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Additional Methods and Details of each experiment 

Adults, experiment 1  

Participants. 612 French adults were recruited for an online experiment (395 males, 217 

females, age group breakdown: <18 years, 42 subjects; 18-25 years, 127 subjects; 25-60 years, 

419 subjects; >60 years, 24 subjects). The experiment was advertised on social media using the 

lab’s social media account. The entire experiment was run on the participant’s device and took 

typically less than 15 minutes. Participants were not compensated for their participation. No 

personally identifying information was collected in this experiment. This experiment was 

approved by the ethical committee of Université Paris-Saclay under the reference CER-Paris-

Saclay-2019-08. 

Procedure & stimuli. This experiment featured only canonical displays (5 reference shapes and 

1 deviant shape). It started with two training pairs of geometric shapes, randomly selected from 

the 3 we used throughout the generalization 2 task for baboons. There were therefore exactly 2 + 

11*4 = 46 trials. The experiment was programmed using the jsPsych framework (1), “a 

JavaScript library for running behavioral experiments in a web browser.” Participants first filled 

a consent form, then a demographic questionnaire, which collected information regarding their 

sex, age range, and education level. Then they were presented with the task instructions, and 

finally a sequence of intruder trials. On each trial, they were asked to click on the outlier, either 

with the mouse or with a touchscreen if their device had one. In this experiment only, the six 

shapes were organized in a circle as big as the screen permitted. Upon clicking on a shape, 

participants received visual (highlighting the selected shape in red if incorrect, in green 

otherwise, and highlighting the correct shape in green) and auditory feedback (rising or falling 

tone). Shapes were shown in solid black on white background. This experiment can be found at 

the following address: https://neurospin-data.cea.fr/exp/mathias-sable-meyer/oddball_original/ 

Statistical analysis: Responses slower than the overall 99th percentile were removed from 

analysis of this experiment, as well as experiment 2 and the Himbas experiment to match the 

analyses: during online experiments, some trial took unreasonable durations (e.g. over a minute), 

strongly suggesting participants taking a break during the experiments. In experiment 1, the 99th 

percentile thresholding sometimes removed all datapoints from some participants’ conditions 

(e.g. an entire shape); in such case the participant was removed entirely: in total, 7 out of 612 

recruited participants were removed. 

Adults, experiment 2 

Participants. 117 French adults were recruited for an online experiment (45 males and 72 

females; age group breakdown: 18-25, 9 subjects; 25-40, 43 subjects; 40-60, 56 subjects; >60, 9 

subjects). The recruitment process and ethical approval were identical to that of the first 

experiment. Because this experiment was longer, participants were incentivized to participate by 

being offered to participate in a lottery for a 30€ cash prize that three participants would receive. 

Should they want to participate to the lottery, participants had to disclose an email address, 
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which was collected separately from the experiment’s data and could not be linked to it 

afterwards. 83 out of 117 participants submitted their email for participation. 

Procedure and Stimuli. The procedure and stimuli were identical to that of experiment 1 with 

the following five differences. (1) Participants saw an additional webpage with information 

about the lottery. (2) Shapes were displayed in white on a black background. (3) Instead of 

displaying the shapes along a circle they were displayed in two lines of three items, as shown in 

Fig. 1B. (4) Participants received 10 training trials with images and another 6 with the easy 

geometric training shapes, in two consecutive blocks. They had to repeat the training blocks if 

they performed worse than 80% correct. The training stimuli were identical to those used in the 

baboon experiment (see Fig. 3) and included random rotation1 and scaling. (5) Half of the 

displays used a standard presentation (5 reference shapes and 1 deviant), and half used a 

swapped presentation (5 deviant shapes and 1 reference shape), for a total of 88 experimental 

trials with geometric shapes.  

Compared to experiment 1, the changes listed under points 2-5 were introduced in order to 

anticipate the changes required to replicate the baboon experiment. The displays in Fig 1B show 

example stimuli from this version of the experiment. This design was adopted throughout all 

other experiments. This experiment is available at https://neurospin-data.cea.fr/exp/mathias-

sable-meyer/oddball/.  

Sequence experiment 

Participants. 19 participants were tested in this experiment. It was run at ENS in Paris, in 

isolated testing booths. The first three participants were pilots whose results were used to tune 

the difficulty of the experiment. Subjects were recruited through the RISC mailing list, mean age 

was 23.1 years old (std = 2.55), 9 women and 11 men, with a mean of 3.44 years of post-

bachelor education (std = 1.5). All participants signed an informed consent form and received 

15€ for their participation. Due a schedule conflict one participant did not complete one 

condition (“parallelogram”) of the experiment: the missing value was replaced in the ANOVA 

with that participant’s overall average error rate, and left missing from all other analysis. 

Procedure. The experiment was organized in 9 mini-blocks, each with a fixed geometric shape. 

In each mini-block, participants were first shown 6 examples of a given sequence (with random 

scaling and rotation), and were then presented with sequences that could contain a deviant. For 

each sequence after the sixth example, after the 4th dot was displayed, they had to press a button 

to indicate whether that sequence followed the reference sequence or not. Following each 

answer, they received auditory feedback using an ascending pitch if correct and a descending 

pitch otherwise and were shown the four dots location, as well as a 5th dot at the correct location 

                                                 

 
1 Due to a bug in the code of the experiment, the training images were not scaled, though they were properly rotated. 

This bug only affected the training images. All geometric shapes, in training or testing, were properly scaled. This 

minor problem affected the training stimuli in experiments with French adults (exp. 2), Himbas adults, French 

kindergartners, and 1st graders – but was corrected for the baboon experiments. 
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for deviant trials. After 150 trials, there was a short pause, and then a new mini-block started, 

with 6 new examples to start with. 

Stimuli. The sequences of dots traced the geometric shapes in a top-left, top-right, bottom-left, 

bottom-right order. Shapes were presented with a random orientation (with angles now ranging 

from 0 to 359°) and random scaling so that they spanned 150 to 225 pixels on the screen, and 

they were positioned so that the last position would be at one of 9 possible locations on the 

screen. In this sequential format, we considered it essential that the last two positions were 

identical for all shapes. We therefore excluded the two shapes for which we could not match the 

bottom edge, namely the square and the rhombus. Given the greater difficulty of the task in the 

sequential presentation mode, we had to adjust the distance of the deviant to the correct location. 

