Radical Dehalogenation and Purine Nucleoside Phosphorylase *E. coli*: How does an Admixture of 2',3'-Anhydroinosine Hinder 2-fluoro-cordycepin Synthesis

Alexey L. Kayushin ¹, Julia A. Tokunova ¹, Ilja V. Fateev ¹, Alexandra O. Arnautova ¹, Maria Ya. Berzina ¹, Alexander S. Paramonov ¹, Olga I. Lutonina ¹, Elena V. Dorofeeva ¹, Konstantin V. Antonov ¹, Roman S. Esipov ¹, Igor A. Mikhailopulo ², Anatoly I. Miroshnikov ¹ and Irina D. Konstantinova ^{1,*}

Content	Page number
Figure S1. The HPLC profile of the reaction mixture of 2-fluorocordycepin synthesis	S-2
Figure S2. A mass-spectrum of unknown nucleoside (10)	S-2
Figure S3. The data of LC-MS 3'-dIno (9) with 16% of compound (11)	S-3
Figure S4. The HPLC profile of the reaction mixture obtained during 2-fluorocordycepin synthesis. Synthesis of 2-F-Cord.	S-4
Figure S5. HPLC profile of the reaction mixture obtained during hydrolysis of epoxide 11 in 5 mM potassium-phosphate buffer (pH 7.0)	S-5
Figure S6. HPLC profile of the reaction mixture obtained during hydrolysis of 11 in 5 mM potassium-phosphate buffer (appeared pH 7.0), D ₂ O	S-5
Figure S7. HPLC profile of the reaction mixture obtained during hydrolysis of 11 in 5 mM potassium-phosphate buffer (appeared pH 4.1), D ₂ O	S-5
Figure S8. A fragment of ¹ H NMR spectrum of 12 Figure S9. A fragment of ² H NMR spectrum of nucleoside 12	S-6
Figure S10. A fragment of ¹³ C NMR spectrum of compound 12	S-7
NMR data for nucleosides 10, 11, 12, 14	S-8 – S-31
The ¹ H NMR spectrum of compound 13 (DMSO-d6, 30 °C).	S-32

Comp	RT (min)	% Area
?	4.802	31.39
Нур	5.802	5.45
Ino	6.511	15.50
3'-dIno	7.076	30.40
2-F-Ade	8.655	8.93
2-F-Ado	9.037	3.23
2-F-Cord	9.707	5.10

Figure S1. The HPLC profile of the reaction mixture of anomal 2-fluorocordycepin synthesis (14 days after start of the reaction). Reaction conditions: 1.5 mM 3'-dIno, 1 mM 2-F-Ado, 2 mM potassium phosphate (pH 7.0), 100 mL, 50 $^{\circ}$ C, 580 units of PNP.

[M + H] ^{+,} found (calculated)	Other, found (calculated)
241.0923 (241.0937, C ₉ H ₁₃ N ₄ O ₄)	[M + Na]⁺ 263.0736 (263.0756, C9H12N4NaO4)

Figure S2. A mass-spectrum of unknown nucleoside (10) (Figure SI-1, RT = 4.802 min).

Figure S3. The data of LC-MS 3'-dIno (9) with 16% of compound (11) obtained as shown on Scheme 1, route A.

Scheme 1. Synthesis of 2',3'-anhydroinosine (11).

Synthesis of 2-*F*-Cord. 3'-dIno was obtained using *catalytic dehalogenation* (Scheme 1, route **B**).

Figure S4. The HPLC profile of the reaction mixture obtained during 2-fluorocordycepin synthesis (16 days after start of the reaction). 3'-dIno was obtained using *catalytic dehalogenation (Scheme 1, route B)*. Reaction conditions: 1.5 mM 3'-dIno, 1 mM 2-F-Ado, 2 mM potassium phosphate (pH 7.0), 1.0 mL, 50 °C, 12.5 units of PNP.

9-(3-Deoxy-β-D-ribofuranosyl)-2-fluoroadenine (2-F-Cord)

2-Fluoroadenosine [1] (0.29 g, 1 mmol) was dissolved in 1 L of water under heating and stirring. The solution was cooled to 50 °C, 0.38 g (1.5 mmol) 3'-deoxyinosine **9** and 0.27 g (2 mmol) of KH₂PO₄ were added, and the pH of the mixture was adjusted to 7.0; PNP (12500 IU) was added and the reaction mixture was incubated at 52 °C for 20 days under stirring. The desired product was isolated as described above [2]. Yield 193 mg (0.72 mmol, 72%) as lyophilized powder; purity 99.78 % (R_t = 9.18 min, method II). UV (H₂O, pH 7.0) λ_{max} , nm (ϵ , M⁻¹cm⁻¹): 261 (14800); λ_{min} , nm (ϵ , M⁻¹cm⁻¹): 225 (5100). ESI-MS data, ¹H and ¹³C NMR spectra were described in [2].

