







Tubulin

Supplement Table 1. primer sequences, Related to Figure 2, Figure 5 and Fig

	Supplement Table 1. primer sequences, Related to Figure2, Figure 5 and Figure 6. RT-PCR Primers			
Name	Sequence			
human PHD3 Forward	ATACTACGTCAAGGAGAGGT			
human PHD3 Reverse	TCAGCATCAAAGTACCAGA			
human B2M Forward	AGATGAGTATGCCTGCCGTGTGAA			
human B2M Reverse	TGCTGCTTACATGTCTCGATCCCA			
human ACC2 Forward	CTCTGACCATGTTCGTTCTC			
human ACC2 Reverse	ATCTTCATCACCTCCATCTC			
mouse PHD3 Forward	CAGACCGCAGGAATCCACAT			
mouse PHD3 Reverse	TTCAGCATCGAAGTACCAGACAGT			
mouse ACC2 Forward	TTCATGGACAGTGGCTTCTC			
mouse ACC2 Reverse	GCACGCCTTACTGAAGAGAAG			
mouse VEGF Forward	AAAAACGAAAGCGCAAGAAA			
mouse VEGF Reverse	TTTCTCCGCTCTGAACAAGG			
mouse TFB1 Forward	AATTTCCTCCTGGACTTGAGG			
mouse TFB1 Reverse	AGAGAGCATCTGTAACCCTGG			
mouse TFB2 Forward	GTTCGAATGACTCCTCGTAGG			
mouse TFB2 Reverse	CATTCTAGCAGCTGTGTCTCC			
mouse PGC-1 α Forward	CCCTGCCATTGTTAAGACC			
mouse PGC-1 α Reverse	TGCTGCTGTTCCTGTTTTC			
mouse Cytochrome C Forward	CACGCTTTACCCTTCGTTCT			
mouse Cytochrome C Reverse	CTCATTTCCCTGCCATTCTCTA			
mouse PDK4 Forward	CCGCTGTCCATGAAGCA			
mouse PDK4 Reverse	GCAGAAAAGCAAAGGACGTT			
mouse PPAR α Forward	AGAGCCCCATCTGTCCTCTC			
mouse PPAR α Reverse	ACTGGTAGTCTGCAAAACCAAA			
mouse β-Actin Forward	AGCCATGTACGTAGCCATCC			
mouse β-Actin Reverse	CTCTCAGCTGTGGTGGTGAA			

Primers for MT-DNA Copy Number			
Name	Sequence		
MT-CO2 Forward	CCCCACATTAGGCTTAAAAACAGAT		
MT-CO2 Reverse	TATACCCCCGGTCGTGTAGCGGT		
D-Loop Forward	TATCTTTTGGCGGTATGCACTTTTAACAG		
D-Loop Reverse	TGATGAGATTAGTAGTATGGGAGTGG		
β-Globin Forward	GTGCACCTGACTCCTGAGGAGA		
β-Globin Reverse	CCTTGATACCAACCTGCCCAG		
β-Actin Forward	TCACCCACACTGTGCCCATCTACGA		
β-Actin Reverse	CAGCGGAACCGCTCATTGCCAATGG		

Primers for cloning		
Name	Sequence	
ACC2 P450A Forward	AATTGGTTTTgcaTTGATGATCAAAG	
ACC2 P450A Reverse	CTTTCTGCTGCCTCCAAG	
ACC2 S222A Forward	GCCGAGCATGgcgGGACTCCACC	
ACC2 S222A Reverse	CTCATAGTGGGGACGCGGGTC	
ACC2 S222E Forward	GCCGAGCATGgagGGACTCCACC	
ACC2 S222E Reverse	CTCATAGTGGGGACGCGGGTC	
ACC2 BC Forward	CTGGGATCCCCGGAATTCGATGATCTGCAGCAGGGAAAA	
ACC2 BC Reverse	CGTCAGTCAGTCACGATGCATGGCGATCTGTAGCTGG	
ACC2 BCCP Forward	CTGGGATCCCCGGAATTCACAGTCCTGAGATCCCCC	
ACC2 BCCP Reverse	CGTCAGTCAGTCACGATGCAGCCTGGCCACCAC	
ACC2 CT Forward	CTGGGATCCCCGGAATTCCTTCTGTACCTGCGGGCA	
ACC2 CT Reverse	CGTCAGTCAGTCACGATGGCCGGGTGTGTCATGGAA	
ACC2 NT Forward	CCGGAATTCAAGGGCAGCCGGGCCAGCTTG	
ACC2 NT Reverse	CGTCAGTCAGTCACGATGCATGGCGATCTGTAGCTGG	

