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SUMMARY
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) usually results

in respiratory disease, but extrapulmonarymanifestations are ofmajor clinical interest. Intestinal symptoms ofCOVID-19 are present in a

significant number of patients, and include nausea, diarrhea, and viral RNA shedding in feces. Human induced pluripotent stem cell-

derived intestinal organoids (HIOs) represent an inexhaustible cellular resource that could serve as a valuable tool to study SARS-CoV-

2 as well as other enteric viruses that infect the intestinal epithelium. Here, we report that SARS-CoV-2 productively infects both

proximally and distally patterned HIOs, leading to the release of infectious viral particles while stimulating a robust transcriptomic

response, including a significant upregulation of interferon-related genes that appeared to be conserved across multiple epithelial cell

types. These findings illuminate a potential inflammatory epithelial-specific signature thatmay contribute to both themultisystemic na-

ture of COVID-19 as well as its highly variable clinical presentation.
INTRODUCTION

Over the past two decades, multiple zoonotic coronavi-

ruses have caused outbreaks of human respiratory diseases.

Most notably, the spread of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (Zhou et al.,

2020b) and its subsequent manifestation as coronavirus

disease 2019 (COVID-19) has caused a global pandemic

that has led to over 100 million documented cases and

over two million deaths globally as of January 2021

(Dong et al., 2020). Although the primary manifestations

of COVID-19 involve the respiratory system, there is

increasing evidence that gastrointestinal (GI) manifesta-

tions of SARS-CoV-2 infection may play a critical role in

both disease severity and transmission (Pan et al., 2020;

Wang et al., 2020; Xiao et al., 2020). This is exemplified

by the first confirmed COVID-19 patient in the United

States, who presented with GI symptoms and had both

fecal and respiratory specimens test positive for SARS-

CoV-2 RNA (Holshue et al., 2020). It has also been shown

that up to 53% of hospitalized patients tested positive for

SARS-CoV-2 RNA in stool, and 23% of these patients

continued to test positive for SARS-CoV-2 RNA in stool

despite having negative respiratory samples (Xiao et al.,

2020). Various biopsy samples from COVID-19 patients re-

vealed interstitial edema in the lamina propria of the stom-

ach, duodenum, and rectum, with numerous infiltrating
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lymphocytes, in addition to the presence of SARS-CoV-2

nucleocapsid protein by immunofluorescence microscopy

at all three sites (Xiao et al., 2020). A multicohort study

on the role of GI symptoms in hospitalized COVID-19 pa-

tients found that GI involvement was associated with

lower mortality, reduced disease severity, reduced levels of

circulating inflammatory cytokines, and less intestinal

inflammation (Livanos et al., 2020). However, earlier

studies out of Hubei Province showed that patients with

GI symptoms had worse outcomes and longer hospitaliza-

tions (Pan et al., 2020) and yet another recent study found

no association between GI involvement and the require-

ment for mechanical ventilation or death (Elmunzer et

al., 2020), indicative that further investigation into the

role of GI infection in COVID-19 disease progression is

needed.

The SARS-CoV-2 entry receptor, angiotensin-converting

enzyme 2 (ACE2) (Hoffmann et al., 2020; Zhou et al.,

2020b), is expressed in the adult GI epithelium (Hamming

et al., 2004; To and Lo, 2004) and has been shown to play a

critical role in dietary amino acid homeostasis (Hashimoto

et al., 2012). Notably, single-cell RNA sequencing (RNA-

seq) has revealed differential ACE2 mRNA expression at

various sites in the GI tract, with higher ACE2mRNA levels

reported in small intestinal enterocytes compared with

colonic epithelium (Qi et al., 2020). In addition, TMPRSS2,

a serine protease that is required for efficient SARS-CoV-2
hors.
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Figure 1. SARS-CoV-2 Infects iPSC-Derived Human Intestinal Organoids
(A) Experimental schematic for directed differentiation of BU1CG iPSC into HIOs and SARS-CoV-2 infection.
(B) Representative confocal images of colonic BU1CG HIOs. Whole-mounted mock- and SARS-CoV-2-infected colonic HIOs at 1 and 4 dpi
stained for SARS-CoV-2 N and GFP (CDX2) (scale bar,50 mm).
(C) Representative immunofluorescent confocal micrographs of proximally patterned BU1CG. Whole-mounted mock- and SARS-CoV2-in-
fected proximal (small intestinal) HIOs at 1 and 4 dpi stained for SARS-CoV-2 N and GFP (CDX2) (scale bar,50 mm, images representative of
n = 3 replicate directed differentiations).

(legend continued on next page)
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entry in some cell types (Hoffmann et al., 2020), is highly

expressed in human small intestinal and colonic epithe-

lium (Vaarala et al., 2001; Zang et al., 2020). Potential

regional-specific differences in SARS-CoV-2 infection are

of major interest, particularly in the context of pre-existing

regionally specific GI disease, as well as new reports of in-

testinal dysbiosis in patients who have recovered from

COVID-19 (Yeoh et al., 2021; Zuo et al., 2020), highlighted

by reduced levels of immunomodulatory commensals that

correlated with increased levels of inflammatory markers

up to 30 days after disease resolution. We have previously

shown that human induced pluripotent stem cell (iPSC)-

derived intestinal organoids (HIOs) express both ACE2

and TMPRSS2 mRNA at levels comparable with primary

controls (Abo et al., 2020), making them promising target

cells for SARS-CoV-2 infection in vitro, particularly in the

context of modeling GI infection and clinical significance

in COVID-19.

There are multiple reports that adult stem cell (ASC)-

derived intestinal organoids can be productively infected

by SARS-CoV-2 (Lamers et al., 2020; Stanifer et al., 2020;

