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SUMMARY
Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However,

important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis.

A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of

stem cell function unresolved. Using processed flow cytometry data coupled with a biology-driven modeling approach, we show that

in vivo flux experiments that come from different laboratories can all be reconciled into a single unifying model, even though they

had previously been interpreted as being contradictory. We infer from comparative analysis that different transgenic models display

distinct labeling efficiencies across a heterogeneous HSC pool, which we validate by marker gene expression associated with HSC func-

tion. Finally, we show how the unifiedmodel of HSC differentiation can be used to simulate clonal expansion in the early stages of leuke-

mogenesis.
INTRODUCTION

More than a century of sustained research efforts has estab-

lished hematopoiesis as a paradigm for adult stem cell

biology (Laurenti and Göttgens, 2018; Pappenheim,

1896). Sophisticated transplantation assays have pin-

pointed the key stem cell properties of self-renewal and

multilineage differentiation capacity to a rare population

of cells, present at a frequency of approximately 1 in

20,000 in mouse bone marrow (Seita and Weissman,

2010; Spangrude et al., 1988). Coupling transplantation

with flow-cytometric cell sorting established an experi-

mentally tractable differentiation hierarchy from hemato-

poietic stem cells (HSCs) via multipotent progenitors

(MPPs) toward the individual blood lineages. Moreover,

the initially defined HSC population was subsequently

shown to be separable into long-term HSCs and short-

term HSCs (ST-HSCs), of which only the former has true

long-term (over 20 weeks) transplant reconstitution capac-

ity, as well as the ability to maintain stem cell function

through serial transplantation (Laurenti and Göttgens,

2018).

The high turnover of the blood system necessitates the

constant production of large numbers of new blood cells.

Pioneering transplant experiments following exposure to

the chemotherapy agent 5-fluorouracil revealed that a
Stem Ce
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pool of slowly cycling stem/progenitor cells exists up-

stream of faster cycling MPPs (Hodgson and Bradley,

1979). More recent experiments have established that

those mouse HSCs with the most robust transplant ability

tend to be the most quiescent HSCs (Oguro et al., 2013),

with rates of cell division estimated to be less than once

per 100 days (Wilson et al., 2008). Collectively, these

studies raised the question as to how important HSCs are

for native, unperturbed hematopoiesis, regardless of the

undoubtedly pivotal role they play in transplant settings

(Höfer and Rodewald, 2018). Transposon-based transgenic

mouse models permit the labeling of individual stem/pro-

genitor clones, and subsequently track how individual

clones contribute to mature hematopoietic lineages over

time. Using this approach, it was argued that long-lived

progenitors, rather than classically defined HSCs, are the

main drivers of unperturbed hematopoiesis (Sun et al.,

2014). However, the technology could suffer from low

sensitivity to detect clones within the HSC compartment,

particularly those that divide rarely.

Several groups therefore embarked on label-propagation

studies, where recombinase-mediated activation of fluores-

cent reporter genes creates a genetic label exclusively in

HSCs (Busch et al., 2015), or in HSCs and, to a minor

extent, intermediate progenitors (Chapple et al., 2018; Sa-

wai et al., 2016; Säwén et al., 2018). The genetic label can
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be followed when HSCs enter differentiation to contribute

to the various blood cell lineages. These four separate

studies reported conflicting conclusions, ranging from

minor to substantial contributions of HSCs to native hema-

topoiesis. Of note, one of the studies (Sawai et al., 2016)

employed a strategy that entailed serial sampling of the

same mouse, whereas the other three studies (Busch

et al., 2015; Chapple et al., 2018; Säwén et al., 2018) uti-

lized the same experimental design of using unique mice

for each time point, thus facilitating direct comparisons.

Two of the four studies inferred the differentiation rates

of HSCs and MPP cells by constructing mathematical

models, built from the quantitative measurements of the

speed at which the genetic label progresses down the he-

matopoietic hierarchy. Although the two studies inferred

a similar order of magnitude for HSC output, around 1%

(Busch et al., 2015) to 3% (Sawai et al., 2016) of HSCs per

day giving rise to ST-HSCs, Sawai et al. (2016) found no

self-renewing progenitors downstream of HSCs, calling

for a major role for HSCs in sustaining hematopoiesis.

Furthermore, some key assumptions for model construc-

tion were different (Pucella et al., 2020).

In this study, we set out to resolve the different conclu-

sions reported by the comparable lineage-tracing studies

by using published data from the different groups. Direct

comparison of labeled and unlabeled cell counts over

time revealed clear qualitative and quantitative differences

(see Results and Figures 1B and 1C), which we reasoned

were due to the use of different transgenic Cre models.

We therefore adopted a modeling approach that accounts

for differences in label induction across a heterogeneous

stem cell compartment (Barile et al., 2020). Importantly,

this allowed us to define a single set of inferred kinetic

properties that can explain training as well as validation

datasets, thus demonstrating true predictive capability. As

a result, we show how previous claims of contrasting

degrees of HSC contribution to unperturbed hematopoiesis

can be readily reconciled. Our study therefore provides a

unified quantitativemodel for unperturbed hematopoiesis,

which we furthermore exploit to interrogate the relation-

ship between oncogene strength and target cell for trans-

formation during the early stages of leukemogenesis.
RESULTS

Fgd5 and Tie2 (Tek) Cre Knockin Elicits Qualitatively

Different Label Propagations

Two recent lineage-tracing studies employed inducible Cre

knockin alleles driven by Fgd5 (Gazit et al., 2014; Säwén

et al., 2018) and Tie2 (Busch et al., 2015) regulatory ele-

ments to quantify label propagation across the hematopoi-

etic hierarchy under unperturbed settings (Figure 1A). Both
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studies used flow cytometry to assess label propagation

over an extended time course, Busch et al. (2015) inferring

anHSC rate of differentiation into ST-HSCs of about 1%per

day, whereas Säwén et al. (2018) suggested a more active

HSC contribution, but without quantification. Given the

central importance of this debate for the wider field of

hematopoiesis, we set out to assess how these different con-

clusions may have arisen. We focused on the most imma-

ture populations in the hematopoietic hierarchy, namely

LSK CD150+ CD48� HSCs, LSK CD150� CD48� ST-HSCs,

and LSK CD150� CD48+ MPPs.

