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SUMMARY
Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specifi-

cation and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage tomeasure dynamicmolecular changes

at the single-cell resolution.Here, wemultiplex and ectopically express 20 pro-neuronal transcription factors in humandermal fibroblasts

and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-

cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the

developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for

neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons.

The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biolog-

ical systems.
INTRODUCTION

The brain consists of a wide range of neuronal subtypes.

Understanding the mechanism that underlies neuronal

diversification is critical to the study of brain development

and neurodegenerative disease. The recent discoveries that

fully differentiated somatic cells can be reprogrammed into

alternative cell fates opened up exciting avenues to study

cellular specification and regenerative medicine (Chanda

et al., 2014; Liu et al., 2012; Smith et al., 2016; Takahashi

et al., 2007; Vierbuchen et al., 2010; Shin et al., 2012).

Despite the rapid development of cell reprogramming,

the possibility to identify the gene regulatory logic that un-

derlies neuronal reprogramming has remained elusive,

which has limited our understanding of the cellular plas-

ticity of stem cells and cellular diversification during devel-

opment and reprogramming.

Several studies have aimed to identify neurogenic tran-

scription factors (TFs) that allow the reprogramming ofma-

jor neuronal subtypes, where distinct combinations of TFs

have been shown to create dopaminergic neurons and

cholinergic motor neurons, which are selective targets of

degeneration in patients with Parkinson disease and amyo-

trophic lateral sclerosis, respectively (An et al., 2016;

Caiazzo et al., 2011; Kim et al., 2011; Liu et al., 2013; Maz-

zoni et al., 2013; Pfisterer et al., 2011; Son et al., 2011).

Moreover, in silico predictive models (Rackham et al.,

2016) and combinatorial screens (Chen et al., 2015; Liu

et al., 2018) provide high-throughput approaches to iden-
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tify various combination of TFs involved in cell reprogram-

ming. However, these approaches often require complex

and costly experimental setups, which is further exacer-

bated by the time and labor-intensive retesting and valida-

tion of newly identified candidates.

Multiplexing offers a more efficient and scalable strat-

egy, where a collection of genes can be perturbed either

by small hairpin RNA or CRISPR in a single experiment.

This is followed by a phenotypic selection and targeted

DNA sequencing to reveal candidate genes that attribute

to a pre-defined cellular phenotype (Chen et al., 2015;

Hsu et al., 2014; Liu et al., 2018; Shalem et al., 2015).

While the approach is highly scalable, it relies on a limited

number of phenotypic readouts or requires specific

markers to enrich for target cell populations, which are

often not available or limited to a single cell type. The

advancement in single-cell RNA sequencing (scRNA-seq)

has opened up new opportunities to profile gene expres-

sion profiles of heterogeneous tissues at the single-cell res-

olution without the need for cell selection (Adamson et al.,

2016; Dixit et al., 2016; Nowakowski et al., 2017; Picelli

et al., 2014). Moreover, adaptation of scRNA-seq with

CRISPR/sgRNA led to reconstruction of regulatory net-

works involved in immune activation (Shifrut et al.,

2018), cholesterol biogenesis (Replogle et al., 2020), and

zygotic genome activation (Alda-Catalinas et al., 2020).

However, how TFs work in concert to drive neuronal diver-

sification and profiling scRNA-seq with multiplexed TFs

remain unexplored.
hor(s).
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To address these challenges, we introduce a strategy that

combines multiplexing ectopic expression of full-length

TFs with scRNA-seq to retrospectively assign reprog-

rammed neurons with exogenous and endogenous expres-

sion profiles. We identify key determinants and regulatory

processes governing the classification of neuronal subtypes

in a single experiment. Single-cell RNA-seq of induced neu-

rons generated by the multiplexed transduction of 20 pro-

neuronal TFs reveals unique combinations of key TFs and

genetic programs orchestrating the plasticity of human fi-

broblasts into various neuronal subtypes, including gluta-

matergic and cholinergic neurons. We demonstrate that

the method efficiently gains deep insights into biological

processes governing cell plasticity and cell fate decisions,

and to systematically dissect regulatory processes control-

ling neuronal diversification during cell reprogramming.
RESULTS

Inducing a Heterogeneous Population of Human

Neuronal Subtypes

We established a system to identify TFs governing direct

cell reprogramming toward diverse neuronal subtypes by

infecting multiplexed TFs followed by scRNA-seq (Fig-

ure 1A). We first generated a pool of lentiviruses encoding

TFs previously implicated in neuronal reprogramming,

either as pioneering factors that can access closed chro-

matin (ASCL1, NEUROG2) (Smith et al., 2016; Wapinski

et al., 2013), as factors that increase the efficiency of reprog-

ramming (POU3F2, ZIC1, OLIG2, NEUROD1) (Pang et al.,

2011; Vierbuchen et al., 2010) or as factors that convert hu-

man fibroblasts into GABAergic (DLX1, DLX2) (Victor

et al., 2014), cholinergic (ISL1) (Son et al., 2011), seroto-

nergic (FEV) (Xu et al., 2016), or dopaminergic (FOXA2,

NR4A2, PITX3) (Liu et al., 2012; Pfisterer et al., 2011) neu-

rons when co-expressed with other TFs (Figure S1A). These

13 TFs were also upregulated during human induced

pluripotent stem cell (iPSC) differentiation into neuronal

progenitor cells (NPCs) (Figure S1A).We also selected seven

TFs that were upregulated during the differentiation but

were not previously implicated in direct neuronal reprog-

ramming. Altogether 20 TFs, hereafter termed the "TF-

pool," were individually tuned for multiplicity of infection

(MOI) to allow for ~85% of fibroblasts to express mixed

combinations of 2–6 TFs after pooled infection (Figures

S1B and S1C).

Transduction of the TF-pool in human dermal fibroblasts

followed by a serial application of neuronal induction me-

dium for 14 days and neuronal maturationmedium for the

subsequent 7 days led to heterogeneous neuron-like mor-

phologies, exhibiting multiple elongated dendrites from

the cell body and, in some cases, star shape-like features
mimicking astrocytes (Figure 1B). At 9 days post-infection

(dpi), 78.6% of TF-pool-induced (TFi) fibroblasts stained

positive for the immature neuronal marker TUBB3 and

34.7% expressed MAP2, a microtubule-associated protein

expressed specifically in neurons (Gelles et al., 1988) (Fig-

ures 1B and 1C). By 21 dpi, TUBB3+ and MAP2+ popula-

tions increased to 93.5% and 42.4%, respectively, indi-

cating progressive transdifferentiation toward the

neuronal lineage. Consistent with TUBB3 and MAP2 pro-

tein expressions, qPCR revealed upregulation of neuronal

marker transcripts (MAP2, NRCAM, NEUN, SYN1) and

neuronal subtype marker transcripts (SLC17A7 [glutama-

tergic neurons], GABRA1 [GABAergic neurons], TH [dopa-

minergic neurons], and CHAT [cholinergic neurons]) as

well as significant downregulation of fibroblast marker

expression (VIM, SNAI1) starting at 7 dpi (Figure 1D).

Previous studies have shown that mouse and human fi-

broblasts can be directly converted to induced neurons

solely by chemical cocktails of small molecules (Hu et al.,

2015; Li et al., 2015). We also found that application of

neuronal induction medium to fibroblasts (hereafter

termed chemical-induced [Chi] cells) generated TUBB3+

neurites, upregulated the RNA expression of NEUN, SYN1,

SLC17A7, and TUBB3, and downregulated the expression

of VIM and SNAI1 (Figures 1B–1D). However, CHi failed

to express MAP2 at any time point analyzed, indicating

that small molecules/growth factors, in the absence of

key TFs, were insufficient to elicit neuronal maturation in

human dermal fibroblasts. Consistently, neuronal

complexity, measured as number of branch points and

average neurite length, was significantly lower at 9 dpi

(8.5- and 1.8-fold, respectively) and at 21 dpi (5.6- and

4.8-fold, respectively) when fibroblasts were treated with

the neuronal induction medium alone compared with

TF-pool induction (Figures S1E and S1F). Immunofluores-

cence at 21 dpi indicated that TFi exhibited a heteroge-

neous population of cells expressing glutamatergic

(VGlut1+; ~29%), GABAergic (GABA+; ~23%), cholinergic

(CHAT+; ~19%), and dopaminergic (TH+; ~4%) subtype-

specific genes (Figures 1E and 1F). In contrast, only ~15%

of CHi expressed VGlut1 at 21 dpi and none of the other

subtype-specific genes were induced by small molecules

alone. Together, pooled overexpression of pro-neuronal

TFs generated a heterogeneous population of both imma-

ture and mature neuronal subtypes, while small molecules

partially reprogrammed fibroblasts toward the glutamater-

gic fate at low efficiency.