Pilot participants were run in order to estimate the distance required to obtain a success rate of 

~75% overall, and the deviant value used for the remaining N=16 participants was 0.55 times the 

matched average distance of any two points. The presentation order of the blocks was random 

with a single block for each shape and 150 trials within each block2, with half of the trials being 

outliers. The timing of the sequence was as follows: points appeared for 400 ms followed by a 

200 ms empty scree. After the participants’ response, the screen stayed black for a random 

duration ranging from 750 ms to 1250 ms. 

Subjective Rating 

Participants. 48 French adults were recruited for an online experiment (21 Males and 27 

females; age group breakdown: 1-18, 1 subject; 18-25, 3 subjects; 25-60, 41 subjects; >60, 3 

subjects). The recruitment process and ethical approval were identical to that of the first 

experiment. 

Stimuli. We presented the participants with our 11 quadrilaterals, in the reference orientation 

and presented as static images with a white shape on a black background. 

Procedure. After the consent and the questionnaire, participants were instructed to give a rating 

for each shape one the page using a scale from 1 to 100, while trying to be as consistent in the 

rating as possible. Participants were randomly assigned to one of two conditions: either they 

were asked to give a rating of “complexity” (27 participants) or to give a rating of “regularity” 

(21 participants). Participants saw a page with shapes from another study not analyzed here, and 

then a page with our 11 reference shapes and a slider from 1 to 100 for each shape. They were 

asked to not transfer the scale from the previous shapes from to the 11 quadrilaterals, but instead 

to try and use the entire scale again and to be as consistent as possible between the shapes. We 

merged the data from the two conditions by reversing the scale of the “regularity” condition so 

that a score of 100 on “regularity” would map on to a score of 1 on “complexity” and conversely. 

                                                 

 
2 This was adjusted depending on participants time constraints: min 100, max 170, median 155. Two participants 

had to stop before the end because of time constraints, one missing one shape and the other two. 
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Visual Search Paradigm 

Participants. 11 French adults were recruited (5 Females, 5 males, age range 21 - 35, mean 27.3 

years, one did not complete the demographic form). Participants were not compensated for their 

participation. This experiment was covered by the ethical committee of Université Paris-Saclay 

under the reference CER-Paris-Saclay-2019-063. 

Stimuli. For each trial, repetitions of a given shape and possibly its deviant were presented in 

black on light gray (Fig. 2A). Their rotation and scaling were uniformly sampled, similarly to 

previous experiments, and they were randomly placed inside a gray circle that spanned almost 

the entire computer screen. The experiment comprised 11 blocks, one per reference shape, each 

with 24 trials randomly shuffled, using a factorial design with three factors, namely, deviant type 

(4 possible deviants), numbers of shapes on screen (3 possibilities: 6, 12 or 24) and presence or 

absence of a deviant shape, for a total of 264 trials. The experiment was programmed using the 

jsPsych framework and was run online. 

Procedure. When connecting to the shared online URL, participants clicked to start and were 

prompted with instructions. For each display, they had to press the left arrow key if they thought 

that one of the shapes differed from the others, and the right arrow key if they thought that all 

shapes were identical. After pressing one of the arrow keys, the experiment started: the screen 

displayed a light-gray circle spanning the maximum available area with 15px padding at the top 

and the bottom, inside which items were placed randomly. After each response, subjects received 

both auditory and visual feedback, which explicitly indicated the location of the deviant shape if 

one was present (the deviant was colored green if answered correctly, red otherwise). The 

experiment was structured in blocks of similar shapes and lasted about 20 minutes in total. 

Analysis and results. For each shape, each number of displayed item, and each target presence 

condition, we removed responses whose response time exceeded the mean response time plus 

three standard deviation. Detailed analyses of the visual search available in the supplementary 

materials. 

Himbas 

Participants. 44 native Himba adults were recruited for an experiment taking place on a tablet 

computer (mean age 24.5 years, minimum 14 years old and maximum 62 years old, 13 Male and 

31 Females). The Himba of Northern Namibia (Southern Africa) are a population living a 

traditional lifestyle in rural settlements, with little exposure to Western society. All the 

participants were native speakers of (and monolingual in) Otjihimba, a dialect of the Otjiherero 

language, which does not have vocabulary for most geometric shapes (though they refer to 

“squares”, for example, with a very direct metaphor akin to “a shape with four angles”). Out of 

the 44 participants, we analyzed data of 22 participants who did not attend a single year of 

schooling (15 Females, 7 Males, age range 14-62, mean 26); additional analyses of the effect of 

schooling below. Ethical approval was obtained from the ethics committee of Goldsmiths 

University of London (REISC_1390, 4 june 2018). 
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Procedure & Stimuli. The experiment was rigorously identical to experiment 2, but the 

instructions were given verbally by a translator. Participants were compensated in kind (1Kg of 

sugar, 1Kg of flour, and 500mg of soap). 

A typical testing day with the Himba unfolds as follows. On arrival at a village, we park outside 

the village boundary. The interpreter speaks to the village chief or his representative if he is 

absent for more than a day. The chief is informed of the general purpose of our visit and asked if 

he can inform the village that they may participate in our tasks in return for a small gift of flour, 

sugar and soap (value ~USD 3). We do not offer money for which, in any case, the remote 

villagers would have little use. If the chief agrees (there has never been a case when he has not) 

we set up our equipment. We never approach any individual Himba, but our translator welcomes 

them if they ask to take part. Occasionally, people are too busy or reluctant to take part, but 

normally the only reason for obtaining small samples of participants is the absence of a large part 

of the population away from the village with their herds. In general, the word gets round and 

people volunteer, sometimes coming from other nearby villages.  

In all cases, participants are told that they can refuse to take part in the study or withdraw at 

any point. We do not collect the names of the participants. We collect information of gender, 

estimated age, and reported level of education. We explain the purpose of the study in words that 

can be understood by the participant. Explanations are translated from English to Otjihimba by 

the local guide. We obtain oral consent, and inform the participants that they will receive the gift 

in any case, even if they decide to terminate the task. Although we decided to always terminate a 

testing session if a participant shows signs of distress, this never happened given the trivial 

nature of the tasks. Beyond acquiring approval that conforms to our professional Code of 

Practice, we always bear in mind codes of conduct appropriate for the Himba.  