A direct comparison of the labeling frequency over time

showed a faster accumulation of labeled cells in several

downstream compartments (Figure 1B) for the Fgd5

dataset. With the temporal dynamics of label propagation

clearly different between the two datasets, we next asked

whether the steady-state model of hematopoiesis devel-

oped for the Tie2 dataset (Busch et al., 2015) could also

explain the temporal dynamics observed in the Fgd5

experiment (Säwén et al., 2018). The model describes

stem and progenitor cell population dynamics, based on

two parameters per population: the differentiation rate,

i.e., the frequency at which progeny are produced from a

progenitor, and the residence time, a measurement of a

population’s self-renewal degree. Deriving these parame-

ters from the two different datasets resulted in substantially

different values (Figure 1C). For example, the derived

differentiation rate of HSCs for the Fgd5 dataset was higher

than for the Tie2 dataset. Moreover, while a population

downstream of HSCs with high self-renewal capability

was inferred for both datasets, this comprised MPPs in

Säwén et al. (2018) and ST-HSCs in Busch et al. (2015).

These analyses suggest that the underlying biology

captured by the Fgd5 versus the Tie2 Cre model is distinct

and that the steady-state model is of limited applicability.

Moreover, the steady-statemodel did not provide a satisfac-

tory fit to the Fgd5 dataset (Figure S1A), whereas it did for

the Tie2 dataset, suggesting that a non-steady-state model

(Barile et al., 2020) is required for a unified description of

both datasets.

Existing Models Do Not Address Key Aspects of Stem

Cell Behavior

Computational modeling has played a pivotal role in efforts

to infer stem cell kinetics and has uncovered properties of

stem cells that could otherwise not have been deduced

from static analysis of the data alone (Buchholz et al.,

2013; Foudi et al., 2009; Mackey, 2001; van der Wath et al.,

2009).However, our analysis in the previous section showed

that the approaches taken previously to model HSC label

propagation lack the flexibility to explain more than a

single experimental dataset. The mathematical model in

Busch et al. (2015) assumes that the flow-cytometric HSC
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Figure 1. Published Label-Propagation Results with Tie2 and Fgd5 Cre Mouse Models Are Qualitatively Different
(A) Outline of tamoxifen-inducible Cre recombination-based fate-mapping experiments to analyze stem cell kinetics. Healthy transgenic
mice are injected with tamoxifen, which causes labeling of the HSC population. Circles represent stem cell populations with the proportion
of labeled cells shown in red. Label propagates over time and appears sequentially in downstream populations.
(B) Frequency of labeled cells in the ST-HSC and MPP compartments scaled to the labeling frequency in HSCs, following a uniform pipeline
for flow cytometry data processing applied to data from Busch et al. and Säwén et al. Bars represent average and SEM at comparable time
points (n = 104 or n = 48, respectively, for the three time points altogether, all independent experiments).
(C) Model parameters of kinetic rates as inferred by the basic steady-state model developed for Busch et al. Best-fit value and the 95%
profile likelihood confidence bounds are shown. Non-overlapping bounds highlight that this approach fails to find consistent parameters
between the two studies. ⍺, differentiation rates; k, measure of self-renewal, with smaller k’s representing higher self-renewal in a
compartment. Blue dots are computed parameters for Fgd5 dataset, red for Tie2 dataset.
population is homogeneous and characterized by uniform

cell kinetic rates,while amore recent extensionof thismodel

accounts for HSC and ST-HSC population heterogeneity

(Barile et al., 2020). Whereas the former model cannot ac-

count for the increase over a time span of 2 years in the fre-

quency of labeledHSCs, observed in all lineage-tracing data-

sets (data not shown), the latter model does. Given that Cre
induction occurred only at the beginning of the time course,

the most likely explanation for a subsequent increase in the

proportion of labeled cells in the flow-cytometricHSCpopu-

lation is that this population is heterogeneous, where a sub-

populationdisplayshigher labeling frequency right fromthe

start, which subsequently propagates to the rest of the popu-

lation. Moreover, the homogeneity assumption of the
Stem Cell Reports j Vol. 16 j 741–753 j April 13, 2021 743



simple steady-state model prevents the model from fitting

theplateauof ST-HSCnormalized label frequency.Withaho-

mogeneous HSC population, this frequency is expected to

converge to 1, but as observed in the Fgd5 dataset (Fig-

ure S1A), the frequency tails off at around 0.7.

Another simplification of the published models is the

assumption of a steady state in Busch et al. (2015) and Sawai

et al. (2016) with constant compartment sizes and rates dur-

ing amouse’s life. Barile et al. (2020) and Bernitz et al. (2016)

show that several populations, including the HSC popula-

tion, change substantially with aging along extended time

courses (see Figure S1B). Finally, the assumption of time-in-

dependent rates does not consider the decrease in stem cell

output upon aging (as observed by Säwén et al., 2018, and

Barile et al., 2020). As the overarching purpose of modeling

is the derivation of biologicallymeaningful conclusions that

are statistically supported by all the available experimental

data, we asked whether the Tie2 and Fgd5 datasets could

be reconciled by an extended non-steady-state model with

HSC heterogeneity.