Molecular Characterization of Induced Neurons Using

scRNA-Seq

To gain further insights into the cellular heterogeneity of

TFi and CHi fibroblasts, we used droplet-based massively

parallel scRNA-seq (Zheng et al., 2017) to profile 2,092
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Figure 1. Generation of a Heterogeneous Population of Human Induced Neurons
(A) Overview of the single-cell TF multiplex pipeline.
(B) Immunostaining for canonical neuronal marker genes of fibroblasts at day 0 and CHi and TFi at 9 and 21 dpi. Scale bars, 100 mm. YFP
(green) marks infected cells and cell nuclei were visualized using DAPI nuclear stain (gray).
(C) Quantification of immunostainings in (B). n = 4 independent experiments, unpaired Student’s t test. Error bars represent mean + SD.
(D) qPCR for pan-neuronal marker genes (MAP2, NRCAM, NEUN, SYN1; top), canonical neuronal subtype markers (SLC17A7, GABRA1, TH,
CHAT; middle), and canonical fibroblast markers (VIM, SNAI1; bottom). n = 3 independent experiments, unpaired Student’s t test. Error bars
represent mean + SD.
(E) Immunostainings for canonical neuronal subtype markers (red) of TFi at 21 dpi. Scale bars, 100 mm. YFP (green) marks infected cells
and cell nuclei were visualized using DAPI nuclear stain (gray).
(F) Quantification of immunostainings in (E). n = 4 independent experiments, unpaired Student’s t test. Error bars represent mean + SD.
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CHi and 1,900 TFi at 14 dpi. Uniform Manifold Approxi-

mation and Projection (UMAP) (Mcinnes et al., 2018)

distinctively separated CHi and TFi fibroblasts along the

first dimension, UMAP1 (Figures 2A and S2A–S2D), and re-

vealed activation of neuronal differentiation genes

(NRCAM, STMN2, SST,DKK3) and synapse formation genes

(SYT1, SERPINI1, SYNGR1, SYNPO2), which was accompa-

nied by a decrease in fibroblast-specific genes (SNAI2,

THY1) (Figure 2A). Other suppressed genes included extra-

cellular matrix genes (COL3A1, COL15A1, EDIL3,HAPLN1,

CPXM1, MFAP4), reflective of the morphological changes

that occur during the cell transformation toward the neu-

rons. UMAP analysis further partitioned TFi cells into

several transcriptionally distinct clusters (clusters 4–9

[CL4–CL9]). Cells in CL4 dominantly expressed cell-cy-

cle-related genes, including MIKI67 and TOP2A, and

showed enrichment of gene ontology (GO) terms related

to cell division, suggesting that CL4 cells did not success-

fully exit the cell cycle and failed to initiate the reprogram-

ming process (Table S1). Interestingly, CL5–CL9 showed

enrichment of genes and GO terms related to nervous sys-

tem development and neurogenesis (Figures 2B, 2C, S2E,

and S2F).

To further annotate the remaining clusters, from CL5 to

CL9, we first interrogated top differentially expressed genes

(Seurat [Satija et al., 2015]; p < 10�20) for known neuronal

subtype marker genes. The analysis revealed CL5 to asso-

ciate with immature neurons, CL6 with the dopaminergic

neuron program (DRD4, SEMA3G), CL7 with the cholin-

ergic neuron program (CHRNA5, CP), CL8 with the

GABAergic neuron program (CHD7, DLL3), and CL9 with

the glutamatergic neuron program (ANK3, NKAIN4) (Fig-

ures 2D, 2E, and S2E). To support these findings, we used

a publicly available scRNA-seq dataset of human primary

cortical and medial ganglionic eminence brain (Nowakow-

ski et al., 2017) to infer cellular relationships among the

cells in a force-directed k-nearest neighbors graph (Weinreb

et al., 2018) (Figure 2F). The comparative analysis aligned

the primary brain cells along a developmental progression

from proliferative progenitor cells, immature neurons, and

finally to mature inhibitory and excitatory neurons.

Consistent with our previous results, CL4 cells expressing
Figure 2. Molecular Characterization of Induced Neurons using sc
(A) Top: visualization of droplet-based scRNA-seq data from CHi and T
indicated by different colors. Bottom: heatmap of the relative expres
(B) Heatmap of the relative expression of top marker genes for each
(C) GO analysis of cluster-specific marker genes in clusters CL4–CL9. Sh
and cellular component (light gray) for each cluster; colors as in (A)
(D) Violin plots of log2-transformed counts per million (CPM) values
(E) Annotation of TFi clusters CL4–CL9 based on genes differentially
(F) Relationship of CHi and TFi to primary human brain cells in a force
cells are colored in light colors, induced cells are colored by cluster a
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cell-cycle genes positioned near proliferative progenitors

and non-neuronal cells, whereas all other clusters posi-

tively aligned with primary cells along the same develop-

mental trajectory. Importantly, clusters CL6–CL9 exhibit-

ing neuronal subtype markers aligned along the cellular

trajectory with newborn neurons, and mature inhibitory

and excitatory neurons. Cluster CL3, which represented

almost half of the TF-induced data, showed lower expres-

sion of neuronal genes as compared with CL4 and lower

expression of fibroblast genes as compared with CL1–

CL2. Furthermore, the placement of CL3 in both UMAP

and force-directed k-nearest neighbor graphs indicated

that these cells were still in transition or partially reprog-

rammed toward neurons (Figures 2A and 2F). Notably,

CHi cells, largely represented by CL1 and CL2, also showed

neuronal GO terms, which is consistent with our notion

that the chemical cocktail alone upregulated neuronal

genes (Figure S2F). However, high expression levels of fibro-

blast-specific genes, includingCHD11 and SNAI2, suggest a

failure to suppress the fibroblastic network in the absence

of exogenous TF expression. Together, these data revealed

that transduction of the TF-pool converted fibroblasts

into a heterogeneous population of cells exhibiting distinct

neuronal subtype-specific molecular signatures and

congruent progression of neuronal development.

Distinguished Detection of Exogenous and

Endogenous Transcripts along Developmental

Trajectories

Next, to identify which TF in the TF-pool was responsible

for inducing distinct neuronal subtype specification, we

performed single-cell Smart-seq2 to achieve high gene

coverage across the transcripts. We relied on full-length

reads to extract nucleotides at the 50 and 30 junctions of

exogenous open reading frames (ORFs) where distinctive

alignment of reads to the specific 50 and 30 junctions allows

to discriminate between exogenous (ORFs with the attB

Gateway cloning sequences) and endogenous (ORFs

without attB) gene expression (Figure 3A).

First, to benchmark the accuracy and sensitivity of de-

tecting exogenous transcripts, we infected fibroblasts

with single TFs, two combinations of 10 TFs, and the
RNA-Seq
Fi at 14 dpi using UMAP (n = 3,865 cells). The detected clusters are
sion of canonical fibroblast and neuron markers along UMAP1.
cluster in the UMAP plot in (A).
own are the top 5 GO terms related to biological process (dark gray)
.
of marker genes in all clusters.
expressed between each cluster.
-directed k-nearest neighbors graph created using SPRING. Primary
s in (A).