Zang et al., 2020; Zhou et al., 2020a). Analysis of the host

response in these organoids revealed the importance of

type I and III interferon signaling in controlling viral repli-

cation and spread, which has been previously shown to

play a role in intestinal epithelial response to viral infec-

tion, including other coronaviruses such as SARS-CoV-1

(Mahlakoiv et al., 2012). The usefulness of these systems

is hindered, however, by the limited availability of the

primary tissue from which they are generated. Given the

clinical and epidemiological implications of SARS-CoV-2

infection of the GI tract, human iPSC-derived proximal in-

testinal and colonic organoids represent a potentially

powerful tool to study SARS-CoV-2 intestinal infection,

since they are both amenable to genetic manipulation

and infinitely expandable, making themparticularly useful

for high-throughput drug screening applications, as has

been recently reported (Han et al., 2020). Furthermore, a

reductionist, well-characterized epithelial organoid system

enables the direct interrogation of epithelial-intrinsic re-

sponses to viral infection in the absence of immune or

mesenchymal cells, particularly in the context of recent

work detailing the significance of type I interferon and

inflammation signaling in COVID-19 clinical outcomes

(Bastard et al., 2020; Hadjadj et al., 2020; Zhang et al.,

2020). Importantly, members of our group have recently

utilized iPSC-derived type 2 alveolar cells (iAT2s) to study
(D) qRT-PCR for two sequences of the SARS-CoV-2 N gene in both pro
normalized to mock, GAPDH, n = 3 independent directed differenti
indicated determined by unpaired Student’s t test, *p < 0.05).
(E) Viral titers (TCID50) of culture media from 1 to 3 dpi colonic and
See also Figure S1.
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the epithelial-intrinsic response to SARS-CoV-2 infection

in the distal lung, implicating interferon and nuclear factor

kB (NF-kB) signaling as a key host response pathway (Hek-

man et al., 2021; Huang et al., 2020).

Here, we report the establishment of two robust iPSC-

derived organoid models of GI SARS-CoV-2 infection. We

recently established a novel,mesenchyme-free directed dif-

ferentiation protocol that generates regionally patterned

proximal (small intestinal) and colonic organoids from hu-

man iPSCs using a CDX2-eGFP reporter iPSC line (BU1CG)

(Mithal et al., 2020). These iPSC-derived HIOs are devoid of

mesenchymal cells, contain a variety of cell types found in

the intestinal epithelium, including goblet, enteroendo-

crine, and Paneth cells, and were shown to be useful in

modeling other diseases of the GI epithelium (Mithal

et al., 2020). The ability to study SARS-CoV-2 infection in

organoids that recapitulate both proximal and distal intes-

tinal epithelium provides a unique opportunity to identify

mechanisms of viral replication, spread, and host response

signatures that could contribute to COVID-19 disease

severity and progression.
RESULTS

HIOs Are Permissive to SARS-CoV-2 Infection

BU1CG iPSCs were differentiated into regionally patterned

intestinal organoids, as previously described (Figure 1A and

Mithal et al., 2020). At day 15 (Figure S1A), cells were sorted

to isolate the CDX2-GFP+ population, consisting of puta-

tive intestinal epithelial progenitors (Figure 1A). Sorted

cells were then cultured in 3D Matrigel droplets, in media

to promote the emergence of either proximal intestinal or

colonic organoids. Organoids were then infected with

SARS-CoV-2 at a multiplicity of infection (MOI) of 0.4.

Both colonic and proximal organoids were readily infected

by SARS-CoV-2, as demonstrated by the presence of the

viral nucleocapsid protein (N) (Figures 1B, 1C, and S1B–

S1F) and viral RNA (Figure 1D). Both viral RNA levels and

the number of SARS-CoV-2-positive cells increased over

time, indicative of viral replication and spread. In line

with these results, viral titers in the cell supernatants

were low at 1-day post infection (dpi) and increased by

about 2 log at 3 dpi, indicating the production and release

of infectious SARS-CoV-2 virions in the HIO (Figure 1E, n =

4 wells from separate infection experiments). The titers

were comparable in proximal and colonic cells. Infection
ximal and colonic HIOs 1 and 3 dpi (2�DDCT, technical duplicates
ations, error bars represent the SD, statistical significance where

proximal HIOs.



was also quantified by flow cytometry, with an average of

11.59% ± 1.75% of cells infected across both conditions

at 1 dpi and an average of 20.8% ± 4.34% of cells at 4 dpi

(n = 4 wells from separate infection experiments)

(Figure S1G).

We then sought to determine whether SARS-CoV-2

infection affected HIO intestinal phenotype by perform-

ing quantitative real-time PCR (qRT-PCR) on infected

colonic organoids for a variety of intestinal-specific

genes. Based on the expression of intestinal-HOX gene

CDX2, brush border cytoskeletal components VIL1 (vil-

lin) and CDH17, and Paneth cell marker LYZ, there

were no significant differences between SARS-CoV-2 and

mock-infected colonic HIOs (Figure 2A). Consistent

with other reports (Huang et al., 2020), there was a signif-

icant decrease in SARS-CoV-2 entry receptor ACE2 mRNA

in infected cells at 3 dpi, whereas TMPRSS2 expression

was not affected by infection (Figure 2A). These data

were confirmed by immunofluorescence microscopy

showing robust TMPRSS2 and Villin staining in infected

cells at 3 and 4 dpi (Figures S2A and S2B). Both colonic

and proximal organoids retained their regional intestinal

transcriptional programs, as shown by maintained

expression of CDX2, colonic-specific expression of

SATB2, and proximal-specific expression of GATA4 and

PDX2 in both mock and infected organoids (Figure 2B).

Confocal microscopy of both colonic (Figure 2C) and

proximal (Figure 2D) HIOs showed maintained expres-

sion of Villin at both 1 and 4 dpi, implying that SARS-

CoV-2 infection does not produce major alterations to

the intestinal transcriptional program.

SARS-CoV-2 Induces Structural Changes in Infected

HIOs that Support the Production of Viral Particles

Transmission electron microscopy of both mock- and

SARS-CoV-2-infected colonic and proximally patterned or-

ganoids was performed to examine the ultrastructural

intracellular changes induced by infection. As expected, or-

ganoids contained cell types unique to the GI epithelium,

including putative columnar microvilli-containing entero-

cytes (Figure S2C) and secretory cells (Figures S2D and S2E).

Imaging of infected proximal organoids revealed the pres-

ence of characteristic coronaviral particles both within in-

fected cells and adjacent to the enterocyte apical brush

border (Figure 3A). Virions were also present within single

bilayer and multilayered intracellular structures, at times

budding off the Golgi, that contained convoluted mem-

brane and putative viral replication complexes (Figures

3B and 3C) in both proximal and colonic organoids. As

seen in analysis of COVID-19 patient specimens (Bradley

et al., 2020), bilayered horseshoe-shaped structures were

observed that may provide protected regions for viral repli-

cation (Figure 3D). No structures resembling virions or
replication complexes were found in the mock-infected

samples (Figure S2).

