of AML discovery in the virtually unlimited OSC chemical space, we
executed the algorithm a second time, applying similar settings. Supplementary Figure 10 a,b)
presents the corresponding results in an analogous way as Fig. 4 in the main text does for the first
AML discovery run. Overall, highly similar behavior and performance is found. After 15 learning
steps, first-principles calculations for 1693 molecules had successfully finished, among them 840
molecules that surpassed a molecular fitness of F ≥ −0.2. The relative success rate of 50 % was then
only slightly lower than the 54 % described in the main text. Again, only for a minority of molecules
(22) the descriptor calculations terminated unsuccessfully. We also note, that the re-execution
fully relied on a first-principles calculation of all requested molecular descriptor values, here not
drawing any information from the internal database of computed values that had accumulated during
development and testing of the AML discovery algorithm. This assessment thus also eliminated any
bias that might arise from selective presence of descriptor values in the database. Clear differences
between both executions however arise in the uncovered favorable molecular structures, compare
e.g. Supplementary Figure 10 c) to Figure 4 c). Different parts of the virtually unlimited chemical
OSC space have correspondingly been explored, as random elements are inherent to our search space
reduction strategy and also enter with descriptor calculations becoming available at different times
on the HPC system.
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Supplementary Figure 11: Extended list showing the 4 best performing molecules identified
at each learning step during the AML discovery in a virtually unlimited space and at the DFT-
B3LYP (+vdW) level of theory. Note, overlaps are marked in red. Continued on next page.
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Supplementary Figure 11: Continued.
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