Figure 3. Distinguished Detection of Exogenous and Endogenous Transcripts
(A) Schematic depicting the strategy to distinguish exogenous and endogenous sequencing reads.
(B) Bulk RNA-seq on pooled and separately infected fibroblasts. Horizontal dimension, distance from the 5ʹ end of the EF1A promoter;
vertical dimension, number of aligned paired-end reads. Gray arrows (no overlap) and golden arrows (overlap) mark 5ʹ and 30 junctions of
exogenous ORFs.
(C and D) Heatmaps showing log2-transformed count values of exogenous TFs after alignment using Bowtie (C) and log2-transformed tags
per million (TPM) values of exogenous and endogenous TF pairs after trimming junction sequences to ~100 base pairs and alignment using
Kallisto (D). For individually infected fibroblasts and CHi, two replicates at an MOI of 4 and two replicates at an MOI of 8 were included. For
pooled infected fibroblasts, two replicates at an MOI of 4 were included.

(legend continued on next page)
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complete (20) TF-pool at two MOIs, low and high (Figures

3B and S3B). Sequence alignment to the exogenous tran-

script model using Bowtie (Langmead et al., 2009) resulted

in 24.4% false-negative events, possibly due to the exclu-

sion of multi-mapping reads (Figure 3C). To reduce the

number of false-negative events, we implemented the

pseudo-alignment tool Kallisto, providing the advantage

of assigning multi-mapping reads to transcripts without

pinpointing exactly how the sequences of the reads and

transcripts align (Bray et al., 2016). This approach reduced

the occurrence of false-negative events to 6.3% and yielded

highly specific and sensitive detection efficiencies of 97.5%

and 87.5% in individual infection and pooled infection

samples, respectively (Figures 3D and S3C). Specific detec-

tion of lentivirus-mediated expression was further

confirmed by revealing significantly higher mean expres-

sion of exogenous TFs compared with themean expression

of corresponding endogenous TFs (p < 0.05; Figure 3E).

Subsequently, we performed Smart-seq2 on TFi and CHi

cells at an early (9 dpi) and late (21 dpi) time point (Fig-

ure 4A). Cells were sequenced at an average depth of

~2.6 million reads and a median of 10,143 genes per

cell. We used unsupervised hierarchical clustering and

UMAP (Figures S4A–S4D) to reveal that cells clustered

largely by type rather than batch and that we could assign

individual cells with exogenous TF expression (Figures 4B,

4C, S4E, and S4F). Most notably, 30%–40% of TFi 9 dpi

and TFi 21 dpi cells clustered as CL5 (Figure 4B). CL5

showed the highest degree of neuronal reprogramming

as indicated by GO terms associated to nervous system

development, synaptic transmission, cholinergic regula-

tion of neuron differentiation; CL3 and CL4 showed GO

terms related to cytokine-mediated signaling pathway

and blood vessel development, respectively (Figure S5A).

This suggests that cells acquired a neuronal program fairly

early in the reprogramming process and only a fixed num-

ber of cells undergo neuronal reprogramming. Based on

the TF enrichment in CL5, it is plausible that only the

cells that acquired the necessary TF combinations induced

neuronal conversion. The exogenous genes detected in

day 9 and 21 were similar, whereas the exogenous factors

were significantly different between clusters CL3 versus

CL5 or CL4 versus CL5. This suggests that cells that ac-

quired a neuronal program, in this case CL5, harbor a

distinct set of TF combinations. Indeed, we detected

over-representation of PAX6, NEUROG2, POU3F2, ZIC1,

and FEV in CL5 as compared with other clusters (Fig-

ure S5B). Overall, these data indicate that a distinct set

of TF combinations was necessary, as opposed to the pres-
(E) Boxplots showing increased exogenous (red) versus endogenous (b
Golden dots show endogenous expression in samples infected with the
represent mean + SD.

816 Stem Cell Reports j Vol. 16 j 810–824 j April 13, 2021
ence of pre-determined cells, to initiate cell conversion to-

ward neurons as early as day 9.

To investigate the dynamic progression of neuronal re-

programming, we placed the cells in pseudo-temporal or-

der (Trapnell et al., 2014) based on differentially expressed

genes between 9 and 21 dpi (qval < 0.01) (Figure S4G). We

found that genes along pseudo-time were enriched for GO

terms related to several developmental lineages (Figures

S6H and S6I; Table S2), including neurogenic genes

(NRCAM, SFRP1, SNAP25, and SYT1) and genes regulating

the development of mesodermal tissues: bone (BMP4), kid-

ney (FAT4), and endothelial cells (PGF and VEGFA) (Figures

S6J–S6L). Because genes involved in cell reprogramming

generally overlap with developmental genes (Masserdotti

et al., 2016), we reordered the cells only using genes impli-

cated in the developmental processes (~3,000 genes, Fig-

ure 4D; Table S3). This secondary pseudo-temporal

ordering revealed clear bifurcation of cells into two main

trajectories: branch 1 associated with non-neuronal devel-

opmental fates (Figures 4E and 4F; Table S4) and branch 2

associated with the neuronal lineage based on gene pro-

gram (fold-change > 4; p < 0.05).

Mapping the 20 exogenous genes to each branch, we

found significant enrichment of 10 TFs in branch 2 (p <

10�2), while no exogenous TF was significantly enriched

in branch 1 (Fisher’s exact test; p > 0.05) (Figures 4G

and S4M).

To confirm whether these 10 TFs derived from branch 2

can induce neuronal phenotype, we independently trans-

duced fibroblasts with the 20 TF-pool, the 10 TFs enriched

in branch 2 (neuron branch) and the remaining 10 TFs

showing no enrichment in either branch (control).

Profiling of neuronal markers revealed that TFs from the

neuron branch markedly increased the efficiency of

neuronal expression and morphological features as

compared with both the complete 20 TF-pool and control

TFs (Figures 4H–4K). In fact, infection with control TFs

reduced the efficiency of neuronal conversion as compared

with the complete TF-pool and induced upregulation of

genes that were functionally relevant in breast and kidney,

such as AREG and PTHR1, respectively (Figures 4L).

Identification of Novel TF Combinations Controlling

Neuronal Subtype Specification

To further interrogate the 10 TFs enriched in the neuron

branch, we leveraged the droplet-based scRNA-seq UMAP

to annotate the cells derived from the Smart-seq2 time

course experiment (Figure 5A). Consistent with our previ-

ous results (Figure 2), TFi cells mapped to mature neuronal
lue) expression of all TFs across all individually infected fibroblasts.
corresponding exogenous TFs. Unpaired Student’s t test. Error bars



(legend on next page)
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subtypes, whereas chemically induced cells mapped to

clusters containing partially reprogrammed cells and

immature neurons (Figures S5A–S5C). The majority of TFi

clusters were assigned to either the glutamatergic or cholin-

ergic cluster, suggesting that these two neuronal subtypes

prevailed in the Smart-seq2 time course experiment.

To identify the major determinants controlling glutama-

tergic and cholinergic reprogramming, we performed co-

expression module analysis (Fisher’s exact tests; p < 0.05)

and subsequently attributed genes in each subtype with

combination scores (CSs) (Figure 5C). The CS represents

the significance of enrichment of marker gene expression

in cells containing at least three of the predicted exogenous

TFs. Based on this approach, we identified DLX2, ZIC1,

NEUROG2, and PAX6 controlling the reprogramming of

glutamatergic-like neurons and DLX1, ISL1, NEUROG2,

and PAX6 controlling the reprogramming of cholinergic-

like neurons (Figure 5D). The analysis revealed that most

gene modules found in the glutamatergic and cholinergic

network are indirect targets of exogenous TFs, with few

TFs directly linked to marker genes (Figure 5C, Table S5).