The translator explains the following to each participant: 

"You are here to participate in a vision task which is a bit like a game. You do not have to 

participate if you do not want to and can stop at any time if you feel uncomfortable. The task is 

not difficult and will last for about 30 to 45 minutes. You will be given instructions and do a 

short practice first. The task is harmless and does not cause any pain. You can ask us not to use 

your results after you have participated. At the end of the task, you will receive three presents 

(flour, sugar, and soap). Before we start, you must confirm that you agree with these things. You 

can now ask any question if something is unclear. If you do not like the task, you can stop at any 

time and leave. You will receive the presents anyway." 

All these elements (plus some simple explanations about the aim of the test, that is, to study 

“how we see the world”) are also given to the chief when we arrive in a traditional village. We 

hope and expect that the Himba will be direct and indirect beneficiaries, and that the project will 

contribute to the national and international database on endangered languages and cultures, and 

to the preservation of the Himba language and culture. We take seriously the responsibilities and 

the mutualities of benefit that accrue from cross-cultural research with remote peoples, and we 

believe that we can demonstrate that we have actively furthered remote peoples’ interests in our 

previous research. Issues of identity, belonging and exclusion are currently highly prominent and 
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our project contributes to inter-cultural understanding in a non-trivial way.  The intellectual 

property rights of the Himba in their language and culture is explicitly respected. 

Kindergartners 

Participants. 28 French kindergartners (mean age 64 months; range 59-70 months; 15 boys, 13 

girls) from two classrooms were tested individually in their school, by groups of two, in a quiet 

room. Each participant was accompanied by one experimenter. They were not compensated for 

their participation. This experiment was approved by the ethical committee of Université Paris-

Saclay under the reference CER-Paris-Saclay-2019-08 after a specific amendment was 

submitted. Parents were contacted and had to give their consent beforehand. The participants 

gave oral consent on the day of the experiment. 

Procedure & Stimuli. The experiment was identical to experiment 2 except for the fact that we 

removed the swapped trials to make the experiment shorter. 

First graders 

Participants. 156 French first participated in this study. Parents were sent letters 

beforehand, and could request that children not participate in the project. Participants were tested 

individually on tables in a quiet room in their school. The data collection was part of the Bien 

Joué project, approved by the ethical committee of Université Paris-Saclay under the reference 

CER-Paris-Saclay-2019-042-A1. 

Procedure & Stimuli. The experiment was completely identical to the kindergartners’ 

experiment. 

Baboons 

General set-up. 

Participants were 26 Guinea baboons (Papio papio, 18 females, age range 1.5-23 years, 

mean age 11 years) from the CNRS primate facility (Rousset-sur-Arc, France). Baboons lived in 

a 700 m2 outdoor enclosure with access to indoor housing and had a permanent access to ten 

Automated Learning Devices for Monkeys equipped with a 19-inch touch screen and a food 

dispenser. Note that the baboons’ environment contains a mixture of natural features (e.g. trees, 

congeners) and artificial tools and buildings with rectangular shapes (e.g. prefabricated rooms, 

testing booths, computer screens, etc). 

A key feature of ALDM is a radio-frequency identification (RFID) reader that can identify 

individual baboons through microchips implanted in their arm (2). The baboons therefore 

participate in the research at will, without having to be captured, as the test programs can 

recognize them automatically. The experiment was controlled using EPrime software (Version 

2.0, Psychology Software Tools, Pittsburgh). Ethical Standards: the baboon experiment received 

ethical approval from the French Ministry of Education (approval APAFIS 2717-

2015111708173794 v3). 
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Training scheme. The baboon experiment required several steps of training to ensure that, 

stimuli set aside, the primates understood the intruder task and could generalize rapidly to new 

stimuli from different domains. Because we were not sure about the outcome of each of the 

steps, the entire experiment presented in Fig. 3A was run over three different batches of about 

one week: a pilot mid-October 2018, a first test of generalization late November 2018, and the 

test with the quadrilaterals in May 2019. 

In the first pilot batch, we tested only 6 primates (Cauet, Dora, Dream, Flute, Hermine and 

Articho, although the latter animal was not interested in the task and stopped early on). We 

attempted to start training with displays containing 6 shapes with one intruder. While all baboons 

except Articho succeeded after 2000 to 3200 trials, the low reinforcement level (chance at one in 

six) made the early exploration of the task unrewarding and we feared baboons might become 

disinterested before starting to grasp the task. Therefore, for the two other batches of training, we 

introduced progressive learning steps with only 3, then 4, 5 and ultimately 6 shapes on display 

for each trial (see Fig. 3). 

In the second batch, we tested all available primates (22 animals) following the structure of 

Fig. 3A up to and including generalization 1, i.e., the first generalization task. Each primate 

automatically moved to the next step whenever the error rate fell under 20%. Out of 22 baboons, 

18 learned the task to the criterion up to stage 5 and progressed to the generalization task. Out of 

these 18, all generalized successfully: the percentage of errors was significantly better than 

chance on the first block with 10 novel images in both presentation modes (binomial test against 

chance, separately for each baboon: all p’s ≤ .001). With further training, all animals again 

reached the 20% error threshold. Out of the remaining four, three did not reach the end of the 

first training task at all, and one reached the second training task and stopped. On Fig. 3B, the 

data reported in the “initial training” and “generalization 1” plots are taken from this batch of 

data. 

The third and final batch tested all available primates (25 animals), following the structure 

of Fig. 3A. All animals were restarted from the first training task and followed the entire training 

scheme, only skipping generalization 1 and going straight to generalization 2, then on to the 

main test. Out of 25 baboons, 20 baboons reached generalization 2. Testing for significant 

generalization on only 6 different trials could not be done for each animal individually, but we 

verified that performance was better than chance when grouping the 20 animals together 

(binomial test, 42 errors in 120 trials, chance at 83.3%, p < .0001). After further training on those 

stimuli, all of them successfully reached 20% error threshold on generalization 2 and moved on 

to the test task where they stayed either until they reached 100 blocks of 88 trials (11 primates) 

or until they stopped performing the task. 

