Supplementary Information for:

MicroRNA-146a Limits Tumorigenic Inflammation in Colorectal Cancer

Lucien P. Garo^{1,2}, Amrendra K. Ajay³, Mai Fujiwara¹, Galina Gabriely¹, Radhika Raheja¹, Chantal Kuhn¹, Brendan Kenyon¹, Nathaniel Skillin¹, Ryoko Kadowaki-Saga¹, Shrishti Saxena¹, and Gopal Murugaiyan^{1*}

¹Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ²Boston University School of Medicine, Boston, MA 02118, USA ³Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston,

MA 02115, USA.

These authors contributed equally: Amrendra K. Ajay and Mai Fujiwara

*Corresponding author: mgopal@rics.bwh.harvard.edu

Supplementary Fig. 1. WT and miR-146a^{-/-} bone marrow chimeras.

Supplementary Fig. 1. WT and miR-146a^{-/-} bone marrow chimeras.

a, Schematic of WT and miR-146a^{-/-} BM chimeras. CD45.1 WT and CD45.2 miR-146a^{-/-} mice were irradiated and reconstituted with WT or miR-146a^{-/-} 5 x 10⁶ bone marrow cells for 6 weeks. Extended license image from stock.adobe.com. **b**, Representative FACS plots of CD45.1 or CD45.2 compartments in these mice after 6 weeks (n = 3). Data representative of \geq 2 independent experiments. n = biologically independent replicates per group. Source data are provided as a Source data file.

Supplementary Fig. 2. MiR-146a deletion within myeloid cells promotes CRC development.

Supplementary Fig. 2. MiR-146a deletion within myeloid cells promotes CRC development.

a,**b** Percent body weight changes (**a**) and survival (**b**) in colitic (3% DSS) miR-146a^{fl/fl} and myeloid-miR-146a^{-/-} mice (n = 8). **c**-**e**, Representative FACS plots and frequencies of IL-17a in CD4⁺ T cells (Th17) (**c**), (Lin⁻CD45⁺) ILCs (**d**), and (CD3⁺ $\gamma\delta^+$) $\gamma\delta^+$ T cells (**e**) from the colonic LP of CRC WT and miR-146a^{-/-} mice (n = 5). **f**, Schematic of FACS for LP DCs and MΦs: Total cells \rightarrow Singlets \rightarrow Live (7AAD⁻) CD45⁺ immune cells \rightarrow MHC-II⁺CD45⁺ immune cells \rightarrow CD11c⁺CD11b^{+/-}F480⁻ DCs and CD11c^{+/-}CD11b⁺F480⁺ MΦs. **g**, qPCR of IL-17-inducing cytokines in CD11c⁺ DCs from the colonic LP of WT and miR-146a^{-/-} mice with AOM/DSS-induced CRC (n = 7). qPCR data as FC from WT. Data representative of ≥2 independent experiments. n = biologically independent replicates per group. Mean \pm SEM. *p<.05, **p<.01, ***p<.001, by two-way ANOVA with Bonferroni adjustment (**a**) or two-tailed Student's t-test (**c-e,g**). Source data are provided as a Source data file.

Supplementary Fig 3. Myeloid cell deletion of miR-146a enhances tumorigenic IL-17-promoting cytokines by promoting NOD2-RIPK2 signaling.

Supplementary Fig 3. Myeloid cell deletion of miR-146a enhances tumorigenic IL-17-promoting cytokines by promoting NOD2-RIPK2 signaling.