- V.B. Berzin, et all. The preparative method for 2-fluoroadenosine synthesis. *Russ. J. Bioorg. Chem.* 2009, 35 (2), 193–196; doi:10.1134/S1068162009020071
- 2 A.O. Denisova, et all. The chemoenzymatic synthesis of 2-chloro- and 2-fluorocordycepins. *Synthesis*, **2017**, *49*, 4853–4860.

Figure S5. HPLC profile of the reaction mixture obtained during hydrolysis of epoxide **11** in 5 mM potassium-phosphate buffer (pH 7.0), 96 h after reaction start, detection at 260 nm.

Figure S6. HPLC profile of the reaction mixture obtained during hydrolysis of **11** in 5 mM potassium-phosphate buffer (appeared pH 7.0), D₂O, 96 h after reaction start, detection at 260 nm.

Figure S7. HPLC profile of the reaction mixture obtained during hydrolysis of **11** in 5 mM potassium-phosphate buffer (appeared pH 4.1), D₂O, 96 h after reaction start, detection at 260 nm.

Figure S8. A fragment of ¹H NMR spectrum of **12**.

Figure S9. A fragment of ²H NMR spectrum of nucleoside 12.

Figure S10. A fragment of ¹³C NMR spectrum of compound 12.

Nucleoside 10: HPLC: R*t*= 7.38 min, purity 96.6%. UV/Vis (D₂O, appeared pH 4.1): λ_{max} , nm (ϵ , M⁻¹cm⁻¹): 276 (14900), λ_{min} , nm (ϵ , M⁻¹cm⁻¹): =222 (2900). HRMS (ESI⁻): (*m*/*z*) [(M + H)⁺] - calculated for C₉H₁₃N₄O₄ 241.0931, found 241.0955; calculated for C₉H₁₂DN₄O₄ 242.0994, found 242.1026. ¹H NMR (700 MHz, DMSO-d6, 30 °C): s δ = 7.12 (s, 0.18 H, H-8), 6.69 and 6.61 (2 s, 2 H, CONH₂), 6.39 (d, *J* = 4.4 Hz, 1 H, NH), 5.57 (d, *J* < 0.5 Hz, 1H, H-1'), 4.71 (br. sign, 0.36 H, OH-5'), 4.48 (br. sign, 1H, H-2'), 4.25 (dt, *J* = 3.2, 6.6, 6.6 Hz, 1 H, H-4'), 3.70 (m, 1 H, H-3'), 3.54 (dd, *J* = 7.0, 11.3 Hz, 1 H, CH-5'a), 3.46 ppm (dd, *J* = 6.5, 11.3 Hz, 1 H, CH-5'b).

²H NMR (700 MHz, DMSO-d6, 30 °C): *δ* = 7.12 ppm (s, D-8).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): δ = 165.46 (C=O), 139.19 (C5), 127.03(C2), 126.79 (t, *J* = 18.5Hz, C2-D), 110.91 (C4), 85.14 (C4'), 83.96 (C1'), 73.09 (C2'), 60.07 (C5'), 56.16 ppm (C3'). ¹⁵N NMR (71 MHz, DMSO-d6, 30 °C): δ = 253.35 (N3), 177.94 (N1), 95.31 (NH₂), 56.88 ppm (NH).

Nucleoside 12: HPLC: Rt = 5.01 min, purity 100%. UV/Vis (D₂O, appeared pH 4.1): λ_{max} , nm (ϵ , M⁻¹cm⁻¹): 254 (9900), λ_{min} , nm (ϵ , M⁻¹cm⁻¹): =229 (3500). HRMS (ESI⁻): (m/z) [(M + H)⁺] - calculated for C₁₀H₁₁N₄O₄ 251.0775, found 251.0797; calculated for C₁₀H₁₀DN₄O₄ 252.0838, found 252.0868; calculated for C₁₀H₉D₂N₄O₄ 253.0900, found 253.0914.