Vesicular glutamate transporter 1, VGlut1, mediates

glutamate uptake into synaptic vesicles and is a hallmark

of glutamatergic neurons (Zhou and Danbolt, 2014). To

independently validate whether TFs derived from the

genemodule analysis can induce the expression of VGlut1,

we infected fibroblasts with DLX2, ZIC1, NEUROG2, and

PAX6 and revealed significant induction of VGlut1 when

compared with fibroblasts infected with the complete TF-

pool or CHi only (Figure 5D). Similarly, we observed a sig-

nificant induction of choline acetyltransferase (CHAT), a

transferase enzyme responsible for the synthesis of the

neurotransmitter acetylcholine (Lin et al., 2005), upon
Figure 4. Association of Developmental Trajectories with Exogen
(A) Diagram of the differentiation protocol of TFi and CHi, depicting
(B) UMAP 2D cell maps of the time course data. Left: cells were colore
Fibroblasts (n = 78 cells), CHi at 9 dpi (n = 87 cells), TFi at 9 dpi (n =
(C) Visualization of relative expression values of exogenous TFs on U
(D) Pseudo-temporal ordering of the Smart-seq time course based on
inset shows the same plot colored by pseudo-temporal values.
(E) Heatmap showing ~200 genes with branch-specific differential e
heatmap, columns are points in pseudo-time, rows are genes, and the
the middle of the heatmap to the right, while branch 2 goes to the l
(F) GO analysis of genes differentially expressed in branch 1 (top pan
(G) Identification of exogenous TFs with branch-specific enrichment
(H) Top panels: quantification of TUBB3+ and MAP2+ cells in fibroblas
(orange), and unenriched TFs (purple) at 9 and 21 dpi. n = 5 indepe
mean + SD. Bottom panels: representative images of immunostainings
infected cells and cell nuclei were visualized using DAPI nuclear stain
(I–L) Neuronal differentiation, loss of fibroblast characteristics, and ac
pan-neuronal marker genes (MAP2, NRCAM, NEUN, SYN1) (I), canonica
fibroblast markers (VIM, SNAI2) (K), and branch 1-enriched genes (AR
experiments, unpaired Student’s t test. Error bars represent mean +SD
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infection of DLX1, ISL1, NEUROG2, and PAX6 in fibro-

blasts. We further characterized the electrophysiological

properties and found that both glutamatergic-like and

cholinergic-like neurons generated repetitive but distinct

action potentials upon current injection at 21 dpi (Figures

5E, 5F, and S6F) and both action potentials were inhibited

by withdrawal of extracellular Na+ ion in the medium (Fig-

ures 5E, 5F, and S6G–S6J).

Finally, NEUROG2 acts as a pioneering factor during

direct fibroblast-to-neuron reprogramming (Smith et al.,

2016). To identifywhether other pioneering factors present

in the TF-pool are involved in direct fibroblast-to-neuron

reprogramming, we compared our gene module analyses

for each subtype and revealed that, in addition to NEU-

ROG2, PAX6 exhibited hallmarks of a common regulator

of direct cell reprogramming toward the neurons based

on its gene association analysis. During brain develop-

ment, PAX6-expressing neuroectodermal cells can be

readily patterned to region-specific neuro-progenitor cells

that give rise to various neuronal subtypes, including

cholinergic neurons (Li et al., 2005), dopaminergic neurons

(Liu et al., 2012), and GABAergic neurons (Kallur et al.,

2008); however, its role in neuronal direct reprogramming

has not been described. Thus, we hypothesized that cells

expressing exogenous PAX6 should exhibit increased

neuronal molecular phenotype as compared with cells

lacking exogenous PAX6. To test this, we grouped cells

with andwithout exogenous PAX6 and assessed expression

signatures of neurogenic, neuronal subtype-specific, and

fibroblast genes (Figures 5G and 5H). Indeed, we found

that cells expressing PAX6 consistently showed signifi-

cantly increased expression of neurogenic and neuronal

subtype-specific genes and decreased expression of
ous Expression Profiles
the samples used for the time course Smart-seq experiment.
d by cluster identity. Right: cells were colored by sample identity.
129), CHi at 21 dpi (n = 15 cells), and TFi at 21 dpi (n = 137 cells).
MAP plots.
the expression of 2,925 developmental genes (n = 446 cells). Small

xpression as determined by BEAM (R Package ‘‘Monocle’’). In this
middle (Root) is the beginning of pseudo-time. Branch 1 goes from
eft.
el) and branch 2 (bottom panel).
based on Fisher’s exact tests.
ts infected with the complete TF-pool (gray), branch 2-enriched TFs
ndent experiments, unpaired Student’s t test. Error bars represent
for MAP2 (red) at 21 dpi; colors as in top panels. YFP (green) marks
(gray). Scale bars, 100 mm.
quisition of alternative developmental fates as revealed by qPCR for
l neuronal subtype markers (VGlut1, GABA, TH, CHAT) (J), canonical
EG, PTHR1) (L) at 9 and 21 dpi; colors as in (H). n = 4 independent
.
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fibroblast genes compared with cells lacking exogenous

PAX6. Moreover, the same extraction analysis for other

exogenous genes, such as NEUROG2, DLX1, DLX2, ISL1,

and ZIC1, suggests that PAX6 is the most dominant factor

in inducing neurons (Figures 5G, 5H, S6K, and S6L). In

line with these findings, expanding our analysis to addi-

tional neuronal subtypes placed PAX6 at the core of the as-

sociation network, possibly as a pioneering factor during

direct neuronal reprogramming, while TFs that induce

neuronal subtype specification were placed at its periphery

for a defined specification (Figure 5I).
DISCUSSION

This study adapts retrospective identification of vector-

based gene expression in single cells for the scale of

massively parallel scRNA-seq. Our results demonstrate reli-

able distinction of endogenous and exogenous gene

expression by a deep full-length scRNA-seq approach and

further identify the most influential pro-neuronal TFs

and alternative combinations of TFs from a large pool of

candidate genes that govern the reprogramming of multi-

ple and distinct neuronal subtypes.

This approach is set apart from earlier studies testing

various possible combinations of TFs in a one-by-one

approach (An et al., 2016; Caiazzo et al., 2011; Kim et al.,

2011; Liu et al., 2012; Pang et al., 2011; Vierbuchen et al.,

2010). Unlike other perturbation single-cell approaches

(Adamson et al., 2016; Dixit et al., 2016), the multiplex

overexpression method combined with scRNA-seq is

compatible with virtually any vector-based expression

system without the need for barcoding, avoiding possible
Figure 5. PAX6 Acts as Master Regulator to Control Reprogrammi
(A) Computational mapping of the Smart-seq time course onto the 10X
cluster membership and positioned based on the five nearest neighbo
(B) Visualization of scaled expression values of exogenous TFs that
glutamatergic and/or cholinergic clusters on 2D UMAPs.
(C) Neuronal subtype-specific co-expression modules on the basis of si
TFs shown in (B). Exogenous TFs associated with genes showing highe
shown in gray. Neuronal subtype-specific genes are colored. Direct ta
with chromatin immunoprecipitation sequencing (ChIP-seq) evidence
(D) Validation of novel combinations of exogenous TFs by quantificati
gray), fibroblasts infected with the complete TF-pool (dark gray) and fi
independent experiments, unpaired Student’s t test. Error bars repres
(E and F) The generation of repetitive action potentials in induced ne
NEUROG2, or PAX6 (F). Representative traces in the presence (upper
using the current-clamp protocol.
(G and H) Boxplots showing the log2-transformed TPM values of ne
specific genes (H) in cells with (+) or without (�) exogenous PAX6 (
based on �log10-transformed p values.
(I) Edge-normalized network summarizing the associations of exogen
nergic modules.
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barcode swapping and reconstruction of existing vectors

(Griffiths et al., 2018); however, profiling of integrated

barcodes in a vector-based expression system may allow

the inclusion of higher cell numbers using either the 50 or
30 droplet-based single-cell RNA-seq.