Among the 5 baboons who did not participate to the final test, 4 never reached the 20% 

error threshold on the first training task (three of them stopped being interested in the task early 

on, one stayed at chance for more than 7500 trials but kept trying). Finally, one primate 

progressed very slowly over 8800 trials in the first training task, reached the 20% error threshold 

on block 88 (after having performed 5700 trials in session one and reaching 54% errors), and 
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stopped performing the task. The data reported in Fig. 3B (“generalization 2”) and Fig. 3C are 

taken from this batch of data, i.e. from the 20 primates that reached generalization 2. For 

reference, Fig. S3 shows the evolution of performance over successive training stages for each of 

those 20 animals (first 20 rows), and the performance for the remaining 6 animals who could not 

be successfully trained (last 6 rows). 

Method. The stimuli were identical to those used with French adults in the second version of the 

intruder task, except (i) the experiment itself was reprogrammed using custom software specific 

to the baboon lab, and (ii) baboons received a drop of dry wheat for every correct response. 

Incorrect responses were followed by a 3-sec time-out indicated by a green screen. 

Additional analyses. To evaluate the heterogeneity across primates, Fig. S4 presents the cross-

correlation matrix of the error rates of the 20 baboons that reached the testing task, separately for 

early (first 33 blocks), middle (blocs 34 to 66) and late (blocs 67 to 99) parts of the experiment. 

Of note, baboons were free to take different numbers of blocks – this explains why there are 

fewer primates in the “late” category. Within a category, all primates are comparable in that they 

performed the same number of blocks. We can see that as baboons progressed in their training 

(and fewer remain), their behavior became increasingly consistent across animals. 

Definition of the symbolic model 

The symbolic model assumes that participants extract the discrete geometric properties of 

shapes while abstracting away from superficial changes in size, location, orientation and display 

type (static or sequential). As a result, the model predicts that outlier detection difficulty should 

depend only on the symbolic distance between the lists of features of the standard and outlier 

shapes. The more geometric properties a shape has, the more properties a deviant might break, 

therefore the easier it should be to detect. Because the distance is computed pairwise, this model 

does currently not account for any difference between canonical and swapped conditions, 

although a penalty could easily be added. 

This model has a single free parameter: a perceptual threshold θ below which the model 

fails to discriminate lengths or angles and therefore considers them equal. The model considers 

that two lengths are equal by looking at their ratio: two lengths �� and  ��, with  �� > ��, are 

considered equal whenever 

�


�

− 1 < �. For simplicity, the same threshold is used for angles: two 

angles are considered equal whenever they differ by less than � ×
�

�
 

For any given quadrilateral, and for a given threshold, the model computes a vector of bits 

of length 22, representing the following properties: (i) 6 bits, one per pair of edges, coding 

whether their lengths are equal or different, (ii) 6 bits, one per pair of edges, coding whether their 

directions are parallel or not, (iii) 6 bits, one per pair of angles, coding whether their angles are 

equal or not, and (iv) 4 bits, one per angle, coding whether the angles are right angles or not. 

For all reference shapes and all deviants, the model computes the distance between the 

shapes by counting the number of symbolic properties on which the two shapes differ, and 

returns a list of 11x4 distances. 
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The threshold θ was fitted by maximizing the r² fit between the symbolic model and the 

behavioral data of French adults, Exp. 2. For the figures and the analyses, we used the value of 

12.5%, but a good fit (r² = .37) was already obtained with θ=0, and any value between 3% and 

20% yielded similar r² values (Fig. S5), indicating that our results do not hinge on a particular 

choice of behavioral tolerance threshold but rather on any reasonable ability to detect similarity 

lengths and angles. 

Definition of the neural network model and its variants 

We used the CORnet neural network, variant S, whose architecture is schematically depicted in 

figure 4B. We used the weights made available by the authors of (3) after training on the 

ImageNet-1000 dataset, where the task of the network was to assign each image of the dataset a 

label among 1000 possible categories . We did not modify the network or weights, but simply 

retrieved the activity of units in the internal layers (roughly matching brain areas V1, V2, V4 and 

IT). To simulate a behavioral trial, we fed the six shapes separately to the network, and retrieved 

the six vector outputs of the penultimate layer, corresponding to inferotemporal cortex (IT) and 

which yielded the best performance (Fig. S8 shows the predictions when other layers are used). 

We considered the vector most distant from the average of the others to be the outlying shape, 

and repeated this process 10000 times to approximate the error rate of the network. We also 

report the performance obtained from layers V1, V2 and V4, as well as that obtained by simply 

picking the outlier on dimensions such as the perimeter or area. The same procedure was 

repeated using two other top-scoring networks of brain-score.org: DenseNet and ResNet (see 

Fig. S7). 

Variational auto-encoder (VAE) model 

For the VAE, we used PyTorch (4)’s off-the-shelf implementation of the canonical model (5) 

(ReLUs and the adam optimizer replaced of sigmoids and adagrad, as recommended by 

PyTorch’s implementation to make the network converge faster.) For each of the 11 reference 

shape, we generated 6 rotated times 6 scaled images of size 24x24. These 36 images were 

randomly split in a training set and a testing set, both of size 18. The VAE was then trained over 

the course of 150 epochs to minimize the loss on the training set, with an evaluation on the 

testing set at each epoch (Fig. S9A shows the loss on the testing set across epochs for each 

shape). This gave us access to the VAE’s performance across the course of learning for each 

shape (details in Fig. S9B) and we correlated the performance for each shape with the behavior 

of both humans (exp.2) and baboons in Fig. S9C. To make the comparison with CNNs more 

straightforward, for each of our shapes (references and deviants), we extracted the output of the 

innermost layers of the fully trained VAE, the latent mean and the latent standard deviation 

layer, from which we replicated the methodology using with the CNNs in order to simulating 

behavioral outlier detection. The results are summarized in Fig. S9D: overall, the output of the 

innermost layers varied very little across shapes, and those variations did not capture the 

variance of either any of the human population, or any of the baboons. 
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Additional analyses, results and discussions 

Detailed analysis of the visual search experiment 

The error rates and mean response times of the visual search experiment were entered into an 

ANOVA with shapes (11-level factor), number of items (as a numerical factor in 6, 12 or 24), 

target presence (present or absent), and their interaction, and participant as the random factor. 