SARS-CoV-2 Infection of HIOs Elicits an Inflammatory

Response Common to Multiple Epithelial Cell Types

In order to define global transcriptional responses to viral

infection, we harvested both mock- and SARS-CoV-2-in-

fected proximal and colonic organoids at 1 and 4 dpi and

performed bulk RNA-seq (n = 3 replicate directed differen-

tiation experiments per condition tested at each time

point) (Figure 4A). Principal component analysis (PCA) re-

vealed that the primary differences in transcriptome across

samples were between the tissue types (Figure 4B). Howev-

er, all infected samples demonstrated profound upregula-

tion of viral transcripts (Figures 4C and S3A–S3C), as well

as significant global transcriptomic changes. Compared

with corresponding mock-infected cells, there were 603

significantly differentially expressed genes (DEGs) in the

infected proximal HIOs and 60 DEGs in the colonic HIOs

at 1 dpi (false discovery rate [FDR] < 0.05). By 4 dpi, the

number of DEGs increased considerably in both cell types,

with 1,430 DEGs in the infected proximal HIOs compared

with mock-infected cells and 4,339 DEGs in the colonic

HIOs (FDR < 0.05). Among the changes, we observed a

remarkable upregulation of a panel of interferon-stimu-

lated genes that emerge 1 dpi but became particularly

evident in the infected proximal HIOs at 4 dpi, high-

lighting a potentially differential response between prox-

imal and colonic HIOs to SARS-CoV-2 infection (Figures

4D and 4E).

Gene set enrichment analysis (GSEA) using hallmark

gene sets was performed, revealing a significant upregula-

tion of innate inflammatory pathways by 4 dpi (including

IL2/IL6 JAK/STATsignaling genes) that againwasmore pro-

nounced in proximal HIOs compared with colonic HIOs

(Figure 4E).We next compared the transcriptomic response

in our organoids with other published SARS-CoV-2-in-

fected epithelial cells, including biopsy-obtained intestinal

ASC-derived organoids (Lamers et al., 2020), Calu-3 cells

(Blanco-Melo et al., 2020), and iPSC-derived lung epithelial

cells (iAT2s) (Huang et al., 2020). Antiviral and inflamma-

tory responses including the interferon gamma, interferon

alpha, IL6-JAK-STAT3, and NF-kB pathways were observed

across all epithelial cell types (Figure 4E). Our cells, particu-

larly the proximal HIOs, recapitulated the inflammatory

response to infection observed in iAT2 lung epithelial cells

and ASC-derived intestinal organoids, with significant up-

regulation of interferon signaling in 4 dpi proximal HIOs

(Figures 4E and 4F). In colonic HIOs, we observed a more

pronounced upregulation of the unfolded protein response

(UPR) and upregulation of genes downstream of NF-kB

signaling, particularly compared with proximal HIOs,

which displayed marked upregulation in GSEA pathways
Stem Cell Reports j Vol. 16 j 940–953 j April 13, 2021 943



Figure 2. HIOs Maintain Their Regional Identity after SARS-CoV-2 Infection
(A) qRT-PCR for phenotypic intestinal markers at 1 and 3 dpi colonic HIOs (2�DDCT, technical duplicates normalized to GAPDH, n = 3
independent directed differentiation experiments, error bars represent the SD, statistical significance where indicated determined by
unpaired Student’s t test, ** = p < 0.01).
(B) Local regression (locally estimated scatterplot smoothing [LOESS]) plots profiling regional-specific (colonic/proximal) markers in
mock (left) and infected (right) HIOs.
(C) Representative confocal immunofluorescent micrographs of infected colonic HIOs showing maintained expression of Villin, at 1 and 4
dpi.
(D) Representative confocal immunofluorescent micrographs of infected proximal HIOs showing maintained expression of Villin, at 1 and 4
dpi. (All scale bars represent 50 mm, images representative of n = 3 replicate directed differentiations).
See also Figures S1 and S2.
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correlating to interferon alpha and gamma signaling (Fig-

ures 4E and 4F). In order to further examine the transcrip-

tomic differences between both the baseline conditions as

well as the response to infection and presence of increased

cell death in proximal and colonic HIOs, we compared the

top DEGs between the mock and infected conditions at

both 1 and 4 dpi (Figures S4A and S4B). In mock-infected

samples at 4 dpi, colonic HIOs expressed significantly

higher levels (red dots) of markers specific to colonic

epithelium, including SATB2, MUC2, and AQP8, while ex-

pressing significantly lower levels (blue dots) of markers

specific to proximal small intestinal epithelium such as

GATA4 and PDX1 (Figure S4C). Pan-intestinal markers,

including CDX2, VIL1, and CDH17, were not differentially

regulated between colonic and proximal HIOs, but were all

highly expressed (Figure S4C). In SARS-CoV-2-infected

colonic HIOs at 4 dpi, we observed upregulation of

genes involved in the UPR (ATF6), the NF-kB signaling

cascade (TRAF6, TNFRSF1A, MAP3K7), and general pro-in-

flammatory markers (HAVCR1, PLA2G2A) compared with

proximal HIOs (Figure S4D). However, colonic HIOs down-

regulated canonical interferon-stimulated genes, including

BST2, OASL, IFIT1,MX1, IFITM1, and IRF7, compared with

proximal HIOs at 4 dpi (Figure S4D). Finally, we compared

the top 200 upregulated genes by fold change (excluding

viral transcripts) in colonic and proximal HIOs with other

curated SARS-CoV-2-related publicly available datasets

using Enrichr (Chen et al., 2013; Kuleshov et al., 2016).

Strikingly, our HIOs recapitulated SARS-CoV-2-specific

transcriptional responses observed in a variety of epithelial

cell types, including large airway and bronchial epithelium

(Figure 4F).

DISCUSSION

The data presented here support the use of iPSC-derived

HIOs as a robust and valuable model to study SARS-CoV-2

infection of various regional intestinal epithelia, and

further support the notion of a conserved epithelial

response to viral infection across cell and tissue type char-

acterized by interferon signaling and downstream NF-kB

activation. Notably, our ability to regionally pattern HIOs

comprising entirely epithelial cells toward proximal or

colonic-like lineages enables the study of differential host

responses in a reductionist manner (Mithal et al., 2020).
Figure 3. Transmission Electron Microscopy of SARS-CoV-2-Infect
Representative electron micrographs of (A) proximal HIO enterocyte
particles adjacent to the cell surface (inset, white arrowheads), (B)
heads), (C) infected colonic HIOs with intracellular replication comple
vesicle (inset), and (D) cytoplasmic regions of viral replication with ch
bars, 500 nm (A, C, D large images), 200 nm (B, large image), or 125
differentiation experiments. See also Figure S2.
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Our results demonstrate that both proximal and distal