Based on single-cell expression profiles of perturbed

cells, we identified distinct developmental trajectories

emerging during neuronal lineage specification. Specif-

ically, we could associate NEUROG2 with glutamatergic

(Winpenny et al., 2011), DLX1/DLX2 with GABAergic

(Pla et al., 2018), ISL1 with cholinergic (Cho et al., 2014),

and NR4A2 with dopaminergic neuron development

(Caiazzo et al., 2011). Collectively this study strongly ad-

vocates that: (1) the multiplex scRNA-seq efficiently iden-

tifies key determinants of transdifferentiation in a single

experiment, (2) genes identified by this approach are not

random but specifically enriched in a defined neuronal

program and function, (3) neuronal induction medium

alone could not induce reprogramming, possibly due to

the epigenetic gridlock of the original cell type, (4) multi-

ple factors work in concert to drive cell fate specifications

and diversification, and finally (5) our findings support a

hierarchical reprogramming model which predicts that

replacement of only a few factors can alter the fate of

generated cells (Wapinski et al., 2013). However, retrospec-

tive identification of exogenous gene expression necessi-

tates continuous exogenous gene expression over the

whole time period analyzed. Here, we did not address tem-

poral aspects of exogenous gene expression, which is still

largely unexplored. Future studies that aim to explore tem-

poral aspects of exogenous gene expression during cell

reprogramming will likely require temporally controlled

activation and suppression of gene sets and sequential
ng of Glutamatergic and Cholinergic Neurons
Genomics UMAP. Smart-seq cells are colored based on 10X Genomics
rs.
showed significant enrichment (Fisher’s exact test, p < 0.05) in

gnificant associations (Fisher’s exact test, p < 0.05) with exogenous
st CS in each module are shown in black, all other exogenous TFs are
rgets of exogenous TF are indicated with dashed lines based on TF
, highlighted with green borders.
on of immunostainings for VGlut1, CHAT, TH, and GABA of CHi (light
broblasts infected with novel combinations (color) at 21 dpi. n = 4
ent mean + SD.
urons infected with DLX2, NEUROG2, PAX6, ZIC1 (E) or DLX1, ISL1,
panel) or absence (lower panel) of extracellular Na+ were recorded

urogenic and neuronal subtype-specific genes (G) and fibroblast-
top), NEUROG2 (middle), and DLX1 (bottom). Boxplots are colored

ous TFs with glutamatergic, cholinergic, GABAergic, and dopami-



gene delivery methods. In addition, due to the massively

increased complexity, a much larger number of single cells

will need to be analyzed.

Our results also suggest that PAX6 acts as a key driver of

direct neuronal reprogramming. PAX6 acts as a major

regulator of mammalian nervous system development and

is expressed in a region-specific manner in NPCs and uni-

formly in neuroectodermal cells differentiated from embry-

onic stem cells and iPSCs (Chapouton et al., 1999; Stoykova

et al., 2000; Yun et al., 2001; Zhang et al., 2010). In line with

this, combination of PAX6withNEUROG2,DLX2, and ZIC1

generatesmainly glutamatergic neurons,whereasDLX1 and

ISL1 generate mainly cholinergic neurons, suggesting that

combinations of TFs are involved in both activation and

repression toward cell specification. Previous reports impli-

cated that DLX1 and DLX2 act as repressors to glia lineage

tilting the cell fate toward the neuronal lineage (Petryniak

et al., 2007). In another study, ZIC1 represses dopaminergic

specification (Tiveron et al., 2017) and PAX6/NEUROG2

direct the cells toward glutamatergic fate (Winpenny et al.,

2011), while Isl1 further pushes the cells toward cholinergic

development (Cho et al., 2014).While precise dynamicswill

require systematic perturbation analysis, our approach dem-

onstrates that a defined set of TFs important for cell-type

switching and lineage specification can be precisely

extrapolated.

In conclusion, our data corroborate previous studies on

neuronal reprogramming, predict novel combinations of

pro-neuronal TFs that allow the generation of neuronal

subtypes, and yield the regulatory logic of neuronal reprog-

ramming. We envision that this approach is an effective

strategy to identify transcriptional codes controlling cell

fate conversions, speaking to its potential to become a stan-

dard strategy to unravel molecular mechanisms governing

other cell reprogramming pathways.
EXPERIMENTAL PROCEDURES

Cell Culture and Generation of Induced Neurons
Human neonatal dermal fibroblasts were purchased from Lonza

(C-2509; passages 4–8) and cultured in DMEM containing 10%

FBS/L-glutamine/10% penicillin and streptomycin at 37�C 5%

CO2 until virus infection. For TFi generation, a total of six MOI

(~0.3 MOI per virus) were pooled into culture medium containing

8 mg mL�1 polybrene (Sigma) to increase infection efficiency. For

CHi cell generation, dermal fibroblasts were infected with a virus

containing multiple cloning sites (e.g., no TF) at an MOI of 6 ex-

pressing YFP. The virus pool was infected and incubated overnight

at 37�C 5% CO2. On the following day, the virus-containing me-

dium was removed and cells were incubated for an additional

day in the fresh culture medium at 37�C 5% CO2. Henceforth,

CHi and TFi were cultured under identical culture conditions: cells

were split onto poly-D-lysine (100 mgmL�1; Sigma)/laminin (50 mg

mL�1; Sigma)-coated culture plates and incubated overnight in cul-
ture medium at 37�C 5% CO2. On the following day, the medium

was changed to neuronal induction medium containing DMEM/

F12 and Neurobasal-A (Thermo Fisher Scientific) mixed at a 1:1 ra-

tio, 2% (vol/vol) B27 supplement, and 0.5% N2 supplement

(Gibco), 13 nonessential amino acids (Thermo Fisher Scientific),

1% GlutaMAX supplement, VPA (0.5 mM, Wako), L-ascorbic acid

(200 nM, Sigma), Y-27632 (10 mM,Wako), dcAMP (0.5mM, Sigma),

10% FBS, and 10% penicillin and streptomycin (Wako). The con-

centrations of small molecules used were as follows: CHIR99021

(2 mM, Abcam), SB-431542 (10 mM, Sigma), LDN-193189

(0.5 mM, Stemgent), and Noggin (100 ng mL�1, Sigma). Neuronal

induction medium was changed every third day, during which

the concentration of FBS was gradually reduced from 10% to 0%.

After 2 weeks, neuronal induction medium was replaced with

neuronal maturation medium without small molecules, but con-

taining 10 ng mL�1 BDNF (Gibco), 10 ng mL�1 NT3 (R&D Sys-

tems), and 10 ng mL�1 GDNF (Thermo Fisher Scientific) and the

medium was changed every third day until further analysis.

Electrophysiology
Whole-cell current-clamp recordings were performed as described

(Ichikawa et al., 2012). All experiments were conducted at 25�C.
Patch pipettes with resistances ranging from 3 to 7 MU were

pulled from capillary tubes using a DMZ-Universal Puller (Zeitz

Instruments, Martinsried, Germany) and then backfilled with

intracellular solution. Action potentials were recorded using a

patch-clamp amplifier (Axopatch 200B; Axon Instruments, Foster

City, CA) with a series of current steps from 0 to 200 pA with a

2,000-ms duration. The action potentials were monitored and

stored using pCLAMP software (Molecular Devices, CA) after digi-

tizing the analog signals at 5 kHz (DigiData 1322A; Axon Instru-

ments). For patch-clamp recordings, the extracellular solution

(ECS) consisted of the following: 137 mM NaCl, 5 mM KCl,

0.44 mM KH2PO4, 0.33 mM Na2HPO4, 10 mM glucose, 12 mM

NaHCO3, 0.5 mM MgCl2, and 10 mM HEPES, adjusted to pH 7.4

with tris(hydroxymethyl)aminomethane. To examine the Na+

selectivity, extracellular 136 mM NaCl was substituted with equi-

molar extracellular LiCl (Na+-free ECS). To record ionic currents

under physiological conditions, intracellular solution containing

150 mM KCl, 10 mM HEPES, and 2 mM magnesium adenosine

triphosphate (pH 7.2 by tris(hydroxymethyl)aminomethane) was

used.