Primers for shRNA knockdowns		
Name	Sequence	
Control shRNA Forward	CCGGCCGTCATAGCGATAACGAGTTCTCGAGAACTCGTTATCGCTATGACGGTTTTTG	
Control shRNA Reverse	AATTCAAAAACCGTCATAGCGATAACGAGTTCTCGAGAACTCGTTATCGCTATGACGG	
shPHD3 #1 (TRCN0000001048)	CACCTGCATCTACTATCTGAA	
shPHD3.2 (TRCN0000001050)	GTGGCTTGCTATCCGGGAAAT	
shACC2 #1 (TRCN 0000029031)	CCGACGAATCACATTCTTGAT	
shACC2 #2 (TRCN 0000029032)	CCCGAGAACCTCAAGAAATTA	

SUPPLEMENTARY FIGURE LEGENDS

Figure S1.Nutrient and PHD3-dependent changes in ACC2 proline hydroxylation. Related to Figure 1.

(A) Schematic depicting different fuels examined in nutrient add back assays. After fuel addition, cells were used for ACC2 hydroxylation assay. MEF cells were cultured in high or low glucose for 12 h, then hydroxylation was assessed at the indicated times after re-addition of 10% FBS (B), or 10% dialyzed FBS (C). Proline hydroxylation was detected in ACC2 immunoprecipitates by western blotting using antibodies to pan-proline hydroxylation, compared with ACC or tubulin controls from the input cell lysate. (D) Representative mass spectra identifying the hydroxylated and non-hydroxylated versions of residue P450 in immunoprecipitated ACC2 protein. "b" fragments contain the N-terminal amino acid and are labeled from the N to C terminus. "y" fragments contain the C-terminal amino acid and are labeled from the C to N terminus. (E) Relative abundance of hydroxylation of proline residues on ACC2 immunoprecipitated from MEFs cultured in 5 mM versus 25 mM glucose media (light grey) or control vs. shPHD3 knockdown cells (dark grey). For all comparisons two-tailed t test was used. P < 0.05. (F-G) Volcano plots demonstrating that 5 mM glucose media (F) or PHD3-depleted MEFs (G) incubated MEFs have statistically significant proline hydroxylation changes compared to control cells. The proline 450 residue, (aa sequence: IGFP(OH)LMIK), was most significantly changed. (H) Immunoprecipitation and western blotting analysis of ACC2 hydroxylation and phosphorylation in the indicated condition. shControl or shPHD3 293T cells were transfected with ACC2, and incubated with 25 mM glucose media or 5 mM glucose media for 4 h. ACC2 proteins were pulled down using antibody against ACC2 and immunoblotted using the indicated antibodies. (I) Immunoblots of ACC2 hydroxylation from MEFs expressing either control shRNA or PHD3 shRNA with or without AICAR. (J) Relative ACC2 expression using mouse βactin as a reference gene in MEFs expressing shRNA against ACC2, PHD3 or shRNA control (n = 4). (K) Relative PHD3 expression using mouse β -actin as a reference gene in MEFs expressing shRNA against ACC2, PHD3 or shRNA control (n = 4). (L) PHD3 expression using mouse bactin as a reference gene in MEFs under high or low nutrient conditions.

Figure S2. PHD3 KO mouse generation. Related to Figure 2.

(A) Gene targeting strategy for Phd3. In the Phd3 locus, exon 2 is flanked by two loxP sites. Exon 2 is deleted by Cre-mediated recombination. S, Sca I; H, Hind III; Neo, neomycin cassette; hatched square, Frt site (flanking the Neo cassette); open triangle, loxP site; arrows 1, 2 and 3. (B) qPCR analyses to confirm the lack of WT mRNA transcripts in PHD3 KO mouse quadriceps. (C) H&E and immunohistochemistry staining of PHD3 in WT or PHD3 KO mice quadriceps muscles. Scale is 1000 μ m.