HIOs are readily permissive to productive SARS-CoV-2

infection, recapitulating prior work performed in other in-

testinal organoid systems (Lamers et al., 2020; Zang et al.,

2020). SARS-CoV-2 infection did not induce any differ-

ences in intestinal-specific gene expression, or cellular

phenotype. We also observed regional differences in the

transcriptomic response to infection, with a more robust

inflammatory signature in proximal HIOs as compared

with colonic, which is of potential interest to clinicians car-

ing for COVID-19 patients with pre-existing regionally spe-

cific GI diseases of increasing incidence and prevalence,

such as Crohn, ulcerative colitis, or celiac (Nowak et al.,

2020; Suárez-Fariñas et al., 2021). We observed upregula-

tion of apoptosis-related genes in both the infected colonic

and proximal HIOs compared withmock-infected cells at 4

dpi, including three specific markers for necroptosis

(RIPK3, RIPK1, and MLKL) in the colonic HIOs, indicating

the induction of cell death (Figure S4A). These results sug-

gest that the cellular stress and inflammatory responses

generated by SARS-CoV-2 infection in our HIOs could

imply intestinal epithelial damage in vivo, a relevant

finding pertaining to COVID-19 disease progression, in

particular the diarrheal illness seen in these patients.

We observed significant upregulation of gene sets that

correlated to the type 1 and type 2 interferon response

pathways, which corroborates previous work implicating

the importance of these pathways in SARS-CoV-2 host

response both in vitro (Banerjee et al., 2020.; Huang et al.,

2020; Lamers et al., 2020; Stanifer et al., 2020; Zhou

et al., 2020a) and in vivo (Blanco-Melo et al., 2020; Hadjadj

et al., 2020; Zhang et al., 2020). While our analysis did not

show specific upregulation of a type III interferon anno-

tated gene set as has been previously demonstrated (Stani-

fer et al., 2020; Vanderheiden et al., 2020), many of the

genes in both the interferon alpha response and TNFA

signaling via NF-kB gene sets (which were both signifi-

cantly upregulated in infected HIOs) are also common to

the type III interferon response. Notably, SARS-CoV-2 eli-

cited a markedly delayed interferon response, in both

colonic and proximal HIOs, with the bulk of interferon-

related pathways only significantly upregulated at 4 dpi.

This finding is of particular interest and could either be a

result of a low infection rate at 1 dpi or direct viral suppres-

sion of the interferon response at early time points post
ed Colonic and Proximal HIOS
s infected with SARS-CoV-2 showing large numbers of coronavirus
proximal HIO cytoplasm with budding virions (inset, white arrow-
xes (white arrowheads) and viral particles within a single membrane
aracteristic horseshoe structures and budding virions (inset). Scale
nm (all insets); images representative of n = 3 replicate directed
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infection. A delayed IFN response has also been reported

for other in vitro infection models of SARS-CoV-2 (Blanco-

Melo et al., 2020; Huang et al., 2020; Lei et al., 2020) as

well as for SARS-CoV-1- and MERS-CoV-infected human

airway epithelial cells and is a determinant of SARS disease

severity (Channappanavar et al., 2016; Menachery et al.,

2014). In COVID-19 patients, the impaired expression of

innate immune mediators in SARS-CoV-2-infected epithe-

lial cells across organs might contribute to the subsequent

excessive inflammatory response, likely induced by

migrating or tissue-resident immune cells (Hadjadj et al.,

2020; Sanchez-Cerrillo et al., 2020). However, despite the

observed pan-epithelial interferon and inflammatory

response that has been confirmed by our study, theremight

be relevant organ-specific differences, leading to differen-

tial clinical presentations and outcomes in COVID-19 pa-

tients. We also observed significant upregulation of BST2

in response to infection, particularly in our proximal

HIOs. Since BST2 was shown to have antiviral activity

against both SARS-CoV-1 (Taylor et al., 2015) and SARS-

CoV-2 (Stewart et al., 2021) by inhibiting viral release

and, consequently, viral spread, this finding is of particular

interest as it could explain regional-specific differences in

response to infection within the GI tract. Our results war-

rant further investigation into the mechanisms of SARS-

CoV-2-induced antagonism of innate immune responses

both in general as well as within the GI tract, particularly

in the context of COVID-19 patients harboring recently

identified polymorphisms in interferon signaling that

could affect their clinical course (Hadjadj et al., 2020; Liva-

nos et al., 2020; Nobel et al., 2020). The GI tract is a site of

major clinical relevance in SARS-CoV-2 infection, and our

results demonstrate the potential implications of regional

differences within the GI tract, as well as the significance

of an epithelial-intrinsic inflammatory response to viral

infection.
Figure 4. Transcriptomic Response to SARS-CoV-2 Infection in Co
(A) Experimental schematic of RNA-seq experiment, with n = 3 replica
HIOs, 1 and 4 dpi with corresponding mock controls).
(B) PCA plot of mock and infected proximal and distal samples colore
proximal and colonic HIOs.
(C) LOESS plots of key viral genes in mock (left) and infected (right)
(D) Unsupervised hierarchical clustered heatmap of differential gene
fold change in HIOs at 1 and 4 dpi versus mock.
(E) GSEA (using hallmark gene sets) of top differentially expressed
compared with previously published SARS-CoV-2-related datasets, in
derived alveolar type 2 cells cultured at air-liquid interface. Statisti
represents the number of genes in the leading edge.
(F) Unsupervised hierarchical clustered heatmap of differentially expre
dpi versus mock and previously published data.
(G) GSEA of the top 200 upregulated genes at 4 dpi in colonic (left) and
mapping to the top COVID-19-related gene sets. Length of bars indic
See also Figures S3 and S4.
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Our study is limited by the potential immaturity of our

cells in the context of developmental milestones. Although

our HIOs contain polarized, differentiated cell types specific

to intestinal epithelium, many iPSC-derived cells and

organoids resemble fetal-like cells, andmaynot fully recapit-

ulate their adult counterparts. Further studies are clearly

necessary in thecontextof the rapidlyevolving situation sur-

rounding the COVID-19 pandemic and would provide

further insights into the proteomic and cell-signaling com-

ponents of intestinal SARS-CoV-2 infection. These could

also employ additional iPSC lines with different genetic

backgrounds (as well as newly emerging strains of SARS-

CoV-2) to investigate the role of specific genotype-pheno-

type interactions in the SARS-CoV-2 host response across

various epithelial cell types. However, our iPSC-derived cells

provide a readily scalable model for therapeutic screening

purposes as well as a platform that is easily amenable to ge-

netic manipulation in order to study genotype-specific dis-

ease susceptibility. The mesenchyme-free HIO system is

also devoid of anymesenchymal or immune cells, removing

a potential confounding variant and allowing for the reduc-

tionist capture of epithelial-intrinsic host response, and

could lead to the development of protective therapies that

ameliorate organ damage seen in COVID-19 patients.