HSC Population Heterogeneity Suffices to Explain

Quantitative Differences When Using Fgd5 and Tie2

Cre Drivers

Heterogeneity within flow-cytometric HSC populations

has long been recognized and explored experimentally by

several groups (Oguro et al., 2013; Sawai et al., 2016; Wil-

son et al., 2008). HSC heterogeneity has also been consid-

ered in tissue models (Roeder and Loeffler, 2002), but so

far has not been used to integrate different label-propaga-

tion experiments. We therefore investigated whether

quantitative differences between the Fgd5 and the Tie2

label-propagation datasets could be explained by a hetero-

geneous HSC population, where the subpopulations are

labeled with different probabilities by the Fgd5 versus the

Tie2 Cre. Figure 2A illustrates this concept with a toy

model. Let us assume that HSCs are split into two subcom-

partments (upstream [HSC-U] and downstream [HSC-D]).

If two different Cre drivers (label I and label J) were to label

the upstream and downstream subcompartments 50% and

0% versus 50% and 50%, respectively, then the time-

dependent accumulation of labeled cells in population

ST-HSC would be qualitatively different, even though the

kinetic parameters of all the populations are the same.

We thus adopted the idea of a heterogeneous HSC popu-

lation and dropped the steady-state assumption. To satisfy

the constant rate assumption, we narrowed the observa-

tion window to 40 weeks, thus excluding the major

aging-related alteration in population abundance within

the extended time-course datasets.

This new model was fit to both the Fgd5 and the Tie2

datasets (both the frequency and the population size

data) simultaneously to infer common underlying kinetics,
744 Stem Cell Reports j Vol. 16 j 741–753 j April 13, 2021
but permitting different initial labeling frequencies for

each population. Themodel fit provided a good description

of the input data, withmost points lying within the predic-

tion profile likelihood (Kreutz et al., 2012) confidence

bounds (Figure 2B) for both label frequency and compart-

ment population size. Modeled population sizes over

time revealed substantial confidence bounds for the in-

ferred most immature HSC population, which was pre-

dicted to expand (Figure S2). Of note, all estimated param-

eters have at least one identifiable bound, so the model is

not overfitted (Murray 2002; Raue et al., 2009). Even

though the datasets appear to infer different biological

properties at first glance, both datasets are consistent

with a single set of stem cell kinetics as long as differences

in the initial Cre-mediated labeling are considered.

In particular, the key difference inferred by the model re-

lates to different labeling of the HSC subcompartments

with the Tie2 and Fgd5 Cre knockin mice (Figure 3B).

The inferred ratio of initial labeling frequency between

HSC-U and HSC-D (Figure 3C) is at least 4:1 for Fgd5 and

21:1 for Tie2. Consequently, Tie2 Cre-mediated labeling is

inferred to be at least 4.8 times more specific to HSC-U

than the Fgd5 Cre-induced label. Intuitively, this suggests

that with Fgd5 Cre, labeled cells from HSC populations as

defined by flow cytometry will progress faster to the ST-

HSC population because of the relatively higher HSC-D

labeling frequency, since HSC-D is ‘‘closer’’ to ST-HSC

than HSC-U.

Taken together, our results suggest that different initial

labeling frequencies of a heterogeneous HSC population

are sufficient to explain the observed differences between

Fgd5 and Tie2 Cre-induced label-propagation studies.

Importantly therefore, both studies are consistent with a

common and unified set of underlying stem cell kinetics.

The Unified Stem Cell Kinetics Inferred for the Tie2

and Fgd5 Datasets Explain a Third Independent

Fate-Mapping Experiment

The initial requirement for any model designed for

experimental data is that it accurately captures a set of

experimental observations. However, a stringent test of

the predictive power of a computational model is its appli-

cation to an independent experiment that did not form

part of the training data. We therefore used the same flow

cytometry processing pipeline to analyze a third indepen-

dent lineage-tracing/label-propagation study from Chap-

ple et al. (2018). This study used a Cre transgene exploiting

gene regulatory sequences of the Krt18 gene locus to drive

expression of an inducible Cre transgene in the HSC

compartment. Importantly, this allowed us to validate

the idea that different initial labeling frequencies of stem

cells, particularly of a heterogeneous HSC population, are

sufficient to unify experimental observations from
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Figure 2. Different Initial Labeling of HSC Subcompartments Explains the Qualitative Differences among Datasets
(A) Concept illustrated by a toy model. Left: a differentiating cascade with a stem cell population of HSCs producing progeny ST-HSCs. HSCs
are heterogeneous, but treated as homogeneous due to the lack of markers to distinguish the subcompartments. HSC-U, upstream; HSC-D,
downstream. Two hypothetical Cres, I and J, label the upstream and downstream compartments with different proportions. Right: the
simulated accumulation of labeled cells in ST-HSC, normalized to the labeling frequency of HSCs considered as homogeneous, is
qualitatively different for labels I and J, although the underlying population kinetics are the same.
(B) Model best fit (solid line) and 95% prediction profile likelihood confidence bounds on the model (shaded area) plotted against
the experimental data (big dots representing average and SEM of datasets, small dots the mice from independent experiments, n = 242 or

(legend continued on next page)
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different studies, with all stem/progenitor cell kinetics re-

maining fixed (and thus the same) across all three studies.

Stem cell kinetics from the joint analysis of the Fgd5 and

Tie2 datasets were fixed, and only the initial labeled fre-

quencies were trained on the new Krt18 data points (Fig-

ure 3A). This modeling approach provided a good fit for

the Krt18 dataset, thus not only demonstrating the predic-

tive power of our model, but also emphasizing the notion

that a single set of stem/progenitor cell kinetics is compat-

ible with multiple label-propagation studies, which at first

glance appeared to present highly contradictory results.