Figure S3. PHD3 binds the BC domain of ACC2. Related to Figure 3.

(A) P450 (hydroxylation site, blue) is located in the ACC2 BC domain (green and cyan). S222 (phosphorylation site, red) is located inside of the ACC holoenzyme dimer structure. This model

was generated by superposition of human ACC2 biotin carboxylase domain (PDB: 3JRW) with the entire yeast ACC (PDB: 5CSL). (B) Schematic figure of the domains of ACC2 protein. Posttranslational modifications by AMPK (phosphorylation, red) and PHD3 (hydroxylation, blue) are highlighted. BC, biotin carboxylase domain; BCCP, biotin carboxyl carrier protein domain; CT, carboxyltransferase domain; N-terminus domain contains ATP grasp domain. (C) Immunoprecipitation and western blotting analysis of PHD3 interaction with the BC domain of ACC2. Proteins were expressed in e. coli. ACC2 BC domain with GST-tag and PHD3-HA was pulled down using GST-beads for an in vitro binding assay, and the precipitates were immunoblotted. (D) In vitro binding of PHD3 with the BCCP domain of ACC2 was assessed by immunoprecipitating protein complexes using anti-GST-beads. (E) In vitro binding assay of PHD3 interaction with the CT domain using anti-GST-beads. (F) Immunoprecipitation using anti-HA-beads and western blotting analysis of PHD3 interaction with the BC domain of ACC2. In vitro binding assay of PHD3 interaction with the BCCP domain (G) or CT domain (H). (I) HEK293T cells were transfected with constructs expressing ACC2 NT-Flag and/or PHD3-HA. Proteins from cell lysates were immunoprecipitated using anti-Flag antibody and the immunoprecipitates were immunoblotted using the indicated antibodies. (J) ACC2 NT-Flag was transfected into HEK293T cells. Cells were incubated in high (25 mM) or low (5 mM) glucose containing media for 8 hr. Proteins in cell lysates were precipitated by anti-Flag antibody and the precipitates were immunoblotted using hydroxyl proline antibodies. (K) ACC2 FL-WT-Flag, ACC2 FL-P450A-Flag, ACC2 FL-S222A-Flag and/or PHD3-HA were transfected into MEFs. Complexes were immunoprecipitated using anti-Flag antibody and proteins were detected by immunoblotting using the indicated antibodies. (L) Immunoprecipitation and western blot analysis in shcontrol or shPHD3 MEFs overexpressing full length WT ACC2 or S222A ACC2. (M-P) In vitro hydroxylation assay for PHD3 enzymatic activity with recombinant protein about N-terminus domains of WT ACC2 (M), P450A ACC2 (N), S222A (O), or S222E (P). 2.5 uM or 5 uM of PHD3 WT, or H196A mutants were added to a reaction with 20 uM synthetic peptide and then succinate was measured at the indicated times. Rates were normalized against the No peptide control (n=3). *P < 0.05.

Figure S4. PHD3 regulation of fat metabolism. Related to Figure 4

(A) Palmitate oxidation in shCon (control) or shPHD3 C2C12 cells using ³H-palmitate as a substrate and measuring released ³H₂O as readout for FAO (n=3). (B) Proline hydroxylation was assessed by immunoblotting from anti-ACC2 immunoprecipates and corresponding whole-cell lysates of shcontrol or shPHD3 C2C12 cells. (C) Heat map depicting metabolite abundance in PHD3 knockdown, AMPK α knockout or non-silencing control MEFs. Volcano plots demonstrating that PHD3 (D) and AMPK depleted MEFs (E) have numerous statistically significant metabolic changes compared to control cells. PHD3 expression (F) or ACC2 expression (G) using B2M as a reference gene in shControl or shPHD3 HEK293T cells. (H) Mitochondrial DNA number was not changed by PHD3 knockdown. mtDNA levels were measured by quantitative PCR of MT-CO₂ using human b-actin as a reference gene in shControl or shPHD3 HEK293T cells. Mitochondrial mass of 293T cells (I) or MEFs (J) depleted of PHD3 or control shRNA using MitoTracker Green (n = 5). (K) Basal palmitate-driven oxygen consumption rate (OCR) of shControl or shPHD3 MEFs was measured using a Seahorse Bioscience XF24 Extracellular Flux Analyzer (n = 15 wells). (L) Basal oxygen consumption rate