a, Western blot of RIPK2 in CRC tissue from WT and miR-146a^{-/-} mice. **b**, qPCR of RIPK2 in CD11c⁺ DCs from the colonic LP of WT and miR-146a^{-/-} mice with AOM/DSS-induced CRC (n = 4). **c**,**d**, qPCR of RIPK2 in bone marrow-derived DCs (**c**) and MΦs (**d**) from miR-146a^{fl/fl} and myeloid-miR-146a^{-/-} mice stimulated with MDP (10µg/ml) for 24 h (n = 5). **e**,**f**, qPCR of IL-17-inducing cytokines in miR-146a^{fl/fl} and myeloid-miR-146a^{-/-} BMDCs (**e**) and BMDMs (**f**) stimulated with MDP (10µg/ml) for 24h (n = 5). **g**,**h**, Western blots of RIPK2, IKKα, c-Rel, and RelB from WT and miR-146a^{-/-} BMDMs (**g**) and BMDCs (**h**). **i**,**j**, ELISA of IL-17 in ILCs (n =5) (**i**) and γδ⁺ T cells (n = 4) (**j**) cocultured with WT or miR-146a^{-/-} BMDCs at a 1:1 ILC:DC or γδ⁺ T cell:DC ratio for 5 days under low-dose Th17-polarizing conditions with TGF-β (0.5 ng/ml), IL-6 (10 ng/ml), and anti-IFN-γ (10 µg/ml). Soluble anti-CD3 and anti-CD28 (1 µg/ml) was added to γδ⁺T cell:DC cocultures. DCs were prestimulated with MDP for 20h, then washed before coculture. qPCR data as FC from WT (**b**,**i**,**j**), miR-146a^{fl/fl} (**c**,**d**) or miR-146a^{fl/fl} med (**e**,**f**). Data representative of ≥2 independent experiments. n = biologically independent replicates per group. Mean *±* SEM. *p<.05, **p<.01, ***p<.001, by two-way ANOVA with Tukey adjustment (**e**,**f**) or two-tailed Student's t-test (**b-d**,**i**,**j**). Source data are provided as a Source data file.

Supplementary Fig. 4. MiR-146a deletion within IECs promotes CRC development.

Supplementary Fig. 4. MiR-146a deletion within IECs promotes CRC development.

a,b, Percent body weight changes (a) and survival (b) in colitic (3% DSS) miR-146a^{fl/fl} and IEC-miR-146a^{-/-} mice (n = 8). c, Western blots of TRAF6, NF-κB subunit phospho-p65 (pp65), and phospho-p38 (pp38) MAPK in CRC tissue from WT and miR-146a^{-/-} mice. **d**. aPCR of IL-17 in CRC tissue from miR-146a^{fl/fl} and IEC-miR-146a^{-/-} mice with AOM/DSS-induced CRC. gPCR data as FC from miR-146a^{fl/fl} (n = 8) e, FACS frequencies of IL-17a in CD4⁺ T cells (Th17), (Lin⁻CD45⁺) ILCs, and (CD3⁺νδ⁺) νδ⁺ T cell from the colonic LP of CRC miR-146a^{fl/fl} and IEC-miR-146a^{-/-} mice (n = 8). f, Schematic of FACS for IECs: Total cells \rightarrow Singlets \rightarrow Live (7AAD⁻) CD31⁻ EpCAM⁺ IECs. g, Representatives FACS histograms and MFIs of TRAF6 in FACS-sorted IECs from WT and miR-146a^{-/-} mice with AOM/DSS-induced CRC. MFI as FC from WT (n = 5). h, Western blots of TRAF6, pp65, and pp38 in IECs from CRC WT and miR-146a^{-/-} mice. i, qPCR of miR-146a in ctrl or miR-146a-silenced CMT-93 IEC line (n = 4). j,k, Western blots of Cox-2 and β -catenin in CRC tissue (j) and IECs (k) from CRC WT and miR-146a^{-/-} mice. I.m. qPCR of PTGES2 in CRC tissue (n = 5-6) (I) and IECs (n = 9-10) (m) from CRC WT and miR-146a^{-/-} mice. n.o., Western blot of PTGES2 in CRC tissue (n) and IECs (o) from CRC WT and miR-146a^{-/-} mice. **p**,**q**, Representative images (**p**) and numbers (**q**) of colonic tumors in WT and miR-146a^{-/-} mice treated with anti-IL-17a (500 μ g/mouse) twice a week throughout AOM/DSS CRC induction (n = 5). qPCR data as FC from WT. Data representative of ≥ 2 independent experiments. n = biologically independent replicates per group (a,b,d,e, g,l,m,q) or replicates pooled from independent experiments (i). Mean \pm SEM. *p<.05, **p<.01, ***p<.001, by two-way ANOVA with Bonferroni adjustment (a), two-way ANOVA with Tukey adjustment (q), or two-tailed Student's t-test (d,e,g,i,l,m). Source data are provided as a Source data file.