For error rates, there was a significant effect of shape (F(10,100) = 16.15, p < .0001), of number 

of items (F(1,10) = 20.33, p = .0011), of target presence (F(1,10) = 31.45, p = .0002), of shape 

and target presence (F(10, 100) = 2.03, p = .0375), but little interaction between number of items 

and target presence (F(1,10) = 4.91, p = .0509), no significant interaction between shape and 

number of items (F(10,100) = 0.87, p = .564), nor a three-way interaction between shape, 

number of items and target presence (F(10,100) = .42, p = .93). For response times, there was a 

significant effect of shape (F(10,100) = 9.89, p < .0001), of number of items (F(1,10) = 26.70, p 

= .0004), of target presence (F(1,10) = 29.58, p = .0003), of the interaction between shape and 

number of items (F(10,100) = 3.71, p = .0003), but no significant interaction between number of 

items and target presence (F(1,10) = 3.78, p = .080), no significant interaction between shape and 

target presence (F(10, 100) = 0.90, p = .54) nor a three-way interaction between shape, number 

of items and target presence (F(10,100) = .52, p = .88). 

The error rates closely followed the classical geometric regularity effect observed in the 

intruder task, as there was a significant correlation between the mean error rates in visual search 

and the French adults error rates in the intruder task (experiment 2), both overall (R²=.98, p < 

0.0001, Fig. 2B) and regardless of the number of items on the screen (6 items, R² = .86, p < 

.0001, 12 items R² = .93, p < .0001, 24 shapes R² = .96, p < .0001). The mean RTs also followed 

a geometric regularity effect overall (R² = 0.88, p < 0.0001) and for each number of items (6 

items, R² = .90, p < .0001, 12 items R² = .89, p < .0001, 24 shapes R² = .85, p < .0001). 

To test for the seriality of visual search, the mean response time within each subject was 

entered in separate ANOVAs for each shape, with number of items (a numerical factor equal to 

6, 12 or 24), target presence (present or absent), and their interaction as factors, and participants 

as a random factor. All shapes elicited a serial visual search (all p < 0.05 for the effect of the 

number of items; Fig. 2C). 

For each shape and participants, we computed the slope of the visual search for both present 

and absent condition by fitting a linear model on the median of the response times per item 

number. We then tested whether the slope of the visual search in the “absent” condition was 

twice the slope of the “present” condition, as expected from serial search (6). For each shape, we 

used a paired Student’s test to compare, across subjects, the distribution of slopes in the absent 

condition and the distribution of twice the slope in the present condition. None of those 

differences except for one shape were significant at the .05 level (right-kite: p = .044; all other 

shapes p > 0.05). Additionally, the best fit of a linear model across subjects that predicts the 

slope, as computed above, when the item is absent from the slope when it is present had a 

significant (p = .0003) coefficient of 1.66, SE = .30, not significantly different from 2 (p = .29). 
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Finally, the slope of the visual search exhibited a geometric regularity effect: it correlated 

with the error rates observed in experiment 2, both overall (R² = .70, p = .0013), and when the 

target was present (R² = .60, p = .0047; Fig. 2C) and absent (R² = .68, p = .0019). 

Possible role of feedback in human and non-human primates 

It could be argued that, in the intruder task, human subjects were treated differently from 

baboons because on error trials, the visual feedback the correct responses was highlighted in 

green (surrounded with a green square for training images, filled in green for geometric shapes), 

thus giving an additional indication about the task. To examine whether this made any difference 

in humans, we analyzed the data from each participant’s very first trial with a given shape, 

before they received any feedback. In both experiments 1 and 2, such analysis produced results 

that were indistinguishable from the results of the full dataset analysis. The error rates were 

strongly correlated with those of the full dataset (exp. 1: r² = .99, p < .0001; exp. 2: r² = .94, p < 

.0001); the best fit of a linear regression “full data ~ β0 + β1 * first_trial” had an intercept β0 not 

significantly different from 0 and a slope β1 not significantly different from 1 (all p’s > .1), 

suggesting that little or no learning took place in human participants over the course of the 88 

trials. 

Retraining of the neural networks with geometric shapes 

A possible reason for the failure of neural networks to mimic human data could be that the 

geometric shapes differed from the network’s training data (colored photographs). Perhaps our 

stimuli ended up on the extremities of the feature hyperspace, thus leading to inconsistent or 

chaotic behavior of the network. Here we present several arguments that mitigate this possibility. 

First, the labels that were attributed to the shapes were highly consistent and suggested that the 

network did recognize them. Table S2 provides details of the labels given by CorNet without 

retraining. The network overwhelmingly categorized the shapes as “envelopes,” and its next 

choices were mostly “Band-Aids” or “binders”, with a few interesting deviations (e.g. trapezoids 

were classified as “lampshades”). This result was replicated almost perfectly with DenseNet, 

while ResNet primarily categorized the shapes as envelopes, followed by noisier categories. 

Second, the three convolutional neural networks we tested were highly consistent in the error 

rates that they predicted; and, as showing in figures 4C, 4D and S7, these predictions were not 

random, but tightly correlated with baboon behavior. 

Third, we examined how CorNet would perform if it received additional training with geometric 

shapes (similar perhaps to a young child being exposed to geometric shapes and toys). Our 

results are summarized in Fig. S8. We trained different versions of CorNet to categorize either 

all of our 11 shapes (“All shapes”), or the subset of 5 shapes that have a common name in 

English (“Nameable shapes”, i.e. square, rectangle, rhombus, parallelogram and trapezoid).  