Computational Methods for scRNA-Seq Data

Artificial Transcript Model

To determine the exact nucleotide sequences flanking the ORF of

each exogenous transcript, we sequenced recombined plasmids us-

ing a 3730/3730xl DNA Analyzer (Applied Biosystems) following

the manufacturer’s protocol. In brief, we first amplified templates

by PCR using primers annealing to the EF1A promoter sequence

near the 50 end of each ORF to amplify the 50 junction sequences,

and primers annealing to the IRES2 sequence near the 30 end of

each ORF to amplify the 30 junction sequences. After gel purifica-

tion, we sequenced templates using BigDye Terminator v.3.1 Cycle

Sequencing Kits (Applied Biosystems). We integrated results

derived from three primers (three replicates each) at both the 50

and 30 junction of each ORF and combined the resulting 50 and
Stem Cell Reports j Vol. 16 j 810–824 j April 13, 2021 821



30 junction sequences with known sequences of the ORFs of each

TF and the CSII-EF-RfA-IRES2-VENUS pENTR lentivirus vector to

compile the artificial exogenous transcript model. Finally, we com-

bined our artificial exogenous transcript model with the human

transcriptome (version GRCh38.p5) to obtain the final artificial

transcript model.

Mapping of the Smart-Seq Time Course Data onto the 10X

Genomics UMAP
To integrate the Smart-seq time course data with the 10X Geno-

mics data, we computed a pairwise correlation matrix (Spearman

correlation) of all cells based on the expression of ~1,300 highly

variable genes in cells of clusters CL4–CL9. Smart-seq cells were

mapped onto the 10XGenomics UMAP by averaging x and y coor-

dinates of the five 10X Genomics cells showing the highest corre-

lation values and assigned to their most likely 10X Genomics

cluster by determining to which cluster the majority of these five

10X Genomics cells belonged to. If two or more clusters tied for

majority, clusters were assigned at random. To identify exogenous

TFs with enrichment in any cluster, we performed Fisher’s exact

tests to calculate the significance of association of a given exoge-

nous TF with each cluster. Exogenous TFs with p < 0.05 were

considered significantly enriched.

Gene Co-expression Module Assembly
To construct neuronal subtype-specific gene co-expression mod-

ules, we calculated the significance of association of each exoge-

nous TF with all other genes using Fisher’s exact tests. Exogenous

TFs were attributed to neuronal subtype-specific module based

on the following criteria: (1) p < 0.05 in Fisher’s exact test and (2)

at least three edges to three neuronal subtype-specific genes.

Gene co-expressionmodules were visualized with Cytoscape using

the organic layout.

Combination Score

The CS represents the �log10-transformed p value of the signifi-

cance (Mann-Whitney U test) of increased gene expression in cells

containing at least two of the predicted exogenous TFs in a

network compared with all other cells.
Data and Code Availability
All analysis code used in this study is available upon request.

Custom code for the main analytical steps can be found in:

https://github.com/JoachimLu/Decoding-neuronal-diversification-

by-multiplexed-single-cell-RNA-seq. All sequence data are accessible

with accession number GEO: GSE117075.
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Supplementary Experimental Procedures 

Complementary DNA and virus generation 

Complementary DNA (cDNA) and viruses were generated as described previously (Shin et al., 

2012). Briefly, we recombined Gateway-compatible human full-length cDNA entry clones derived 

from RIKEN BRC clone bank (http://www.brc.riken.jp/) into the pENTR lentivirus vector CSII-

EF-RfA-IRES2-VENUS using Gateway LR clonase II enzyme mix (Invitrogen). After Proteinase 

K treatment, recombinant plasmids were transformed into competent Escherichia coli and 

plasmids derived from single colonies were expanded and purified using PureYield Plasmid 

Midiprep System (Promega). Plasmids, HIV-gp and VSV envelope genes were co-transfected into 

293T cells using FuGeneHD (Roche). Supernatant-containing viruses were collected, centrifuged 

by ultracentrifugation and dissolved in 100µl HBSS buffer (WAKO) and stored at −80°C for later 

use. 

Immunocytochemistry and quantitative RT-PCR 

For immunocytochemistry, cells were fixed in 4% paraformaldehyde for 20 min at room 

temperature and permeabilized using 0.2% Triton X-100 (SIGMA) for 10 min at room 

temperature. Following permeabilization, cells were pre-incubated with blocking solution (2% 

BSA, 0.2% Triton X-100) to block non-specific sites for 1 h. Primary antibodies were diluted in 



blocking solution and applied to cells overnight at 4°C. Secondary antibodies were diluted in 

blocking solution and applied to cells at room temperature for 1 h. Imaging and quantification was 

performed using the INCell Analyzer 6000 (GE Healthcare). For each condition, 40 fields 

containing 100-500 cells/field were measured. The following primary antibodies and dilutions 

were used: mouse anti-TUBB3 (Covance, MMS-435P, 1:1000), mouse anti-MAP2 (Abcam, 

ab11267, 1:500), rabbit anti-SYNAPSIN 1 (Abcam, ab64581, 1:200), rabbit anti-VGLUT1 

(Synaptic Systems, 135303, 1:100), mouse anti-GABA (Abcam, ab86186, 1:200), sheep anti-

CHAT (Abcam, ab18736, 1:100), rabbit anti-TH (Abcam, ab112, 1:500). The following secondary 

antibodies and dilutions were used: goat anti-mouse IgG1 (GIBCO, A-21121, 1:200), goat anti-

mouse IgG2a (Thermo Fisher Scientific, A-21131, 1:200), goat anti-rabbit IgG (Thermo Fisher 

Scientific, A-11008, 1:200), donkey anti-sheep IgG (Thermo Fisher Scientific, A-11015, 1:200). 

Human neonatal dermal fibroblasts were used as negative controls. Quantification of 

immunostainings was performed using the INCell Investigator Developer Toolbox. For 

quantitative RT-PCR (qRT-PCR), total RNA was purified using the RNeasy Mini Kit (QIAGEN) 

according to the manufacturer's specification. Quality and quantity of RNA was determined using 

a DropSense96 (Trinean). Equal amounts of RNA were reverse-transcribed using the One-Step 

SYBR PrimeScript RT PCR Kit II, and cDNAs were normalized to equal amounts using primers 

against GAPDH. qRT-PCR was performed on a 7900HT Fast Real-Time PCR system (Applied 

Biosystems). 

Fluidigm C1 reversed loading protocol (backloading) for bulk RNA-seq 

To perform bulk RNAseq of a total of 96 samples, we used the Fluidigm Script BuilderTM to design 

a reversed protocol that allows to load each sample into a separate chamber, where RT and cDNA 

amplification is performed. After priming the chips, 25 ng of RNA of each sample was loaded into 



the output wells on a medium size C1 Single-cell Open App IFC and the IFC was sealed using a 

C1 Porous Barrier Tape kit (Fluidigm). RT and cDNA amplification was performed following the 

manufacturer's protocol (P100-7168L1). We ran the backloading script for 15 min at 4°C and 

switched to the mRNA seq RT and Amp script (1772x), which harvested cDNA back into the 

output wells. To remove remaining RNA, we added Rnase One Ribonuclease (Promega) at room 

temperature. To quantify the cDNA, we used the Quant-iT PicoGreen dsDNA Assay kit. Library 

preparation was performed using the Nextera XT DNA Library Preparation kit (Illumina), the 

Nextera XT Index Kit v2 (Illumina) and Ampure XP beads (Beckman Coulter). Libraries were 

quantified using the High Sensitivity DNA Reagents (Agilent Technologies) and the KAPA 

Library Quantification kit (KAPA BIOSYSTEMS). Libraries were sequenced on the Illumina 

Hiseq 2500 platform in rapid mode (100bp paired end). 