Furthermore, an iPSC-derived system could enable further

studies involving additional epithelial and non-epithelial

cell types (Yang et al., 2020), including iPSC-derived macro-

phages, endothelial cells, and other immune cells, enabling

the study of host responses to SARS-CoV-2 and other infec-

tious pathogens affecting the GI tract.
EXPERIMENTAL PROCEDURES

iPSC Lines and Maintenance
iPSC lines (BU1CG) were generated by our group (Mithal et al.,

2020) from previously healthy individuals, and were shown to
lonic and Proximal HIOs
te directed differentiations per condition tested (colonic/proximal

d by tissue type, showing global transcriptomic variance between

HIOs at 1 and 4 dpi.
expression of a subset of interferon-related genes as plotted by log

gene sets in colonic and proximal HIOs 1 and 4 dpi versus mock,
cluding ASC-derived intestinal organoids, Calu-3 cells, and iPSC-
cal significance (p < 0.05) represented by triangles, size of shape

ssed hallmark gene sets represented by fold change in HIOs 1 and 4

proximal (right) HIOs by log fold change versus mock using Enrichr,
ates combined enrichment score. Red bars represent p < 0.05.



be karyotypically normal (46XY). All human subject studies were

performed under signed consent and approved by the Boston Uni-

versity Institutional Review Board (IRB), protocol H-32506.

BU1CG was maintained in feeder-free conditions using mTESR1

(StemCell Technologies) and passaged onto hESC Matrigel (Corn-

ing cat. no. 354277) coated, six-well tissue culture dishes (Corning)

as per the manufacturer’s instructions. For a detailed outline of

standard iPSC culture and maintenance protocols, please visit

http://www.bu.edu/dbin/stemcells/protocols.php.
Directed Differentiation of BU1CG to HIOs
Upon reaching >95% confluency, iPSCs were differentiated into

HIOs using a protocol previously described by our group (Mithal

et al., 2020). Briefly, confluent wells of iPSCs were dissociated

into single-cell suspensions usingGentle Cell Dissociation Reagent

(StemCell Technologies cat. no. 07174), and re-plated at a density

of 2 3 106 cells per well of aMatrigel-coated six-well tissue culture

plate in mTeSR1 supplemented with Y27632 (Tocris, 5 mM).

Twenty-four hours post plating, cells were differentiated into

definitive endoderm using the StemCell Technologies StemDiff

Definitive EndodermKit (cat. no. 05110), as per manufacturer’s in-

structions. At day 3, cells were split 1:3 as described above into new

Matrigel-coated plates and incubated with DS/SB, containing Dor-

somorphin (DS) (2 mM Stemgent, cat. no. 04-0024) and SB431542

(SB) (10 mM Tocris, cat. no. 1614) supplemented with Y27632 for

24 h, followed by DS/SB without Y27632 for 48 h. At day 6, cells

were incubated in CB/RA containing CHIR99021 (C/CHIR)

(3 mM, Tocris, cat. no. 4423), rhBMP4 (B) (10 ng/mL, R&D Sys-

tems, cat. no. 314-BP), and retinoic acid (RA) (100 nM, Sigma,

cat. no. R2625-50MG). At day 14–15, cells were dissociated using

0.05% Trypsin-EDTA (ThermoFisher), and washed in Dulbecco’s

modified Eagle’s medium (DMEM) with 20% FBS. Cells were

then strained using a 40 -mm filter, spun at 300 3 g for 5 min,

and resuspended in FACS buffer containing 5 mM Y27632, and

10 nM Calcein Blue in DMSO (ThermoFisher, cat. no. C1429).

Cells were then sorted to isolate the CDX2-eGFP+ populations us-

ing an operator-assisted MoFlo Astrios EQ (Beckman Coulter) at

the Boston University Flow Cytometry Core Facility (FCCF). After

sorting, cells were spun down and resuspended in 3D Matrigel

(Corning 354234), in droplets of 50–100 mL, supplemented with

either IM + CK (proximal, Intestinal Media + CHIR/KGF) or CK +

DCI (colonic, CHIR/KGF + Dexamethasone, cAMP, and IBMX), at

a density of 0.5–1 3 103 cells/mL, and plated on a pre-warmed

24-well tissue culture plate. After allowing the droplets to solidify

for 20 min in a 37�C incubator, additional IM + CK or CK + DCI

was added, supplemented with Y27632. After 3–4 days, fresh me-

dium was added without Y27632, and with further medium

replacement performed every 4–5 days, depending on confluency.

Basalmedia for DS/SB, CB/RA, andCK +DCI consisted of complete

serum-free differentiation medium (cSFDM), containing Iscove’s

Modified Dulbecco’s Medium (IMDM; ThermoFisher) and Ham’s

F12 (ThermoFisher) with B27 supplement with retinoic acid (Invi-

trogen), N2 supplement (Invitrogen), 0.1%BSA fractionV (Invitro-

gen), monothioglycerol (Sigma), Glutamax (ThermoFisher), ascor-

bic acid (Sigma), and primocin. Basal media for IM + CK consisted

of DMEM/F12 (ThermoFisher), B27with retinoic acid (Invitrogen),

N2 supplement (Invitrogen), Glutamax (ThermoFisher), and pri-
mocin. For media recipes, see Table S1, and for a comprehensive

list of reagents and catalog numbers, including antibodies, see

Table S2.

SARS-CoV-2 Propagation and Titration
SARS-CoV-2 stocks (isolate USA_WA1/2020, kindly provided by

CDC’s principal investigator Natalie Thornburg and the World

Reference Center for Emerging Viruses and Arboviruses

[WRCEVA]) were generated and purified as previously described

(Huang et al., 2020). Briefly, SARS-CoV-2 was propagated in Vero

E6 cells (ATCC CRL-1586) cultured in DMEM supplemented with

2% fetal calf serum (FCS), penicillin (50 U/mL), and streptomycin

(50 mg/mL). Viral stocks were purified by ultracentrifugation

through a 20% sucrose cushion at 80,0003 g for 2 h at 4�C (Huang

et al., 2020). Viral titers were determined by tissue culture infec-

tious dose 50 (TCID50) assay in Vero E6 cells using the Spearman

Kärber algorithm. All work with SARS-CoV-2 was performed in

the biosafety level 4 (BSL4) facility of the National Emerging Infec-

tious Diseases Laboratories at Boston University following

approved standard operating procedures. Pluripotent stem cell

lines used in this study, along with maintenance standard oper-

ating procedures and directed differentiation protocols, are avail-

able from the CReM iPSC Repository at Boston University and

Boston Medical Center and can be found at http://www.bu.edu/

dbin/stemcells/.