Our goal was to keep the properties that made the original network successful in image 

recognition, but also familiarize it with our shape space. We proceeded as follows: (i) we added 

either 5 or 11 output unit to the output (decoder) units; those were fully connected to the 
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previous layer and randomly initialized, while keeping the rest of the network intact; (ii) we 

trained the network to categorize solely our shapes (solid white on black images, one shape per 

image, same rotation and scaling factors as for behavioral experiments), and allowed the 

backpropagation to modify either the entire network (“All layers”), or only the last main group of 

layers (“IT only”), with training on 80% of the images per shape and validation on the remaining 

20% (plotted on Fig. S8A); the learning optimizer was Adam with a learning rate of 1.0E-6; (iii) 

we checked, for each training step, the performance of the updated network on the original 

dataset, ImageNet. After sufficient training, all conditions lead to perfect categorization of all 

geometric shapes, including on the validation set of shapes. Meanwhile, performance on 

ImageNet remained high, with a higher loss when the entire network was allowed to change in 

order to accommodate the new geometric shapes (Fig. S8A); (iv) finally, using our multiple-

regression methodology, we compared the predictive power of each of the four types of retrained 

network with that of our symbolic model. 

The results appear in Fig. S8B. None of the four training schemes significantly improved the 

predictive power of the neural network model on human participants. As for baboons, the various 

training conditions either did not change anything or worsened the predictive power. 

Possible effect of non-matched visual properties 

We matched our 11 shapes on several important size variables (see the section on “Stimuli” 

above). However, those constraints imposed that we could not match them for other visual 

properties. In particular, the shapes were not strictly equalized in area and perimeter (see table 

S1). Given the random scaling we added to each of the six shapes, choosing the outlier based on 

area or perimeter could not give rise to the high level of performance observed in humans. 

Furthermore, although the error rate predicted by such strategies varied across shapes, 

regressions indicated it could not explain the geometric regularity effect observed in humans (all 

p’s > .05). In Fig. S6 we show the predictions and correlation with baboons: the area-based 

strategy significantly correlates with the observed behavior in baboons (p < .0001) while the 

perimeter-based strategy does not (p = .5). Both strategies elicit more errors than the baboons, 

indicating that these strategies do not suffice to explain the baboons’ behavior. 

Possible effect of education in Himba participants 

The Himba population we sampled was heterogeneous in its formal education background. 

Out of the 44 participants we tested, 22 never attended school (those subjects are reported in the 

main text), and the 22 others ranged from 1 to 8 years of school, with otherwise comparable 

general demographic information. 

This variability provided an opportunity to test for the effect of the number of years of 

schooling on the geometric regularity effect. The error rates were entered into an ANOVA with 

geometric regularity (a numerical factor determined by the error rate in French subjects in 

experiment 2), years of schooling (a numerical factor ranging from 0 to 8), their interaction and 

participants as random factors. There was a significant effect of shapes (F(1, 42) = 229.21, p < 
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.0001) but no significant effect of the years of schooling (F(1, 42) = 0.05, p = .82) and no 

significant interaction (F(1,42) = .65, p = 0.43). This negative finding does not exclude that, with 

more participants, an effect of education would be observed. However, this additional analysis 

confirms the universality of the geometric regularity effect.  

Possible impact of a “carpentered world” 

The Western environment has been called a “carpentered world” (7), where vision is 

bombarded with many rectilinear objects (e.g. buildings, tables, books, etc.). Could such a 

difference in the statistics of the environment explain the geometric regularity effect? We believe 

that this is unlikely for several reasons explained in the discussion part of the main text. The 

main reason is that we replicated the effect in the Himba, but failed to observed it in baboons. 

The rural settlements of the Himba are quite unlike industrialized societies and their environment 

is relatively free of rectilinear objects (for photographs, see e.g. 

https://en.wikipedia.org/wiki/Himba_people). Conversely, the baboons were not wild animals, 

but grew up and lived in an environment comprised of both natural objects (trees, rocks) and 

man-made, rectilinear objects (buildings, doors, testing booths, computer screens… see inset 

picture). Arguably, the baboon’s environment is equally or even more “carpentered” than the 

Himbas (see photo). 

Convention for plots 

When error bars are presented on a graphics, they show the standard error computed over all 

relevant data points without intermediary averaging at the participant level. It follows that they 

represent the confidence over the accuracy of given value rather than the variance across 

subjects. 
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Supplementary Figures and Legends 

Fig. S1. Correlation between error rates and response times in adult experiments 1 and 2. 

Correlation between averaged participants’ error rate (x axis) and response times in milliseconds 

(y axis) across all 11 shapes for each test group. From left to right, from top to bottom: French 

Adults exp. 1, then exp. 2, then kindergartners and 1st graders, then Himbas, and finally baboons.  
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Fig. S2. Detailed results of the geometric intruder tests in children. 

 

A, Kindergartner study and comparison with adults. Left: Main effect of quadrilaterals 

on performance in the intruder task. Right: Correlation between French kindergartners and 

French adults. Colors match the left plot and indicate the shape. B, 1st graders study and 

comparison with adults. C, Comparison between kindergartners and 1st graders. The dotted 

line indicates a slope of 1 while the solid line indicates the best fit (slope = .91, SE = .06).  D, 

Geometric regularity effects after exclusion of square and rectangle. Although the data from 

kindergartners and 1st graders suggested that the square and rectangle shapes were outliers, their 

performance continued to exhibit a geometric regularity effect and remained correlated with that 

of French adults even when square and rectangle shapes were excluded from the analysis. In 

baboons, by contrast, the correlation remained nonsignificant. 
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Fig. S3. Details of the training and testing in each baboon  

 

Each graph shows the average error rate as a function of the number of trials that the animal 

took, split according to the different phases of the training and testing (as defined in Fig. 3). Each 

line corresponds to a baboon: the first 20 lines show all animals that produced data in the final 

test of geometric figures, and the last 6 rows show all animals that dropped at various stages of 

training. The x-axis is a logarithmic axis (Log10), so that generalization blocks (which typically 

contain far fewer trials) can be seen. When a plot is missing, it means that the baboon did not 

take that particular block. Baboons with names in bold pursued the task until after block 81 and 

were therefore included in the main analyses. 
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Fig. S4. Consistency across baboons and across different training periods. 

Cross-correlation matrix of the performance of each individual baboon over the course of 

testing, across 44 data points (11 shapes X 4 deviant types). 
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Fig. S5. Influence of the tolerance parameter on the symbolic model. 

