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S.1. Tumor segmentation   
   

Tumor regions of interest were segmented using a semi-automatic 
approach by an imaging scientist with over ten years of experience in 
segmenting contrast-enhancing lesions in murine models of glioma. The 
segmented tumor consisted of the enhancing lesion on a post-contrast T1-
weighted MRI (from the DCE-MRI dataset). First, a region of interest is 
manually drawn around the contrast-enhancing lesion. Second, a k-means 
clustering in MATLAB R2020a is used to identify voxels that are enhancing 
and non-enhancing within the region of interest.  Third, imfill in MATLAB 
R2020a is used to fill in holes within the regions identified as enhancing 
tissue.  Finally, the k-means segmented tumor is visually inspected before 
proceeding with modeling. The robustness of this approach was evaluated in 
an in silico study where noise was added from a normal distribution 
(equivalent to an SNR of 20 and the SNR of the image used for segmentation) 
to each animal’s day 0 post-contrast T1-weighted MRI to generate 100 unique 
imaging volumes which were then segmented using the semi-automatic 
approach above. We then calculated the variability in volume estimates and 
the degree of spatial overlap using the standard error and Dice correlation 
coefficient, respectively.   Results are shown below in Supplemental Table 1. 
We observed that this semi-automatic approach is robust to the noise level 
(SNR of 20) observed in the image used for segmentation resulting in a 
standard error of less than 0.26 mm3 and Dice correlation coefficients greater 
than 0.91 for all animals. 

 
 
 



Table S1. Standard error in segmented volume 

 
S.2. Parameter calibration bounds   

Model parameters during calibration are bounded as shown in 
Supplemental Table 2. The diffusion coefficients are bounded to maintain 
numerical stability, where other parameters are bounded by their definitions 
(i.e., volume fractions) or by 10.  For parameters with an upper bound of 10, 
this value was sufficiently high to ensure model parameters did not get stuck 
at an upper bound. 

Table S2. Parameter ranges used for model calibration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Animal Standard error (mm3) Dice correlation coefficient 
1 0.26 0.91 
2 0.24 0.92 
3 0.13 0.97 
4 0.16 0.96 
5 0.21 0.92 
6 0.10 0.97 
7 0.14 0.96 

Parameter or 
variable 

Parameter range 

kp,T,0 (day-1) 0 10 
kd,T,0 (day-1) 0 10 

DT,0 

(µm2 day-1) 
0 7.5 ´ 105  

DV,0 

(µm2 day-1) 
0 7.5 ´ 105  

 fV,thresh 0 1 
qmax 0 1 

kp,V (day-1) 0 10 
kd,V (day-1) 0 10 

SF 0 1 
a1 0 10 



 
Figure S1. Model predictions (scenario 2) for animal 1 and 3 (Sagittal plane). Model predictions of tumor 
and blood volume fractions at the central slice are shown for animal 1 and animal 3. For both animals, the 
model predictions from the selected model and the ensemble average are shown.  The bottom two rows 
show the T2-weighted and post-contrast T1-weighted MRI.  For animal 1, both the selected and ensemble 
average model predict the areas of intratumor heterogeneity in the tumor volume predictions. Blood 
volume predictions tended to predict increased blood volume in the interior of the tumor relative to the 
periphery as observed. For animal 3, the observed tumor is more homogeneous (compared to animal 1) and 
the model is able to predict this distribution.  Additional, both models predict a higher blood volume 
fraction towards the interior of the tumor at the final time point which is not present in the measured blood 
volume fraction. For animal 1, tumor growth was predicted from day 10 to 21 and resulted in -1.0% and 
261% error in tumor volume predictions for the selected and ensemble models, respectively. For animal 3, 
both the selected and ensemble average model resulted in < 4.6% error in tumor volume predictions.  

 
Figure S2. Model predictions (scenario 2) for animal 5, 6, and 7 (Sagittal plane). Model predictions of 
tumor and blood volume fractions at the central slice are shown for animal 5, 6, and 7. For all animals, the 



model predictions from the selected model and the ensemble average are shown.  The bottom two rows 
show the T2-weighted and post-contrast T1-weighted MRI.  For animal 5, only one prediction time point 
was available and both the selected and ensemble average model resulted in < 8.7% error in tumor volume 
predictions. For animal 6, tumor growth was predicted from day 8 to 19 and resulted in 16.0% and 521% 
error in tumor volume predictions for the selected and ensemble models, respectively. For animal 7, four 
prediction time points were available and both the selected and ensemble average model resulted in < 21.5% 
in tumor volume predictions across all time points.  

 
 
 
 
 

 
Figure S3. Error for tumor growth predictions for animals 1 and 3. The level of error in tumor volume 
predictions and spatial agreement of tumor volumes is assessed using the percent error in tumor volume 
(top row) and Dice correlation coefficient (bottom row).  Results for animals 1 (left column) and 3 (right 
column) are shown for the selected model (orange bars) and ensemble average model (blue bars) 
predictions. For animal 1, the Dice value generally decreased for both the selected and ensemble average 
model. For animal 3, the Dice value did not decrease as much animal 1 for the selected model, while the 
ensemble average model did decrease over time.  

 



 
 

 
Figure S4. Error for tumor growth predictions for animals 5, 6, and 7. The level of error in tumor volume 
predictions and spatial agreement of tumor volumes is assessed using the percent error in tumor volume 
(top row) and Dice correlation coefficient (bottom row).  Results for animals 5 (left column), 6 (middle 
column), and 7 (right column) are shown for the selected model (orange bars) and ensemble average model 
(blue bars) predictions. For both animals 6 and 7, the Dice value generally decreased the further out 
predictions were made.  For animal 6, statistically significant lower Dice values were observed for the 
ensemble average model compared to the selected model.   

 