SARS-CoV-2 Infection of HIOs
HIOswere infectedwith purified SARS-CoV-2 stock at the indicated

MOI. One-hundred microliters of inoculum was prepared in CK +

DCI or IM + CK media for colonic or proximal HIOs, respectively

(or mock infected with medium only). To facilitate infection,

HIOs were isolated from Matrigel. Briefly, medium was removed

from wells containing HIOs, 0.5 mL of Cell Recovery Solution

(Corning) was added to the cells in Matrigel, and plates were incu-

bated at 4�C for 30min. The dissolvedMatrigel and cells in the Cell

Recovery Solution were then transferred to 2-mL Sarstedt tubes.

Cells were pelleted by low-speed centrifugation (300 3 g, 5 min).

Supernatant was removed and virus-free or virus-containingmedia

were added to the corresponding tubes. Cell pellets were mechan-

ically disrupted to facilitate viral access. HIOs were then incubated

for 1 h at 37�C and 5%CO2. After the adsorption period, cells were

pelleted by low-speed centrifugation (3003 g, 5min) and the inoc-

ulum was removed. Cells were subsequently re-plated in Matrigel

droplets with media and incubated at 37�C for the indicated times

of infection.

At the time of harvest, medium was collected for viral titration

as described above. Cell pellets were then recovered from Matrigel

as described above. For immunofluorescence analysis, electron

microscopy, and flow cytometry analysis, HIOs were fixed in

10% formalin for a minimal time of 6 h. For RNA-seq and qRT-

PCR analysis, cells were lysed in TRIzol per manufacturer’s

specifications.

Transmission Electron Microscopy
Day 74 HIOs were infected with SARS-CoV-2 at an MOI of 0.4 or

were mock infected. At 1 and 4 dpi, organoids were fixed and inac-

tivated in 10% formalin for 6 h at 4�C and removed from the BSL-4
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laboratory. The cells were washed with PBS and then post fixed in

1.5% osmium tetroxide (Polysciences) overnight at 4�C, and block

stained in 1.5% uranyl acetate (Electron Microscopy Sciences

[EMS]) for 1 h at room temperature (RT). The samples were dehy-

drated quickly through acetone on ice, from 70% to 80%–90%.

The samples were then incubated two times in 100% acetone at

RT for 10 min each, and in propylene oxide at RT for 15 min

each. Finally, the samples were changed into EMbed 812 (EMS),

left for 2 h at RT, changed into fresh EMbed 812, and left overnight

at RT, after which they were embedded in fresh EMbed 812 and

polymerized overnight at 60�C. Embedded samples were thin

sectioned (70 nm) and grids were stained in 4% aqueous uranyl ac-

etate for 10 min at RT followed by lead citrate for 10 min at RT.

Transmission electron microscopy images were recorded on a Phi-

lips CM12 electron microscope operated at 100 kV using a TVIPS

F216 CMOS camera with a pixel size of 0.85–3.80 nm.

Whole-Mount Immunostaining
Organoids were dissociated from their Matrigel droplets and fixed

as described above. HIOs were then washed with PBS and blocked

in 4% normal donkey serum (NDS) with 0.5% Triton X-100

(Sigma) for 30min. After washing, HIOswere incubated in primary

antibody diluted in 0.5% Triton X-100 and 4% NDS overnight at

4�C. Samples were washed in 4%NDS and incubated with second-

ary antibody from Jackson Immunoresearch (1:300 anti-rabbit IgG

[H + L], 1:500 anti-chicken IgY, or anti-mouse IgG [H + L]) for

60 min at RT. HIOs were then washed again for 15 min with

0.5% Triton X-100 three times. Nuclei were stained with Hoechst

dye (Thermo Fisher, 1:500). Whole organoids were then mounted

with flouromont-G (Southern Biotech) on cavity slides and cover

slipped. Stained HIOs were visualized with a Zeiss LSM 700 laser

scanning confocal microscope.

Flow Cytometry
After infection and fixation, HIOs were manually dissociated into

single-cell suspension, permeabilized with saponin buffer (Bio-

legend), and stained with SARS-CoV-2 nucleoprotein (N) antibody

(Rockland, #200-401-A50, 1:1000) for 30min at RT, followed by an

incubation with donkey anti-rabbit IgG-AF647 (Thermo Fisher A-

31573). Gating was performed with mock-infected stained cells.

Samples were run on a Stratedigm S1000EXI instrument and

analyzed with the FlowJo v10.6.2 software (FlowJo, Tree Star Inc).

Shown FACS plots represent single cells based on forward-scat-

ter/side-scatter gating.

RNA Isolation, cDNA Preparation, and qRT-PCR
HIOs were collected and lysed in TRIzol reagent (Thermo Fisher).

RNA was extracted using the RNAeasy mini kit (QIAGEN) or

following the manufacturer’s protocol, respectively. cDNA was

generated by reverse transcription using the SuperScript III First-

Strand Synthesis System (Invitrogen cat. no. 18080093) as per

themanufacturer’s recommended parameters. RNAwas quantified

using a NanoDrop Lite Spectrophotometer (ThermoFisher) and

input was standardized across all samples, to ensure normalized

cDNAyields for downstreamPCR applications. PCRwas performed

using TaqMan (Applied Biosystems) Master Mixes as per manufac-

turer’s instructions, and the QuantStudio 6 Flex Real-Time 384
950 Stem Cell Reports j Vol. 16 j 940–953 j April 13, 2021
Well PCR System with barcoded 384-well plates. Relative fold

change above undifferentiated iPSC or mock controls was deter-

mined by calculating the DDCt, normalized to housekeeping

gene GAPDH. For primer sequences, see the Table S2.

Library Preparation and Bulk mRNA Sequencing of

SARS-CoV-2-Infected HIOs
RNA was extracted and prepared as described above from n = 3

replicate directed differentiations per condition tested (day 93–

97 Colonic/Proximal HIOs, 1 and 4 dpi with corresponding

mock controls). mRNA was isolated from each sample using mag-

netic bead-based poly(A) selection (New England BioLabs #6420),

followed by synthesis of cDNA fragments. The products were end

paired and PCR amplified to create each final cDNA library.