¹H NMR (700 MHz, DMSO-d6, 30 °C): δ = 8.16 (s, 0.66 H, H-8), 7.97 (s, 0.18 H, H-2), 6.08 (1H, d, *J J* < 1 Hz, H-1'), 5.07 (d, *J* = 3.1 Hz, 1 H, H-3'), 4.85 (m,1 H, *J* < 1 Hz, H-2'), 4.62 (ddd, *J* = 3.4, 6.1, 7.5 Hz.0, 1 H, H-4'), 3.41 (dd, *J* = 6.1, 11.1 Hz, 1 H, CH-5'^a), 2.98 ppm (dd, *J* = 7.6, 11.1 Hz, 1 H, CH-5'^b). ²H NMR (700 MHz, DMSO-d6, 30 °C): δ = 8.16 (s, 0.34 H, D-8), 7.97 ppm (s, 0.82 H, D-2).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): δ = 163.36 (C=O), 143.94 (C2), 136.99 (C4), 134.39 (C8), 134.16 (t, *J* = 38 Hz, C8-D), 120.27 (C5), 85.36 (C1'), 84.29 (C4'), 73.49 (C2'), 61.07 (C3'), 59.09 ppm (C5').

¹⁵N NMR (71 MHz, DMSO-d6, 30 °C): δ = 265.97 (N1), 252.28 (N7), 174.85 (N9), 135.43 ppm (N3).

Nucleoside 14: HPLC: RT 11.48, purity 98.1%. UV/Vis (D₂O, appeared pH 4.1): λ_{max} , nm (ε, M⁻¹cm⁻¹): 215(17600), 310 (15000), λ_{min} , nm (ε, M⁻¹cm⁻¹): 264 (1800). HRMS (ESI-): (*m*/*z*) [(M + H)⁺] - calculated for C₁₀H₁₃N₄O₅ 269.0880, found 269.0896; calculated for C₁₀H₁₂DN₄O₅ 270.0943, found 270.0972; calculated for C₁₀H₁₁D₂N₄O₅ 271.1006, found 271.1035.

¹H NMR (700 MHz, DMSO-d6, 30 °C): δ = 10.11 (s, 1 H, CO-NH), 9.11 (s, 0.1 H, C(O)H), 7.28 (s, 0.19 H, H-2), 7.11 (d, *J* = 4.7 Hz, 1H, C5-NH), 6.03 (s, 1 H, OH-2'), 5.63 (br. d, *J* = 0.25 Hz, H-1'), 4.74 (br. sign, 1 H, OH-5'), 4.32 (dt, *J* = 3.3, 6.7, 6.7 Hz, 1 H, H-4'), 3.77 (m, 1 H, H-3'), 3.56 (dd, *J* = 6.7, 11.3 Hz, 1 H, H_{5'a}), 3.49 ppm (dd, *J* = 6.9, 10.8 Hz, 1 H, H_{5'b}).

²H NMR (700 MHz, DMSO-d6, 30 °C): *δ* = 9.11 (s, 0.9 H, C(O)H), 7.28 ppm (s, 0.91 H, D-2).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): δ = 162.29 (s, 0.1C, (C=O)H), 162.09 (t, *J* = 30.1 Hz, 0.1C, (C=O)H), 161.74 (s, 1C, C=O), 143.29 (C5), 128.87 (s, 0.19C, C2-H), 128.66 (t, *J* = 33.2 Hz, 0.81C, C2-D), 108.65 (C4), 85.87 (C4'), 84.02 (C1'), 72.57 (C2'), 60.10 (C5'), 55.97 ppm (C3'). ¹⁵N NMR (71 MHz, DMSO-d6, 30 °C): δ = 250.33 (N3), 179.25 (N1), 158.81 (CO-NH), 64.28 ppm (C5-NH).

The ¹H NMR spectrum of 2',3'-anhydroinosine **11** (DMSO-d6, 30 °C).

The ¹H-¹³C-HSQC NMR spectrum of 2',3'-anhydroinosine **11** (DMSO-d6, 30 °C).

The fragment of ¹H-¹³C-HMBC NMR spectrum of 2',3'-anhydroinosine **11** (DMSO-d6, 30 °C).

f1 (мд)

The fragment of ¹H-¹⁵N-HMBC NMR spectrum of 2',3'-anhydroinosine **11** (DMSO-d6, 30 °C)

¹H NMR (700 MHz, DMSO-d6, 30 °C): s*δ* = 7.12 (s, 0.18 H, H-8), 6.69 and 6.61 (2 s, 2 H, CONH₂), 6.39 (d, *J* = 4.4 Hz, 1 H, NH), 5.57 (d, *J* < 0.5 Hz, 1H, H-1'), 4.71 (br. sign, 0.36 H, OH-5'), 4.48 (br. sign, 1H, H-2'), 4.25 (dt, *J* = 3.2, 6.6, 6.6 Hz, 1 H, H-4'), 3.70 (m, 1 H, H-3'), 3.54 (dd, *J* = 7.0, 11.3 Hz, 1 H, CH-5'a), 3.46 ppm (dd, *J* = 6.5, 11.3 Hz, 1 H, CH-5'b).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): *δ* = 165.46 (C=O), 139.19 (C5), 127.03(C2), 126.79 (t, *J* = 18.5Hz, C2-D), 110.91 (C4), 85.14 (C4'), 83.96 (C1'), 73.09 (C2'), 60.07 (C5'), 56.16 ppm (C3').