Indeed, Chapple et al. (2018) had concluded, although

without quantification, that the HSC population is active,

in line with Säwén et al. (2018), but in contrast to Busch

et al. (2015). Our analysis suggests that there is no need

to assume any one of these studies to be incorrect. Instead,

the supposed discrepancies can be reconciled by a revised

interpretation of the properties of the data, which impor-

tantly is based on a single set of assumptions about the un-

derlying biological properties of the stem cells.

The Unified Model Predicts Inactive and Active HSC

Subpopulations and Sustained Self-Renewal

Downstream of HSCs

Our new approach for studying unperturbed hematopoie-

sis faithfully captures experimental label-propagation ex-

periments from three different groups using three different

Cre drivers. We were therefore interested to explore further

the model parameters (Figure 2C), as they should have a

significantly higher chance of capturing the true biology

of unperturbed hematopoiesis than previous modeling ef-

forts that, as we showhere, cannot explainmore than a sin-

gle dataset. Themodel predicted an inactive near-quiescent

upstream HSC-U population with around 1 in 50 HSC-U

cells differentiating per week, and an active HSC-D popula-

tion with each HSC-D cell differentiating every week, thus

suggesting that at least a subset of HSCs contributes

frequently to normal hematopoiesis, as emerged qualita-

tively from the Fgd5 dataset. On the other end, we identi-

fied MPPs as an almost self-renewing population (high

residence time, low k value), consistent with a key role

for progenitors downstream of HSCs in supplying fresh

blood cells in steady-state hematopoiesis as well as

in situations where stem cell input may be lacking (Schoe-

del et al., 2016; Sheikh et al., 2016). Of note, while the
n = 48, respectively, for Tie2 and Fgd5 datasets for all three plots). The
later time points have different numbers of samples, reflected in the l
qualitatively different between the two datasets due to the different
data, measured at common time points. Labeled frequencies of ST-HSC
of HSCs.
(C) Best-fit model parameters trained on the two datasets, shown al
differentiation rate of HSC-D is high, suggesting a major contribution
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model gives a clear indication of self-renewal downstream

of HSCs, which subpopulations are identified as self-renew-

ing may depend on the potential heterogeneity of the ST-

HSC and MPP compartments.

Our model therefore reconciles the various headline

statements from studies previously regarded as contradic-

tory. Cells within the HSC pool readily contribute to hema-

topoiesis, but the model also shows that non-stem progen-

itor populations can have prominent roles in sustaining

hematopoiesis. Overall, the parameters suggest that a sub-

compartment of the HSC population is indeed producing

differentiated cells frequently, although downstream pro-

genitors have a sufficient degree of self-renewal to cope

with prolonged stem cell failure.

Inferred HSC Labeling Patterns Agree with SCA1

Surface Marker Expression

As outlined above, the new model has a constant set of ki-

netic parameters but assumes that (1) the HSC population

is composed of two hierarchically connected subpopula-

tions, and (2) the different Cre drivers label cells in the

two subcompartments with different proportions. The in-

ferred ratios of labeling frequencies for HSC-U and HSC-D

for the three Cre drivers are at least as follows: 4:1 for

Fgd5, 21:1 for Tie2, and 30:1 for Krt18 (Figures 3B and

3C). To test these inferred proportions, we investigated

the fluorescence-activated cell sorting intensities of the

SCA1 surface marker for labeled and unlabeled HSCs (Fig-

ures 3D and S3). Previous studies have shown a link be-

tween SCA1 expression levels and the reconstitution po-

tential of the HSC population after transplantation

(Wilson et al., 2015), with SCA1high cells providing more

robust and durable long-term reconstitution than SCA1lo

cells. SCA1high cells are thus thought to account for the

long-term reservoir of dormant HSCs (Sawai et al., 2016;

Wilson et al., 2008).

Fortuitously, Chapple et al. (2018) reported lineage propa-

gation data not just for the Krt18 Cre, but also for the same

Fgd5 Cre (as used by Säwén et al., 2018). This allowed us to

perform robust quantitative comparisons of flow cytometry

intensities, which would be rather challenging to perform

on datasets generated by different groups using different

machines. This comparative analysis demonstrated that

HSCs labeled with Krt18 have higher SCA1 levels compared

with unlabeled HSCs, while SCA1 expression of HSCs
variance was pooled for all data points to account for the fact that
arger confidence bounds on parameters and model. Kinetics appear
initial labeling frequencies. Data are an average of all the available
and MPP populations have been normalized to the labeled frequency

ongside 95% prediction profile likelihood confidence bounds. The
to hematopoiesis, although the confidence bounds are also large.



Figure 3. Investigation of Model Parameters Gives Insights into Cre Labeling Marker Bias and Stem Cell Kinetics
(A) Predicting an independent experiment from the learned kinetics. Upon changing only the initial labeling frequency in the HSC-U and
HSC-D populations, an independent experiment can be predicted with the best-fit kinetics learned from the previous two datasets. Blue
line, best fit for the Fgd5 dataset. Green, best fit (solid line) and 95% profile likelihood confidence bounds (shading) on the model for the
Krt18 datasets. Big dots represent average and SEM of dataset, small dots the mice from independent experiments, n = 54 for all three plots.

(legend continued on next page)
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labeled with Fgd5 spills over to the lower-intensity peaks,

and thus overlaps more broadly with the unlabeled HSCs.