Correlation (R²) between the behavioral data of Experiment 2 (with French adults) and the 

predictions of the symbolic model, as a function of the tolerance threshold for accepting two 

sides or two angles as approximately equal. Any tolerance threshold between ~3% and ~20% 

yielded roughly similar fit, indicating that the model is robust to the exact choice of its only free 

parameter. 
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Fig. S6. Detailed predictions arising from various models of visual perception 

Each row displays the prediction from a given model of visual perception, with the 

predicted error rates across shapes (left; displayed over the data from baboons in dark gray and 

humans in light gray) and the correlation with the aggregate of baboons’ data after the 80th trial 

(right). The first four rows show the prediction of each major layer of CorNet in order (V1, V2, 

V4, and IT used throughout this document), followed by a model that picks the shape with area 

most distant from the average of the other shape’s area, and an equivalent model with the 

perimeter. All reach significant levels at the p < .05 levels except the perimeter, and the R² 

increase with the layers in CorNet.  
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Fig. S7. Replication of analyses with two other classical neural-network models of image 

recognition 

The figure shows the standardized regression weights (beta) of a multiple regression of the 

average performance from various human and non-human primate groups across 44 data points 

(11 shapes X 4 deviant types), using the symbolic and neural-network models as predictors. Stars 

indicate significance level (●, p<.05; *, p<.01; **, p<.001; ***, p<.0001). Left, using the output 

of the penultimate layer of densenet196 pretrained on ImageNet. Right, using the output of the 

penultimate layer of resnet101 pretrained on ImageNet. 
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Fig. S8. Effect of training the CorNet neural network model on geometric shapes. 

A, Evolution of network performance across different retraining schemes. We started 

with CorNet-S trained on ImageNet and retrained it by adding new output (decoder) units for 

geometric shapes and presenting it with only quadrilaterals for 13 epochs. For each epoch, we 

tested the network on new unseen views of the quadrilaterals (solid lines) and on images from 

ImageNet (dashed lines). We studied the effects of 4 different training schemes, defined by (1) 

retraining either on all 11 shapes (darker colors), or only on a subset of 5 nameable shapes 

(rectangle, square, rhombus, parallelogram, trapezoid; lighter colors), and (2) either freezing all 

layers but the penultimate one, corresponding to inferotemporal cortex IT (green), or 

backpropagating the error through the entire network (pink). B, Correlation with 

experimentally observed performance. Same format as Fig. 4 in the main text. The figure 

shows the standardized regression weights (beta) of a multiple regression of the average 

performance from various human and non-human primate groups across 44 data points (11 

shapes X 4 deviant types), using the symbolic and neural-network models as predictors. Stars 

indicate significance level (●, p<.05; *, p<.01; **, p<.001; ***, p<.0001). Each subplot 

corresponds to a specific training scheme, with color-matching panel A. 
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Fig. S9. Variational Auto-Encoder performances. 

A, Evolution of network performance across shapes and training epochs. We trained 

PyTorch’s off the shelf VAE to produce all of our reference shapes in six possible orientations 

and scaling. This plot shows the network’s loss on the testing dataset across training epoch for 

each shape – 50% of each shape was set aside for testing and the network was never trained 

onthese shapes. At the top of the graph, exemplars of the target shape, and the network’s output, 

are produced, to show that the network does reproduces some fine-grained elements of the 

shapes, and does not just approximate a single shape that would minimize distances for all of our 

target shapes. 

B, Details of the loss per shape across training. At exponentially spaced epochs, detail of the 

loss (y axis) for each refence shape (x axis). 

C, Prediction of the human and baboon effect. 11 points pearson’s R² of the correlation 

between the loss across shapes and the average error rates for humans (top) and baboons 

(bottom).  

D, Predictive ability of the internal representation of the fully trained VAE. Left: 

Standardized regression weights (beta) in a multiple regression of the data from various human 

and non-human primate groups across 44 data points (11 shapes X 4 outlier types) using the 

symbolic and VAE models as predictors. Stars indicate significance level (●, p<.05; *, p<.01; **, 

p<.001; ***, p<.0001). Right: detail of the correlation with the behavior from baboons and 

humans (exp. 2) 
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Table S1. Precise definition of the 11 shapes 

Shape 
topLeft 

x 

topLeft 

y 

topRight 

x 

topRight 

y 

botRight 

x 

botRight 

y 

Avg 

pairs 
Perimeter Area 

Number 

of properties 

rectangle 0 1 1.5 1 1.5 0 1.434 1 1 15 

square 0 1.26 1.26 1.26 1.26 0 1.434 1.008 1.059 19 

iso-trapezoid 0.365 1.362 1.109 1.362 1.5 0 1.433 1.014 1.019 5 

parallelogram -0.517 0.896 0.983 0.896 1.5 0 1.434 1.014 0.896 7 

rhombus -0.908 0.931 0.392 0.931 1.3 0 1.434 1.04 0.807 9 

kite 0.766 1.29 1.77 1.007 1.5 0 1.434 1.017 1.007 5 

right-kite 0.529 1.404 1.5 1.038 1.5 0 1.434 1.015 1.038 7 

hinge -0.248 0.533 0.98 1.393 1.5 0 1.434 1.015 0.986 1 

right-hinge -0.296 0.634 1.064 1.268 1.5 0 1.434 1.008 0.984 2 

trapezoid -0.227 1.2 0.724 1.2 1.5 0 1.434 1.02 0.98 1 

Irregular -0.45 1.058 0.227 1.24 1.5 0 1.434 1.025 0.885 0 

 

For reproducibility we provide here the precise coordinates of the vectors defining the three 

corners of each shape. With the bottom left vertex at coordinates (0,0), the first six columns 

define the three vectors required to locate the top-left, top-right and bottom-right vertices. When 

presented, the reference orientation (0°) of each shape was the one where the top edge was 

horizontal, around which the random orientations (-25°, -15°, -5°, 5°, 15°, 25°) took place. All 

bottom-right vectors, except for the square and the rhombus, are matched for length. The "Avg 

pairs" column gives the average distance between all pairs of points, another metric matched 

across shapes. The Perimeter and Area columns give respectively the perimeter and area relative 

to that of the rectangle: for lack of enough degrees of freedom, these properties are not matched 

across shapes. Neither explain the human behavior (area: p = .32, perimeter: p = .13) or the 

symbolic model (area: p = .28, perimeter p = .14). See additional discussion of this in the 