The fragment of ¹H-¹⁵N-HSQC NMR spectrum of nucleoside **10** (DMSO-d6, 30 °C). ¹⁵N NMR (71 MHz, DMSO-d6, 30 °C): *δ* = 253.35 (N3), 177.94 (N1), 95.31 (NH₂), 56.88 ppm (NH).

The fragment of ¹H-¹⁵N-HMBC NMR spectrum of nucleoside **10** (DMSO-d6, 30 °C). ¹⁵N NMR (71 MHz, DMSO-d6, 30 °C): δ = 253.35 (N3), 177.94 (N1), 95.31 (NH₂), 56.88 ppm (NH).

¹H NMR (700 MHz, DMSO-d6, 30 °C): δ = 8.16 (s, 0.66 H, H-8), 7.97 (s, 0.18 H, H-2), 6.08 (1H, d, *J* < 1 Hz, H-1'), 5.07 (d, *J* = 3.1 Hz, 1 H, H-3'), 4.85 (m, 1 H, *J* < 1 Hz, H-2'), 4.62 (ddd, *J* = 3.4, 6.1, 7.5 Hz.0, 1 H, H-4'), 3.41 (dd, *J* = 6.1, 11.1 Hz, 1 H, CH-5'a), 2.98 ppm (dd, *J* = 7.6, 11.1 Hz, 1 H, CH-5'b).

²H NMR (700 MHz, DMSO-d6, 30 °C): *δ* = 8.16 (s, 0.34 H, D-8), 7.97 ppm (s, 0.82 H, D-2).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): *δ* = 163.36 (C=O), 143.94 (C2), 136.99 (C4), 134.39 (C8), 134.16 (t, *J* = 38 Hz, C8-D), 120.27 (C5), 85.36 (C1'), 84.29 (C4'), 73.49 (C2'), 61.07 (C3'), 59.09 ppm (C5').

The fragment of ¹H-¹³C-HSQC NMR spectrum of nucleoside **12** (DMSO-d6, 30 °C).

The fragment of ¹H-¹³C-HMBC NMR spectrum of nucleoside **12** (DMSO-d6, 30 °C).

¹H NMR (700 MHz, DMSO-d6, 30 °C): δ = 10.11 (s, 1 H, CO-NH), 9.11 (s, 0.1 H, C(O)H), 7.28 (s, 0.19 H, H-2), 7.11 (d, *J* = 4.7 Hz, 1H, C5-NH), 6.03 (s, 1 H, OH-2'), 5.63 (br. d, *J* = 0.25 Hz, H-1'), 4.74 (br. sign, 1 H, OH-5'), 4.32 (dt, *J* = 3.3, 6.7, 6.7 Hz, 1 H, H-4'), 3.77 (m, 1 H, H-3'), 3.56 (dd, *J* = 6.7, 11.3 Hz, 1 H, H5'a), 3.49 ppm (dd, *J* = 6.9, 10.8 Hz, 1 H, H5'b).

¹³C NMR (176 MHz, DMSO-d6, 30 °C): *δ* = 162.29 (s, 0.1C, (C=O)H), 162.09 (t, *J* = 30.1 Hz, 0.1C, (C=O)H), 161.74 (s, 1C, C=O), 143.29 (C5), 128.87 (s, 0.19C, C2-H), 128.66 (t, *J* = 33.2 Hz, 0.81C, C2-D), 108.65 (C4), 85.87 (C4'), 84.02 (C1'), 72.57 (C2'), 60.10 (C5'), 55.97 ppm (C3').

The fragment of ¹H-¹³C-HSQC NMR spectrum of nucleoside **14** (DMSO-d6, 30 °C).

The fragment of ¹H-¹³C-HMBC NMR spectrum of nucleoside **14** (DMSO-d6, 30 °C).

The fragment of ¹H-¹⁵N-HMBC NMR spectrum of nucleoside **14** (DMSO-d6, 30 °C).

The ¹H NMR spectrum of compound **13** (DMSO-d6, 30 °C).