Given the knownassociation of themost robust and durable

transplantable HSCs with high levels of SCA1, this result is

consistent with our inferred differential labeling efficiencies

for the Krt18 and Fgd5 Cre drivers, since the modeling had

inferred that Krt18 Cre would show higher labeling speci-

ficity for the most upstream HSC subpopulation. This

analysis therefore provided experimental validation and

corroboratedour approachof inferring values for differential

HSC labeling patterns across a heterogeneous HSC compart-

ment. Moreover, these findings highlight the notion that

opposing conclusions drawn from the various label-propa-

gation studies are indeed a likely consequence of different

biological properties of the various Cre drivers.
Modeling Leukemia Development Kinetics Based on

Cell of Origin

A model describing the kinetics of stem cells can be used to

give insights into disorders that arise in stem or progenitor

cells. Since our combinedmodel appears robust in capturing

biological features of normal hematopoiesis, we were inter-

ested to see whether the model could also be used to simu-

late the early steps of malignant transformation toward

leukemia. More specifically, we wanted to interrogate the

potential dependence of leukemic progression on the popu-

lation where the mutation first arises. Leukemogenesis

commonly develops as a stepwise process, where preleuke-

mic clones show normal differentiation into all the mature

lineages, yet have a so-called clonal advantage, whereby

the clone expands as a fraction of the entire system over

time. Within our model, this process can be investigated

by tuning the parameters inferred for normal hematopoiesis

to simulate the emergence of a malignant cell, and then

simulating how this ‘‘clone’’ behaves over time.

Based on the population kinetics from our new combined

model, we first investigated how a mutant stem cell with

enhanced proliferation would cause an accumulation of

the progeny of this mutant clone into the MPP compart-

ment (Figure 4A). Given the active debate on whether ST-

HSCs and/or MPPs can serve as cells of origin for leukemia

development, we also simulated the emergence of individ-

ual mutant clones in these cell populations. For modeling
(B) Model-predicted initial labeling frequencies for each stem cell pop
by different amounts, leading to an observable difference in the temp
(C) Model-predicted initial labeling frequency ratios of HSC-U to HSC-
labeling frequency to initial HSC-D labeling frequency for each Cre driv
Cre drivers. It can be interpreted as the specificity of a Cre driver to HS
with dotted line indicating unbounded parameter.
(D) SCA1 expression-density plots for HSCs in Fgd5 and Krt18 fate-m
between labeled and unlabeled HSCs for each reporter gene at the fir
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purposes, we assumed that the initial mutation would

endow the target cell and all of its daughter cells with an

increased proliferative potential, and thus tested prolifera-

tion rate increases by factors of 31.03 (a weak mutation),

31.08 (a moderate mutation), and 31.15 (a strong muta-

tion). Following themodel for a 60week time course showed

that leukemic clone establishment was dependent on both

the cell of origin and the strength of the mutation (Fig-

ure 4B). ‘‘Weak’’ oncogenic mutations in the upstream cell

populations, namely HSC-D and HSC-U, result in the estab-

lishment of the leukemic clone, but ‘‘weak’’ oncogenic mu-

tations originating in the downstream cell populations are

diluted out and are insufficient to promote preleukemic

development. By contrast, ‘‘strong’’ mutations are sufficient

to cause clonal expansion, regardless of the cell of origin.

We next identified the threshold of mutation strength

required to generate an expanding clone starting from

the four cell types contained within our model. We found

that a mutation in all cell populations can induce an

immortal mutant clone population in the MPP compart-

ment (Figure 4C), but again, the ease with which this is

achieved is dependent on the cell population. For HSC-U,

any increase in proliferation is enough, for HSC-D an in-

crease of 31.04 is required, and for ST-HSC and MPPs,

this value is 31.06. The relationship between mutation

strength and cell of origin extended all the way to the

two HSC subpopulations. In terms of potential mecha-

nisms, these findings suggest that a very weak oncogenic

mutation in the HSC population is sufficient to cause

mutant cells flowing into the MPP population to balance

the loss of mutant cells due to further differentiation. How-

ever, a stronger oncogenic mutation is required to create a

similar immortal mutant MPP population if the initiating

mutation arises within theMPP themselves. From a clinical

perspective, our results serve as a potential explanation of

how leukemic clones with identical mutations may exhibit

different levels of ‘‘fitness’’ depending on their cell of

origin, and thus may respond differently to treatment.
DISCUSSION

Recent advances in lineage tracing and genomic technolo-

gies are ushering in a new era of stem cell biology, with the
ulation. The three Cre drivers are predicted to label each population
oral dynamics. Error bars show confidence intervals for parameters.
D. Left side shows the minimum value for the ratio of initial HSC-U
er. Right side shows the ratio of these ratios between the different
C-U over HSC-D. Error bars show confidence intervals for parameters

apping experiments. Plots show a comparison of the distribution
st measured time point after induction (7 days).
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Figure 4. Modeling Cell of Origin Reveals
Distinct Leukemogenesis Dynamics
(A) Model to investigate propagation of
single cell mutation from each stem cell
population dependent on the factor by
which cell proliferation increases. A single
cell mutation in one population propagates
to progeny populations over time. Whether
the mutation population develops is
dependent on population of origin and de-
gree of increase in self-renewal (i.e.,
strength of mutation).
(B) Simulation of leukemogenesis dynamics
over 60 weeks compared by mutant cell
origin. Plots show proportion of MPP cells
that are mutants (have higher proliferation
rates). A strong mutation in any stem cell
population causes an overshoot of mutants
in the MPP population (red). However, the
effect of a weak/moderate mutation is
highly dependent on cell of origin (orange,
yellow).
(C) Simulation of leukemogenesis dynamics
to induce immortal mutant MPP population.
Immortal population can be induced by any
stem cell population, but the strength of
mutation required is highly dependent on
mutant origin. Bars show the fold increase
of the proliferation rate in each population
with respect to its normal haematopoisis
value.
goal of defining stem cell/progeny relationships at both the

cellular and the molecular level. It is widely expected that

the resulting deep understanding of stem cell differentia-

tion trajectories will provide a blueprint to better under-

stand perturbations that drive stem cell diseases, as well

as informing the development of directed differentiation

protocols to produce the desired cell types for either drug

discovery or cellular therapy. However, vastly different con-

clusions have been drawn from the initial label-propaga-

tion studies performed using HSC-specific (Busch et al.,
2015) and HSC- and ST-HSC/MPP-specific (Chapple et al.,

2018; Sawai et al., 2016; Säwén et al., 2018) Cre driver

mousemodels. Our study presents an approach that recon-

ciles the different studies, provides insights into what

caused the divergent interpretations, and demonstrates

how a refined computational model anchored in biology

can be utilized to quantify aberrations in cellular function

that may drive the early stages of leukemogenesis.