Sequencing of pooled libraries was done using a NextSeq 500 (Il-

lumina). The quality of the raw data was assessed using FastQC

v.0.11.7. The sequence reads were aligned to a combination of

the human genome reference (GRCh38) and the SARS CoV2 virus

reference (NC_045512) with a tdTomato marker using STAR

v.2.6.0c (Dobin et al., 2013). Counts per gene were summarized

using the featureCounts function from the subread package

v.1.6.2.

The matrix of counts per gene per sample was then analyzed us-

ing the limma/voom normalization (limma v. 3.42.2, edgeR

v.3.25.10) (Ritchie et al., 2015). After exploratory data analysis

(Glimma v. 1.11.1) (Su et al., 2017), contrasts for differential

expression testing were done for each SARS-CoV2-infected sample

versus mock (controls) at each time point (dpi) and in each tissue

(colonic or proximal) separately. Differential expression testing

was also conducted for each of the two tissues to compare the

gene expression between time points and to investigate the time-

specific effects in response to infection in each tissue separately.

Functional predictions were performed using fgsea v.1.12.0 for

gene set analysis (Korotkevich et al., 2019). The full dataset from

this RNA-seq experiment can be found on Gene Expression

Omnibus (GEO), accession number GEO: GSE159201.

Statistical Analysis
Statisticalmethods relevant to each figure are outlined in the figure

legends. Briefly, unpaired, two-tailed Student’s t tests were used to

compare quantitative analyses comprising two groups of n = 3 or

more independent biological replicates (separate differentiations).

Further specifics about the replicates used in each experiment are

available in the figure legends. p value annotations on graphs are

as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. A p

value threshold of 0.05 was used to determine significance. Data

were reported with either standard error of the mean or standard

deviation (SD) as specified in the figure legends.

Further information and requests for resources and reagents

should be directed to andwill be fulfilled by the lead contacts, Gus-

tavo Mostoslavsky and Elke Mühlberger (gmostosl@bu.edu,

muehlber@bu.edu).

Data and Code Availability
The RNA-seq data are available via the GEO, accession number

GEO:GSE159201. This study did not generate new unique re-

agents. All previously published reagents are available with a

mailto:gmostosl@bu.edu
mailto:muehlber@bu.edu


completedmaterials transfer agreement. Pluripotent stem cell lines

used in this study, along with maintenance standard operating

procedures and directed differentiation protocols, are available

from the CReM iPSC Repository at Boston University and Boston

Medical Center and can be found at http://www.bu.edu/dbin/

stemcells/.
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Figure S1. Further characterization of regionally patterned HIOs and subsequent SARS-CoV-2 infection. (A) FACS gating 
strategy for sorting D15 CDX2-eGFP+ intestinal progenitors during directed differentiation of mesenchyme free HIOs from 
BU1CG iPSCs. (B-F) Immunofluorescence micrographs of SARS-CoV-2 infected HIOs (B) Higher magnification confocal 
micrographs of whole mount colonic (top) and proximal (bottom) HIOs stained for SARS-CoV-2 N protein and GFP (scale 
bar = 25 μm) (C) Immunofluorescent confocal micrographs of whole mount HIOs stained for SARS-CoV-2 N protein and GFP 
(scale bar = 50 μm) at 3- and 4-days post infection demonstrates robust and widespread SARS-CoV-2 infection of CDX2-
GFP+ intestinal epithelial cells. (D) Immunofluorescent confocal micrographs of whole mount HIOs stained for SARS-CoV-2 
N protein and enterocyte cytoskeletal component Villin at 4 dpi. (E) Immunofluorescent micrographs of whole mounted mock 
infected day 36 HIOs stained for SARS-CoV-2 N protein and Villin. (F) Whole mounted SARS-CoV-2 4 dpi HIOs demonstrating 
minimal background signal from staining with only secondary antibodies. (scale bar = 50 μm) (G) Flow Cytometry for SARS-
CoV-2 N protein expression in HIOs at 1 and 4 dpi, gated on single cells by forward and side scatter (n=2 replicates per 
condition), Related to Figures 1-2.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Further characterization of infected and mock HIOs. (A) Differentiated iPSC-derived colonic 
HIOs express TMPRSS2 and (B) SARS-CoV-2 Nucleocapsid at 3 dpi. (Scale bar = 50 μm). (C-E) 
Electron microscopy of mock colonic and proximal HIOs showing putative enterocytes with 
characteristic brush border and polarized nuclei (C) and putative secretory cells containing high density 
secretory granules (D-E) (scale bars noted in each image), Related to Figure 2-3. 



 

 

 

 
 
 
 
 
 
 
 
 

Figure S3: Additional bulk RNA sequencing analysis of SARS-CoV-2 infected HIOs. (A) 
Unsupervised hierarchical clustering heat maps of the top 50 differentially expressed 
genes with each replicate independently represented. (B) LOESS plots of additional viral 
genes in mock (left) and infected (right) HIOs in both tissue types at 1 and 4 dpi. (C) 
Unsupervised hierarchical clustering heatmap of differentially expressed genes in infected 
vs. mock samples at 1 and 4 dpi (LogFc>0.5, FDR <0.05), Related to Figure 4. 
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LogFC of Apoptosis genes for SARS_CoV2 vs Mock at each dpi in each tissue
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Figure S4: Differential baseline and host response to infection between colonic and proximal HIOs. 
Unsupervised hierarchical clustering heat maps analyzing expression of (A) a panel of genes 
associated with apoptosis and necroptosis by log fold change and (B) of the top 30 differentially 
expressed genes comparing colonic HIOs to proximal HIOs at 1 and 4 dpi, separating the mock and 
infected conditions, with each replicate independently represented. (C) Mean average plots 
comparing the transcriptional state of mock infected colonic vs. proximal HIOs at 4 dpi, with key 
phenotypic markers of proximal and distal intestinal epithelium highlighted by the black arrowheads. 
(D) Mean average plots comparing the transcriptional state of SARS-CoV-2 infected colonic vs. 
proximal HIOs at 4 dpi, with key viral host response markers highlighted by the black arrowheads. 
Related to Figure 4. 
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Heatmap top 30 up and downregulated genes (logFC)
 Colonic vs Proximal Mock dpi4
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Heatmap top 30 up and downregulated genes (logFC)
 Colonic vs Proximal SARS CoV2 dpi1