Droplet-based scRNA-seq 

Library preparation and sequencing: Droplet-based scRNA-seq libraries were generated using the 

ChromiumTM Single Cell 3' Reagent kits V1 (CG00026, 10x Genomics). Briefly, cell number and 

cell viability were assessed using the Countess II Automated Cell Counter (ThermoFisher). 

Thereafter, cells were mixed with the Single Cell Master Mix and loaded together with Single Cell 

3' Gel beads and Partitioning Oil into a Single Cell 3' Chip. RNA transcripts were uniquely 

barcoded and reverse-transcribed in droplets. cDNAs were pooled and amplified according to the 

manufacturer's protocol. Libraries were quantified by High Sensitivity DNA Reagents (Agilent 

Technologies) and the KAPA Library Quantification kit (KAPA BIOSYSTEMS). Libraries then 

were sequenced by Illumina Hiseq 2500 in rapid mode. 



Read alignment and gene quantification: Initial read alignment to hg19 human reference genome, 

filtering and UMI counting was performed by the CellRanger Software ver 1.1.0 using default 

parameters. This software implements STAR as an alignment tool. Data from TFi and CHi were 

normalized to the same sequencing depth and aggregated into a single gene-barcode matrix. The 

expression values were quantified as count per million (CPM) and transformed to log2 (CPM+1). 

scRNAseq using the Fluidigm C1 platform 

Single cell RNA-seq analysis was performed following the manufacturer's protocol (P100-

7168L1, Fluidigm). Briefly, cell number and cell viability were assessed using the Countess II 

Automated Cell Counter (ThermoFisher). After priming medium size C1 Single-cell Open App 

IFCs, 250 cells/μL were loaded and capture efficiency and cell morphology was assessed using 

the IN Cell Analyzer 6000 (GE Healthcare). To exclude chambers loaded with no cells, more than 

one cell (cell doublets) or dead cells for downstream analysis, we took 11 z-stacking images per 

chamber. Next, the cells were lysed with 20,000-fold diluted ERCC RNA Spike-In Mix1 (Thermo 

Fisher Scientific) and reverse transcription (RT) and cDNA amplification were performed using 

the SMARTer Ultra Low RNA Kit for the Fluidigm C1TM System (Clontech). The amplified 

cDNAs were harvested into 96 well plates and quantified with Quant-iTTM PicoGreen dsDNA 

Assay kit. Library preparation was performed with the Nextera XT DNA Library Preparation kit 

(Illumina), Nextera XT Index Kit v2 (Illumina) and AMpure XP beads (Beckman Coulter). 

Libraries were quantified by High Sensitivity DNA Reagents (Agilent Technologies) and KAPA 

Library Quantification kit (KAPA BIOSYSTEMS). Each of the libraries were sequenced by 

Illumina Hiseq 2500 in high output mode (100bp paired end). Reads were aligned to the trimmed 

artificial transcript model using Kallisto with the default parameter settings for paired-end reads. 



The expression values were quantified as transcripts per million (TPM) and transformed to log2 

(TPM+1). 

Computational methods for scRNA-seq data 

Quality control, cell clustering and UMAP visualization: All analyzes and visualization of data 

were conducted in the R environment. For droplet-based 10X Genomics scRNA-seq data, 

clustering and UMAP visualization was performed using the R package 'Seurat' (Satija et al., 2015) 

(v2.3.4). Genes expressed in less than 3 cells and cells expressing less than 1000 genes or more 

than 4500 genes were removed. In addition, we removed cells expressing more than 2% 

mitochondrial genes, indicative of dead cells. PCA was performed on the z-transformed expression 

levels of the identified ~1000 highly variable genes after regressing out the number of UMI and 

the percentage of mitochondrial genes. Using the 20 most significant principal components (PCs), 

we projected individual cells based on their PC scores onto a single two-dimensional map using 

UMAP. Gene expression heat map along UMAP1 was obtained by dividing cells into 40 groups 

based on their UMAP1 scores, averaging gene expression within each group and scaling 

expression values by column. For the Smart-seq time-course data, we excluded chambers 

containing no cells, multiple cells or cells exhibiting morphological features of cell death based on 

visual inspection using the IN Cell Analyzer 6000 (GE Healthcare). Additionally, cells not 

expressing either of the two housekeeping genes ACTB and GAPDH (encoding β-actin and 

glyceraldehyde-3-phosphate dehydrogenase, respectively), or expressing them at less than three 

standard deviations below the mean, were scored as unhealthy and removed. After applying these 

filters, 78 fibroblasts, 216 cells for the time-point 9 dpi (87 CHi and 129 TFi) and 152 cells for the 

time-point 21 dpi (15 CHi and 137 TFi) remained, yielding 446 cells in total. Genes expressed in 

less than 3 cells were removed. PCA was performed on the ~5000 most variable genes. Using the 



9 most significant principal components (PCs), we projected individual cells based on their PC 

scores onto a single two-dimensional map using UMAP. Hierarchical clustering was performed 

on cells and on PCA scores using Euclidean distance metric. 

Read alignment with Bowtie: Reads were aligned to the artificial transcript model using Bowtie 

v1.2.2 with the default parameter settings for paired-end reads. After retrieving BED12 files using 

samtools and bedtools, we intersected all reads using a custom GFF file in which 5' and 3' junctions 

of all exogenous sequences were defined. Only reads overlapping the junction sequences by at 

least 5 bp were counted as specific reads. The expression values of all exogenous TFs were 

quantified as count per million (CPM) and transformed to log2 (CPM+1). 

Read alignment with Kallisto: For alignment using Kallisto (v0.42.4), alignment to the full 

artificial transcript model yielded many false-positive hits (Supplementary Fig. 3c). Therefore, we 

trimmed the 5' and 3' junction sequences to ~100 bp on either side, which markedly reduced the 

number of false positive hits (Fig. 3d). Reads were aligned with the default parameter settings for 

paired-end reads. Custom R scripts were used to merge transcript isoforms and compile a single 

expression matrix. 

Construction of the force-directed k-nearest neighbors graph: The force-directed k-nearest 

neighbors graph was constructed based on the expression of ~ 1300 highly variable genes using 

the online tool SPRING (Weinreb et al., 2018) with the following parameters: Gene variability 

percentile: 90.0, Number of PCs: 20, Number of nearest neighbors: 20, Number of force layout 

iterations: 500. 

Differential expression test and GO analysis: Marker genes of each cluster were determined using 

a likelihood ratio test based on zero-inflated data (p < 1e-4) considering only genes that show a 



minimum log fold expression change of 0.25 in at least a fraction of 0.25 of cells in the clusters 

using the non-integrated expression values. For GO analysis, we used marker genes which showed, 

on average, at least 3-fold enrichment in a cluster compared to all other clusters. GO analysis was 

performed using the PANTHER database (http://www.pantherdb.org/) which uses Fisher's 

Exact tests with FDR multiple test correction. 

Pseudotemporal ordering: Pseudotemporal ordering of cells was performed using the R package 

'Monocle' (Trapnell et al., 2014) (v2.2.0). For unsupervised ordering, we used genes differentially 

expressed between cells at day 0 (fibroblasts) and CHi and TFi at day 9 and day 21 (qval < 0.1; 

~10'000 genes). To determine genes that are significantly branch-dependent (p < 10-4), we applied 

the BEAM algorithm. GO analysis for branch-dependent genes was performed using genes that 

met the following criteria: 1) p < 0.01 in a likelihood ratio test based on zero-inflated data; 2) 

absolute log2 fold changes between the branch under consideration and others were larger than 2. 