Wewould argue that the problem that we have addressed

here is broadly relevant to all areas of biology where
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modeling is employed to develop a useful abstraction of the

underlying processes. For our comparisons between data-

sets, we took account of three levels, namely a qualitative

description of the data, quantitative interpretation, and

the inferred biological mechanisms. Comparisons based

on qualitative or quantitative descriptions alone can fail

to identify fundamental similarities in the underlying bio-

logical mechanism, particularly because models are only

accurate descriptions of our thinking (Gunawardena,

2014). Similarly, the same biological mechanism can man-

ifest itself in different qualitative and quantitative descrip-

tions. Fitting both datasets at the same time allowed us to

counteract these problems and to focus on the underlying

biological mechanism. Just as we were able to reconcile the

different studies on HSC activity, we believe that this

approach may be useful to develop a consensus view in

other areas of biomedical research where computational

modeling applied to individual datasets has produced

divergent conclusions.

The delineation of the initial versions of the hematopoi-

etic differentiation tree represents one of the most signifi-

cant accomplishments of stem cell research in the last

two decades of the 20th century (Akashi et al., 2000; Kondo

et al., 1997). Subsequent refinements have split many of

the original populations into defined subpopulations,

such as MPP1-4 for the MPPs (Adolfsson et al., 2005; Cabe-

zas-Wallscheid et al., 2014; Pietras et al., 2015;Wilson et al.,

2008). Functional assays have also revealed heterogeneity

within the HSC population, for example, by identifying

HSCs with particularly potent and durable reconstitution

activity based on high SCA1 or medium KIT expression

(Grinenko et al., 2014; Wilson et al., 2015). We reasoned

that Cre drivers under the control of different regulatory se-

quences would differ in their relative labeling of HSCs

across this spectrum of heterogeneous function, and that

in turn such differential labeling could explain differences

in the observed stem cell kinetics. Importantly, we vali-

dated differential labeling of SCA1-high HSCs by two of

the transgenic cassettes, thus providing experimental

evidence for our modeling approach, which was able to

reconcile different studies based on differential labeling

of a heterogeneousHSC compartment. The flux parameters

for our unifying model predicted a near-quiescent HSC-U

population and an active HSC-D population. There is

both prior experimental and theoretical evidence support-

ing our approach (Bernitz et al., 2016; Glauche et al., 2007;

Morita et al., 2010; van der Wath et al., 2009; Wilson et al.,

2008). HSCs have commonly been divided into two popu-

lations based on either reconstituting capacity (Morita

et al., 2010) or cell-cycle status (van der Wath et al., 2009)

or a combination of the two (Oguro et al., 2013).

Ourmodel is in general agreementwith the size and char-

acteristics of the subcompartment structure proposed by
750 Stem Cell Reports j Vol. 16 j 741–753 j April 13, 2021
previous studies. In particular, it suggests that the upstream

HSC population is at least five times smaller than the

downstream HSC population, in agreement with the idea

of a hematopoietic hierarchy where the relative size of pro-

genitor populations tends to increase as one progresses

down the hierarchy (Busch et al., 2015; Sawai et al.,

2016). Attempts to define heterogeneous subcompart-

ments with lineage tracing have already been made (Barile

et al., 2020). However, with the data currently available,

the upstream HSC population still shows an increase in

labeled cells over time, indicating that there is further pop-

ulation heterogeneity that is not yet resolved with

commonly used markers. As a result, there is no consensus

on whether the HSC population should be split into two or

three, or, in the new era of single cell biology, whether we

should even think of discrete subcompartments any

longer. Nevertheless, our model shows that current experi-

mental data can be well explained by considering two HSC

subcompartments, whereby a minimal topology model

that connects all populations can explain the data while

being constrained using bounded parameters. Alternative

topologies could still fit the model, but would either have

more parameters or substantially deviate from the classical

linear model of hematopoiesis. Although we cannot rule

out these possibilities, we limited ourselves to the simpler

linear case. Furthermore, a revised modeling approach

will be needed to capture the behavior of aging HSPCs,

given that there are likely to be changes in the underlying

molecular processes that occur during aging, but are not

accommodated in our current model. Novel experimental

and computational approaches will be needed to ulti-

mately define HSC stem cell kinetics at single-cell

resolution.

Research over the past decade has revealed that hemato-

poieticmalignancies are commonly preceded by prolonged

periods of clonal hematopoiesis, where progeny from a sin-

gle stem/progenitor cell make up a significant proportion

of the entire blood system. Called either CHIP or ARCH,

it is now widely recognized that clonal hematopoiesis is

more the norm rather than the exception in aged individ-

uals (Busque et al., 2018). Clonal expansion is also a hall-

mark of full-blown malignancies, where the relationship

between ‘‘oncogene strength’’ and cell type of origin has

already been explored experimentally. Specifically, it was

shown that ‘‘stronger’’ oncogenes could transform more

downstream progenitors, whereas ‘‘weaker’’ oncogenes

needed to be introduced into the top tiers to cause malig-

nant transformation (as reviewed by Horton and Huntly,

2012). Moreover, the JAK2V617F mutation associated

with clonal hematopoiesis was shown to confer long-

term repopulation ability onto downstream progenitor

cells in a mouse model of myeloproliferative neoplasms

(Lundberg et al., 2014). Our computational model allowed



us to capture the dependence of oncogenic mutation

strength on the target cell for mutation, commonly

referred to in leukemia research as the ‘‘cell of origin.’’