SFTPB
FGG
SFTPA1
LINC02086
SCGB3A2
SFTA3
NDUFA4L2
AC103702.2
ASCL1
COL2A1
SFTPC
SLC34A2
TPPP3
HOXB9
NAPSA
PAX9
ANKRD65
SLITRK6
NKD1
CALCA
HTR1E
HOXB.AS4
AP001803.2
NKX2.1
PLA2G2A
ID4
GREM2
AC022874.1
ZNF385B
TF
CILP
DOK5
GP2
PDX1
COL15A1
CCL7
AP000790.2
CD248
NUPR1
CXCL12
NTM
GNG11
CDH11
MT2A
MGP
BNC2
ZEB1
CLDN18
SFRP4
GATA4
COL6A3
MXRA5
HGF
MFAP4
TMEM119
THY1
ISLR
POSTN
DCN
COL1A2

SA
R

S_
C

oV
2_

C
ol

on
ic

_d
pi

1_
re

p1

SA
R

S_
C

oV
2_

C
ol

on
ic

_d
pi

1_
re

p2

SA
R

S_
C

oV
2_

C
ol

on
ic

_d
pi

1_
re

p3

SA
R

S_
C

oV
2_

Pr
ox

im
al

_d
pi

1_
re

p1

SA
R

S_
C

oV
2_

Pr
ox

im
al

_d
pi

1_
re

p2

SA
R

S_
C

oV
2_

Pr
ox

im
al

_d
pi

1_
re

p3

Scaled Expression

−2
−1
0
1
2

Heatmap top 30 up and downregulated genes (logFC)
 Colonic vs Proximal SARS CoV2 dpi4
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Table S1: Media Recipes/Composition, Related to Figures 1 - 4 
 
 
 

Proximal 
(IM+CK) 

DMEM F/12 Noggin 500ng/mL 
Primocin (100ng/mL) R-Spondin 100ng/mL 

B27 EGF 100ng/mL 
HEPES CHIR99021 3 µM 

Glutamax (100x) KGF/FGF7 10ng/mL 
N2 

  

 
 
 
 

Complete 
Serum Free 

Differentiation 
Medium 
(csFDM) 

IMDM (75%) 
  

Ham's F/12 (25%) 
  

B27 (with RA) 
  

N2 
  

0.05% BSA 
  

Primocin (100ng/mL) 
  

Glutamax (100x) 
  

Ascorbic Acid (50ug/mL) 
  

MTG (0.45mM) 
  

 
Colonic 

(CK+DCI) 

cSFDM CHIR99021 3µM 
 

KGF/FGF7 10ng/mL 
 

Dexamethasone 50nM 
 

cAMP 0.1mM 
 

3-isobutyl-1-methyxanthine 
[IBMX] 

0.1mM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 



Table S2: Comprehensive List of Reagents, Related to Figures 1 - 4 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Calcein Blue Life Technologies C1429 
Donkey serum Jackson 

Immunoresearch 
Labs 

017-000-121 

13 mm cover slips ThermoFisher 
Scientific 

174950 

Fluoromont -G Southern Biotech 0100-01 
Rabbit anti-SARS-CoV-2 N Rockland 

Immunochemicals  
Cat# 200-401-A50 

Mouse anti-Villin Millipore MAB1671 
Hoechst 33342 ThermoFisher 

Scientific 
62249 

Chicken Anti- GFP IgY ThermoFisher 
Scientific 

A10262 

Donkey anti-chicken AF488 Jackson 
Immunoresearch 
Labs 

703-545-155 

Anti-TMPRSS2 Abcam Ab 92323 
Bacterial and Virus Strains  
SARS-CoV-2 IsolateUSA_WA1/2020 Kindly provided by 

CDC’s Principal 
Investigator Natalie 
Thornburg and the 
World Reference 
Center for 
Emerging Viruses 
and Arboviruses 
(WRCEVA 
 

N/A 

Chemicals, Peptides, and Recombinant Proteins 
Growth Factor Reduced Matrigel Corning 356230 
Matrigel Basement Membrane Matrix Corning  354234 
SB431542 Tocris 1614 
Dorsomorphin Stemgent 04-0024 
CHIR99021 Tocris 4423 
Recombinant human KGF R&D Systems 251-KG-010 
Recombinant human BMP4 R&D Systems 314-BP 
Retinoic acid Sigma R2625 
Y-27632 dihydrochloride Tocris 1254 
Dexamethasone Sigma D4902 
8-bromoadenosine 3′,5′-cyclic monophosphate sodium 
salt (cAMP) 

Sigma B7880 

3-Isobutyl-1-methylxanthine (IBMX) Sigma I5879 
0.05% trypsin-EDTA Invitrogen 25300-120 
Defined Fetal Bovine Serum Thermo Fisher NC0652331 
Recombinant human Noggin R&D Systems 6057NG025 
Recombinant human EGF R&D Systems 236EG200 



Recombinant Human R-Spondin 1 Protein R&D Systems 4645-RS-025 
Ascorbic Acid Sigma A4403 
Critical Commercial Assays 
RNeasy Mini Kit QIAGEN 79306 
NEBNext Low Input RNA Kit New England 

Biolabs 
E6420 

SuperScript™ III First-Strand Synthesis System Invitrogen 18080093 
Deposited Data 
Bulk RNA-seq  This paper GEO: GSE159201 
Experimental Models: Cell Lines 
Human: Normal donor iPSC line targeted with CDX2-
eGFP (BU1CG) 

Mostoslavsky Lab 
(Mithal et al, 2020) 

 
http://stemcellbank
.bu.edu 

 

Oligonucleotides 
Taqman Gene Expression Assay Primer/Probe N/A N/A 
CDH17 Thermo Fisher Hs00900408_m1  
GAPDH Thermo Fisher Hs99999905_m1 
CDX2 Thermo Fisher Hs01078080_m1 
LYZ Thermo Fisher Hs00426232_m1  
VIL1 Thermo Fisher Hs00200229_m1 
ACE2 Thermo Fisher Hs01085333_m1 
TMPRSS2 Thermo Fisher Hs01122322_m1 
SARS-CoV-2 N IDT 10006606 
Software and Algorithms   
FlowJo TreeStar, Inc https://www.flowjow.co

m 
Prism 8.0 Graphpad, Inc https://www.graphpad. 

com 
 

ImageJ National Institutes 
of Health 

https://imagej.nih.gov/ij 

Other 
Cell Recovery Solution Corning 354253 
Paraformaldehyde Electron 

Microscopy 
Sciences 

19208 

ReLeSR StemCell 
Technologies 

05873 

StemDiff Definitive Endoderm Kit StemCell 
Technologies 

05110 

N2 Supplement Invitrogen 17502-048 
B27 Supplement Invitrogen 12587-010 
GlutaMAX™ Thermo Fisher 35050061 
Gentle Cell Dissociation Reagent StemCell 

Technologies 
07174 
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