Additional Analysis section. 
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Table S2. Significance and effect size of various predictors for each population 

 
 

For each tested population, we ran five separate ANOVAs to measure the significance and effect 

size on performance of five different aspects of the stimuli: geometric shape (11 shapes), 

position of the outlier (6 positions), type of outlier (4 types of deviants, as defined in figure 1), 

scale of the outlier (6 scale changes), and rotation of the outlier (6 angles). The table reports, for 

each ANOVA, the p-value and generalized eta-squared value (proportion of variance accounted 

for). On all human populations, there was a main effect of the shape (i.e. the geometric regularity 

effect), and a significant but smaller effect of outlier type. Other predictors were either not 

significant or had extremely small effect size. By contrast, three variables impact baboons’ 

behavior: the shape, the type of outlier, and the rotation of the outlier. The shape effect (different 

from the human geometric regularity effect) is described in the main text. As for the outlier type 

and rotation effects, baboons fared better on trials where the deviants were smaller due to an 

inward displacement of the bottom right vertex, and fared better when the outlier was maximally 

rotated in one direction or the other.  

  

F , p , η²G p η²G F p η²G F p η²G F p η²G F p η²G p r²

French Adults 1 F(10, 6040) = 292.88 <0.01 0.3 F(5, 3020) = 4.96 <0.01 <0.01 F(3, 1812) = 114.09 <0.01 0.1 F(5, 3020) = 4.46 <0.01 <0.01 F(5, 3020) = 21.19 <0.01 0 <0.01 0.537

French Adults 2 F(10, 1160) = 70.96 <0.01 0.3 F(5, 580) = 2.26 0.05 <0.01 F(3, 348) = 53.60 <0.01 0.1 F(5, 580) = 2.16 0.06 <0.01 F(5, 580) = 9.66 <0.01 0 <0.01 0.591

Himbas F(10, 210) = 19.61 <0.01 0.4 F(5, 105) = 0.32 0.9 <0.01 F(3, 63) = 10.99 <0.01 0.1 F(5, 105) = 2.07 0.07 0.04 F(5, 105) = 1.77 0.13 0 <0.01 0.351

Preschoolers F(10, 270) = 14.90 <0.01 0.3 F(5, 135) = 1.92 0.1 0.04 F(3, 81) = 12.03 <0.01 0.2 F(5, 130) = 2.47 0.04 0.05 F(5, 135) = 0.75 0.59 0 <0.01 0.463

1st graders F(10, 1550) = 76.93 <0.01 0.2 F(5, 775) = 3.51 <0.01 0.01 F(3, 465) = 53.38 <0.01 0.1 F(5, 775) = 9.60 <0.01 0.03 F(5, 775) = 8.38 <0.01 0 <0.01 0.514

baboons F(10, 100) = 24.68 <0.01 0.4 F(5, 50) = 3.50 <0.01 0.08 F(3, 30) = 102.97 <0.01 0.6 F(5, 50) = 2.98 0.02 0.05 F(5, 50) = 44.82 <0.01 0.4 0.12 0.0568

Symbolic ModelShape Outlier Pos Outlier Type Outlier Scale Outlier Rotation
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Table S3. Effects of geometric properties on participant’s errors 

term estimate std.error statistic df p.value 

Intercept 0.44 0.01 29.54 332.51 <10e-8 

right-angle -0.03 0.01 -3.33 1166 0.00091 

parallels -0.1 0.01 -11.09 1166 <10e-8 

symmetry -0.07 0.01 -5.94 1166 <10e-8 

equal-sides -0.13 0.02 -8.7 1166 <10e-8 

 

To quantify the contribution of each geometric property to our symbolic model, we ran a 

mixed-effect linear regression on the data from our French adult experiment 2. The model 

predicted the error rate of participants on 11 shapes, given the presence or absence of exact 

property in each shape, with participants as a random effect. The intercept corresponds to the 

predicted error rate for a shape without any regularity (44%), and each additional property 

significantly improves the prediction of the performance of participants. Equal sides had the 

greatest impact (13% gain overall), followed by parallelism (10%), symmetry (7%), and finally 

right angles (3%). 
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Table S4. Labels attributed by a convolutional neural network (CorNet) to the 11 

geometric shapes used in our experiments. 

Shape label1 label2 label3 label4 label5 

Rectangle envelope, 71.68% band aid, 7.22% band aid, 2.02% spatula, 2.28% letter opener, 1.61% 

Square envelope, 74.62% envelope, 33.07% switch, 2.11% book jacket, 1.66% face powder, 1.57% 

iso-trapezoid envelope, 62.05% envelope, 37.8% lampshade, 6.98% lampshade, 4.51% binder, 2.04% 

Parallelogram envelope, 64.91% band aid, 7.64% cleaver, 3.75% binder, 2.7% table lamp, 2.57% 

Rhombus envelope, 58.4% band aid, 9% letter opener, 4.61% book jacket, 2.8% wing, 3.96% 

Kite envelope, 68.63% band aid, 10.18% binder, 2.04% carton, 1.64% switch, 1.68% 

right-kite envelope, 74.28% band aid, 7.51% face powder, 2.25% binder, 1.8% binder, 1.89% 

Hinge envelope, 77.49% band aid, 3.91% table lamp, 2.08% band aid, 1.58% cleaver, 1.95% 

right-hinge envelope, 77.09% band aid, 4.69% letter opener, 2.38% binder, 1.71% table lamp, 1.55% 

Trapezoid envelope, 72.57% band aid, 8.41% binder, 2.62% face powder, 2.46% face powder, 1.63% 

Irregular envelope, 59.55% envelope, 28.07% binder, 3.3% carton, 2.6% table lamp, 2.02% 

 

For each shape, columns show the first five top predictions and the associated average 

confidence level, for CorNet trained on ImageNet. Each shape was presented in 36 slightly 

different variants (6 rotations X 6 scaling factors). We averaged these predictions for each shape, 

and put in each column the prediction whose average associated confidence level was the 

highest, and the corresponding average confidence level. 
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