Weak mutations are washed out of the system if they occur

in MPPs but cause sustained clonal expansion if they occur

in HSCs. Moreover, the relative increase in self-renewal ac-

tivity required to create an immortal MPP is small (1.06-

fold increase), suggesting that (1) MPPs may represent the

cell of origin for many leukemias due to their larger pool

size comparedwithHSCs, and (2)many experimental tech-

niques currently used will struggle to pick up such small

changes in self-renewal activity.

Perhaps it is not a surprise, therefore, that sampling

across the long time spans of human aging represents the

most robust ways to characterize clonal hematopoiesis so

far. However, studies relying on inferring clonal events

retrospectively from analysis of human patient samples

do not represent an experimentally tractable system. This

in turn suggests a real need for computationalmodeling ap-

proaches, based on abstractions of the hematopoietic sys-

tem that agree with experimental data across a range of

different laboratories. We hope that the work presented

here will stimulate further examination of both normal

and perturbed hematopoiesis.
EXPERIMENTAL PROCEDURES

Steady-State Model Equations for Normal

Hematopoiesis
The same model as used in Busch et al. (2015) was applied to the

data obtained by Säwén et al. (2018). The model consisted of solv-

ing three ordinary differential equations using standardminimiza-

tion of the sum of weighted square residuals. Best-fit parameters

with 95% profile likelihood confidence bounds and the best-fit

model with 95% prediction profile likelihood confidence bounds

were inferred. Either standard error of the means or pooled vari-

ance was considered to weigh the squared residuals, but neither

produced a good model fit (Figure S1A).
Non-Steady-State Model Equations for Normal

Hematopoiesis
The non-steady-state model used to fit both Tie2 and Fgd5 datasets

was adapted from Barile et al. (2020). As in Busch et al. (2015), the

expected number niðtÞ of cells in a population i in a linear pathway

obeys the following system of ordinary differential equations:

8>><
>>:

dn1ðtÞ
dt

= � ða1 � b1Þ n1ðtÞ
dni>1ðtÞ

dt
=ai�1 ni�1ðtÞ � ðai � biÞ niðtÞ

: (Equation 1)

The parameters represent the cells’ fates, where for each popula-

tion, i represents the flux downstream and bi is defined as the net

proliferation rate, i.e., the difference of cell proliferation li and

death di:
bi = li � di : (Equation 2)

These kinetic parameters were assumed shared for both datasets

and constant for the whole time frame. To understand the kinetics

more intuitively, the cell inverse residence time ki (inversely pro-

portional to the amount of time required for a population to

reduce to one-half of its initial size if the input is switched off)

was defined as:

ki = ai � bi: (Equation 3)

We assumed the labeled cells followed the same physiological

behavior as the unlabeled cells. Thus, the expected number of

labeled cells lA;iðtÞ for a reporter gene A in a given population i

obeys equations analogous to Equation 1:

8>><
>>:

dlA;1ðtÞ
dt

= � k1 lA;1ðtÞ
dlA;i>1ðtÞ

dt
=ai�1 lA; i�1ðtÞ � ki lA;iðtÞ

: (Equation 4)

To reduce measurement noise, instead of the number of labeled

cells, the frequency fA;iðtÞ= lA;iðtÞ
niðtÞ of labeled cells was used with the

population size to parametrize the model:
8>>><
>>>:

dfA; 1ðtÞ
dt

= 0

dfA;iðtÞ
dt

=ai�1

ni�1ðtÞ
niðtÞ

�
fA; i�1ðtÞ � fA;iðtÞ

� : (Equation 5)

We defined the populations in upstream-to-downstreamorder as

HSC-U, HSC-D, ST-HSC, and MPP.

The initial conditions for Equation 1 (i.e., nið0Þ) and the initial

labeling frequency for each population and each reporter gene

(dataset) were additional parameters (i.e., fA;ið0Þ).

Data
The experimental datawere obtained fromBusch et al. (2015) (over

100 mice), Säwén et al. (2018) (over 50 mice), and Chapple et al.

(2018) (18 mice). The original Tie2 dataset was augmented by

further experimental data measured post-publication and

published in Barile et al. (2020) to improve precision. The time

frames of the three experiments were standardized so that they

could be compared directly. The measurement at time 0 was

adjusted to be the frequencies observed 2 days after tamoxifen

was assumed to have taken effect. For the Krt18 dataset, owing to

limited data points, time 0 was adjusted to be the frequencies

observed 1 day after tamoxifen was assumed to have taken effect.

To limit noisy variation from the Tie2 dataset, the data were

pooled to nearby time points as follows: 0–20 days (n = 41), 27–

50 days (n = 61), 55–69 days (n = 21), 78–95 days (n = 8), 104–

129 days (n = 39), 130–153 days (n = 34), 160–179 days (n = 21),

and 188–208 days (n = 17). The number of pooled categories was

chosen to be equal to the number of separate time points in the

Fgd5 dataset (n = 8). To obtain a consistent estimate of themeasure-

ment error, the variances were pooled for all the data points for all

the datasets to calculate the standard error of the mean.

Finally, for the non-steady-state model, the measurements of

compartment population size from Busch et al. (2015) and Säwén

et al. (2018) were combined, and the data were pooled into eight

categories (Figure S1B).
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Model Fit
See the Supplemental Experimental Procedures for details about

how fit was performed.