GO analysis for genes that changed significantly as a function of pseudotime was performed using 

genes that met the following criteria: 1) p < 10-4 of differentialGeneTest; 2) among the top 1000 

genes showing positive or negative correlation with pseudotime values. For semi-supervised 

ordering, we used ~3000 unique genes previously implicated in nervous system development 

(GO:0007399), circulatory system development (GO:0072359), urogenital system development 

(GO:0001655), heart development (GO:0007507), mesenchyme development (GO:0060485), ear 

development (GO:0043583), muscle structure development (GO:0061061), stem cell development 

(GO:0048864), pancreas development (GO:0031016) and skeletal system development 

(GO:0001501) (Supplementary Table 3). GO analysis was performed using genes that met the 

following criteria: 1) p < 0.01 in a likelihood ratio test based on zero-inflated data; 2) absolute log2 

fold changes between the branch under consideration and others were larger than 2. To determine 



exogenous TFs that are significantly branch dependent, expression values were binarized (0 = not 

expressed, 1 = expressed). Then we performed Fisher's exact tests to calculate the significance of 

association of a given exogenous TF with each branch. Exogenous TFs with p < 0.05 were 

considered significantly enriched. 

CHIP-seq analysis 

To distinguish direct and indirect targets of exogenous transcription factors, we downloaded 

CHIP-seq datasets from the CHIP-Atlas public repository (https://chip-atlas.org/) and intersected 

all matching exogenous TFs. Genes within 1 kilobase of the transcription start site and with a 

combined score greater than 10 were considered direct targets of exogenous TFs (Supplementary 

Table 1). 

Statistics 

Statistical analyses were performed using R and detailed in the corresponding figure legends. All 

Student's t-tests are two-sided. 

 

 

 

 

 

 

 



Supplementary Figures 

 

Supplementary Figure 1: Candidate TF expression during iPSC-to-NPC differentiation and 

neuronal profiling of TFi and CHi. a, Expression fold changes of 18 out of 20 candidate 

neurogenic TFs (colored) during differentiation of human induced pluripotent stem cells (hiPSC; 

day 0) into early neuronal progenitor cells (NPC; day 18). Pluripotency markers OCT4 and 

NANOG are shown in dark grey, all other TFs are shown in light gray. b, Schematic overview of 

the expression vectors of the TF-pool (top) and CHi (bottom). c, Theoretical prediction of the 

number of TFs each cell will be infected with, assuming that each TF infects 14.3% (light gray), 

20% (red) and 33% (dark gray) of cells. d, Neuronal profiling of CHi and TFi was performed on 



pictures of immunostainings for TUBB3 (red). e, Quantifications of the length of neurites, scaled 

by a factor of 100, and the number of branch points of CHi and TFi at 7 dpi and 21 dpi are 

independently shown on the x-axis. n = 6 independent experiments, unpaired Student's t-test. Error 

bars represent mean + SD. 

 

Supplementary Fig. 2: Quality control and marker gene expression of droplet-based scRNA-

seq data. a-c, Violin plots of the number of detected genes (a), the number of UMI (b) and the 

percentage of mitochondrial genes (c) of sequenced CHi (gray) and TFi (red) (n = 3865 cells). 



Dashed lines show thresholds applied for quality control. d, Mean variation plot of all genes after 

quality control. Variable genes used for PCA and UMAP are shown in red. e, Visualization of the 

cluster-specific relative expression levels of marker genes using UMAP; cluster colors as in Fig. 

2a. The full list of differentially expressed genes of all clusters can be found in Supplementary 

Table 1. f, GO analysis of cluster-specific marker genes in clusters CL1 - CL3. Shown are top 5 

GO terms related to biological process (dark grey) and cellular component (light grey) for each 

cluster. 



 



Supplementary Fig. 3: Benchmark of distinguished detection of exogenous and endogenous 

TFs in bulk and droplet-based single-cell RNA-seq. a, Visualization of log2-transformed CPM 

expression values of exogenous (red) and endogenous (blue) TFs on two-dimensional UMAP 

projections reveal inefficient detection of exogenous TFs in droplet-based scRNA-seq data (n = 

3865 cells). b, Bulk RNA-seq on pooled infected fibroblasts. Horizontal dimension; distance from 

the 5' end of the EF1A promoter, vertical dimension; number of aligned paired-end reads. Gray 

arrows (no overlap) and golden arrows (overlap) mark 5' and 3' junctions of exogenous ORFs. c, 

Heat map showing log2-transformed TPM values of exogenous (red) and endogenous (blue) TF 

pairs after alignment using Kallisto without trimming junction sequences. For individually infected 

fibroblasts and CHi, 2 replicates at an MOI of 4 and 2 replicates at an MOI of 8 were included. 

For pooled infected fibroblasts, 2 replicates at an MOI of 4 were included. 



 



Supplementary Fig. 4: Quality control and unsupervised pseudo-temporal ordering of the 

Smart-seq time-course. a-c, Box plots showing the percentage of ERCC spike-ins (a), the number 

of counts mapped to genes (b) and the number of detected genes (c) in all 7 runs sequenced for the 

time-course experiment (n = 446 cells). d, Coefficient of variation is plotted against mean TPM, 

all genes are shown in gray, lines indicate the fit for each run and ERCC spike-ins are shown in 

colored dots; colors as in A. e, Hierarchical clustering of fibroblasts, CHi and TFi at 9 dpi and 21 

dpi recapitulates 2-dimensional visualization by UMAP shown in Fig. 4b (top) and reveals no 

batch effects (bottom). f, UMAP projection of transcriptomic data (Fluidigm C1) where TFi 

batches are colored and all other cells are gray. Clustering of TFi is not batch-dependent. g, 

Pseudo-temporal ordering of time-course data based on genes differentially expressed between 9 

dpi and 21 dpi (n = 446 cells). Small squares show the same plot colored by pseudo-temporal 

values and separate density plots for each sample. h, Heat map showing ~1000 genes whose 

relative expression changes as a function of pseudo-time. i, Top GO terms enriched in the top 2000 

genes showing negative (top panel) and positive (bottom panel) Pearson correlation with pseudo-

temporal values. j-l, Dot plots and fit (gray) of log2-transformed TPM expression values of cell 

cycle-related genes (CCNB1, MKI67, TK1, TOP2A; j), canonical neuronal genes (NRCAM, 

SFRP1, SNAP25, SYT1; k) and genes associated with alternative developmental fates (BMP4, 

FAT4, PGF, VEGFA; l) along pseudo-time; colors as in A. m, Visualization of relative expression 

values of exogenous TFs along pseudo-time where cells are ordered based on the expression of 

developmental genes. 

  



 

Supplementary Fig. 5: Functional classification of cluster 5. a, Top six most significant gene 

ontology terms defined in Figure 4b (left panel) clusters. b, Ratios of exogenous TFs in cluster 3 

and cluster 4 as compared to cluster 5.    

  



 

Supplementary Fig. 6: Validation of novel combinations of exogenous TFs. a, Same plot as in 

Fig. 5a, but cells are colored based on Smart-seq cell identity. b, Quantification of the percentage 

of Smart-seq cells mapping to 10x Genomics clusters. c, Same plot as in Fig. 5a, but cells are 



colored based on Smart-seq cluster identity. d, Visualization of scaled expression values of 

exogenous TFs that showed no significant enrichment (Fisher's exact test, p > 0.05) in any cluster 

on two-dimensional UMAPs. e, Schematic summary of exogenous TFs showing enrichment in 

glutamatergic and/or cholinergic clusters. f, Top: Recording electrode patched onto a YFP+ cell 

with a stimulation electrode. Scale bars, 20μm. Bottom: The generation of the action potential in 

control cells. Representative traces in the presence of extracellular Na+ were recorded using the 

current-clamp protocol. g-j, Electrophysiological properties of control cells (CHi), iN infected 

with DLX2, NEUROG2, PAX6, ZIC1 (glutamatergic) or DLX1, ISL1, NEUROG2, PAX6 

(cholinergic). n = 3 independent experiments, unpaired Student's t-test. Error bars represent mean 

+ SD. k-l, Box plots showing the Log2-transformed TPM values of neurogenic and neuronal 

subtype-specific genes (k) and fibroblast-specific genes (l) in cells with (+) or without (-) 

exogenous DLX2 (top), ISL1 (middle) and ZIC1 (bottom). Box plots are colored based on -Log10-

transformed p-values. 
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