(OCR) of shControl or shPHD3 MEFs cultured in high or low glucose media was measured using a Seahorse Bioscience XF24 Extracellular Flux Analyzer (n = 15 wells). Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of myristoyl-carnitine (m/z 372.310835, $\Delta ppm = 0.2$) (M), and stearoyl-carnitine (m/z 428.37286, $\Delta ppm = 1.34$) (N) in WT or PHD3 KO mouse quadriceps under fed or fasted conditions. (O) Measured and calculated mass of species detected by MALDI MS (FT-ICR MS so <2 ppm expected). (P) ATP levels were measured in quadriceps tissue lysates in WT or PHD3 KO mice under fed or fasted condition (n=4) using ATP colorimetric assay kit. ATP, ADP and AMP were measured in WT or PHD3 KO mice quadriceps tissues using mass spectrometry. ATP (Q), ADP (R) and AMP (S) levels were measured in fresh frozen quadriceps tissue in the indicated conditions. WT or PHD3 KO mice under fed or fasted condition (n=8). (T) The energy charge formula was calculated through ([ATP] + [ADP] / 2) / ([ATP] + [ADP] + [AMP]).

Figure S5. PHD3 KO mouse muscle characterization. Related to Figure 5

(A) Gene set enrichment analysis of PHD3 indicating its negative connection with fatty acid oxidation and mitochondrial pathways in human muscle dataset (GSE3307). Mitochondrial and fatty acid oxidation pathways are highlighted in green and blue, respectively. The size of dot represents the number of genes in the pathway, and transparency indicates the significance (log10 (FDR)) of the enrichment between this pathway and PHD3 expression. (B) PHD3 expression levels in human muscle biopsies in pre-exercise or post-exercise training (GSE111551). Data represent means ± SEM. (C) Relative PHD3 expression using mouse betaactin as a reference gene in WT or PHD3 KO mice quadriceps pre-exercise versus post exercise (n=9). The mRNA levels of MyoD (D) and myoglobin (E) in WT or PHD3 KO mouse quadriceps under fed or fasting conditions (n = 4). *P < 0.05. (F) Immunofluorescence of Myosin Heavy Chain Type IIA (MYH2) (green), ACC2 (red) and DAPI (blue) in Flox (WT) or PHD3 KO mouse quadriceps under fed and fasted conditions. Scale is 500 µm. (G-H) The relative intensity of MYH2 (G) and ACC2 (H) were normalized by the relative intensity of DAPI for each condition. (I) Gene expression using mouse β -actin as a reference gene in WT or PHD3 KO mouse quadriceps (n = 4). (J) Mean whole-body CO₂ analysis in 20 week-old WT or PHD3 KO mice using Comprehensive Lab Animal Monitoring System (CLAMS) (n=9). WT or PHD3 KO mice were subjected to ad libitum feeling for 48 hours, followed by fasting for 16 hours. Mean whole-body oxygen consumption (K) and Respiratory exchange ratio (RER) (L) in WT or PHD3 KO mice under fed and fasted conditions using CLAMS. Data represented means ± SEM. *P < 0.05.

Figure S6. PHD3 KO mice have increased exercise capacity compared to WT littermates. Related to Figure 6.

(A) Schematic of the exercise capacity treadmill experiment. (B) Age-matched mice (20 weeks old) were individually placed in metabolic cages and allowed to acclimate for 48 h before experiments (n = 8 mice per group). Mean whole-body oxygen consumption of both genotypes from the individual performances. (C) Mean whole-body CO_2 during exercise challenge, beginning with mice at rest. (D) RER (VCO₂/VO₂). Data represented means ± SEM. *P < 0.05.

(E) Expression of the indicated genes from WT or PHD KO mouse quadriceps pre- or immediately post-exercise. Mouse β -actin was used as a reference gene (n=4). (F) qPCR analyses of WT PHD3 mRNA transcript in WT or PHD3 MCK-Cre KO mouse quadriceps and liver RNA samples. (G) ACC2 immunoprecipitation and western blotting analysis of ACC2 hydroxylation in WT control or PHD3 MCK-Cre KO mice quadriceps.