Leukemogenesis Dynamics
Using the model parameters (a; k;nð0Þ) derived from Equation 5,

the number of mutant cells miðtÞ in population i was assumed to

obey equations analogous to Equations 1 and 2 such that:

8>><
>>:

dm1ðtÞ
dt

= � k1 m1ðtÞ
dmi>1ðtÞ

dt
=ai�1 mi�1ðtÞ � ki miðtÞ

: (Equation 8)

Amutation wasmodeled as a factor increase in proliferation rate,

such that amutation of31.03 would increase the cell proliferation

rate li to 1:03li for the mutated population and its downstream

progenitors. Differing strengths of proliferation rate increases

were applied to each population separately using the estimation

of death rates from Barile et al. (2020) and the aMPP estimate

from Busch et al. (2015).

The proportion of mutated MPPs pðtÞ obtained from a mutation

in population swas determined by setting the initial value ofmsð0Þ
as:

mið0Þ =
�
0 iss
1 i= s

; (Equation 9)

and obtaining the ratio:

pðtÞ = m4ðtÞ
n4ðtÞ : (Equation 10)

Last, the mutation required to induce an immortal MPP popula-

tion was calculated computationally by altering the proliferation

rate increase until lim
t/N

pðtÞ = constant.
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brich, B., Gräf, P., Verschoor, A., Schiemann, M., Höfer, T., and
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Supplemental Figure 1
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Figure S1  
A) Label propagation results cannot be fit to previous models. Refer to Figure 1C; 
Initial model fit when applying Busch model to Fgd5 dataset (big dots representing average and 
SEM of datasets, small dots show mice data from independent experiments n=48). Top panel: 
Using standard error, model overfits to single point of dataset. Bottom panel: With pooled 
variance, model is not able to fit the data well, with large error bounds in calculated parameters. 
B) Model is able to fit stem cell population dynamics. Refer to Figure 2B; 
Model best fit (solid line) and 95% prediction profile likelihood confidence bounds on the model 
fit on Fgd5 and Tie2 dataset (shaded area) plotted against the experimental data (big dots 
representing average and SEM of two datasets, small dots show mice data from independent 
experiments n=113 for first plot and n=291 for remaining two plots). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 2
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Figure S2  
A) Model predicted stem cell dynamics. Refer to Figure 2B; 
Model best fit (solid line) and 95% prediction profile likelihood confidence bounds on the model 
fit for stem cell populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Figure 3

A 

D
en
si
ty

SCA1 SCA1 SCA1

Fgd5 labelled mice 

Mouse 1 Mouse 2 Mouse 3

D
en
si
ty

SCA1 SCA1 SCA1 SCA1

Krt18 labelled mice 

Mouse 1 Mouse 2 Mouse 3 Mouse 4

Unlabelled

Labelled



Figure S3  
A) SCA1 expression density plots for HSCs in Fgd5 and Krt18 fate mapping experiments 
for all mice. Refer to Figure 3C; 
Plot shows comparison of the distribution between labelled and unlabelled HSC cells for each 
reporter gene at first measured time point after induction (7 days) for all mice. Data measured at 
same lab on different days.  
 



Supplemental Methods: Model Fit 

The model equations were fitted to experimental data by Busch et al., 2015 and Säwén et 

al., 2018: 

• For the label frequency, data points from Busch et al., 2015 (over 100 mice) and 

Säwén et al., 2018 (50 mice) were considered: 𝑓!"#$,&' "𝑡($	and 𝑓)*+,	,&' (𝑡.)	respectively 

and similarly, their pooled variance was considered: 𝛿𝑓!"#$,&' "𝑡($ and 𝛿𝑓)*+,	,&' (𝑡.), 

where 𝑗 and 𝑘 = 1: 8. 

• For the size of populations, the combined population data from both datasets (over 

100 mice) along with their pooled variance were considered to calculate the ratios: 

𝑟&'(𝑡/) and 𝛿𝑟&'(𝑡/)	,where 𝑟&'(𝑡/) = 	𝑛&'(𝑡/)/𝑛&01' (𝑡/) and 𝑚 = 1: 8. However, since 

the ratios did not reflect the heterogeneity of the HSC population, 𝑛234' (𝑡/) and 

𝛿𝑛234' (𝑡/) were considered separately. 

 

The best set of parameters was found via the scipy.optimize.least_squares Python tool. It 

runs on the Levenberg-Marquardt and trust-region-reflective algorithms to find a local 

minimum for the cost function 
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Finding a global minimum was guaranteed by starting the optimization from randomly 

generated initial guesses for the parameters in the space sample. A self-implemented profile 



likelihood framework based on Raue et al., 2009 was implemented to estimate the 95% 

confidence bounds on the parameters. The 95% confidence bounds on the model were 

similarly found via the prediction profile likelihood framework based on Kreutz et al., 2012. 

 

To test the model on an unseen dataset, further experimental data from Chapple et al., 2018 

(18 mice) was used to produce a fit: 

• For the label frequency and pooled variance, 𝑓:;<17,&' (𝑡=) and 𝛿𝑓:;<17,&' (𝑡=) were 

considered where 𝑛 = 4. 

The cell kinetic parameters (i.e. 𝛼, 𝜅) and the initial condition of the populations’ size (i.e. 

𝑛(0)) were fixed. The cost function was minimized, and model plotted to test fit. 
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Parameters were bounded to ensure that biologically meaningful estimation were obtained. 

(i.e. initial frequencies were constrained to be a value between 0 and 1, population size to be 

positive, and, on the basis that a cell cycle is not faster than 6 hours, 𝛼	values to be positive 

and less than 28 per week, 𝜅 values to be between -28 and 56). 

Since Barile et al. 2020 observed that 𝛼>?	must be greater than 𝜅>?, this constraint was 

added as a further boundary condition to compute the parameter estimates.  
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