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Analytical solution for large deflection of the pelvic floor  

This section provides an analytical solution for an idealized circular pelvic floor membrane with a 

uniform thickness subjected to a normal pressure undergoing large deflections. For small deflection, 

the resistance to bending dominates deflection behavior 1. The deflection 𝛿of a circular pelvic floor 

fixed all around under a uniform pressure P is written as: 

 

𝛿(𝑟) = 𝑃𝑎4

64 𝛼
[1 − (𝑟

𝑎)
2
]

2
        (1) 

 
where r and a are the radial distance and the radius of the pelvic floor. 𝛼is the flexural rigidity and is 

defined as 

 

𝛼 =  
𝐸 𝑡3 

12 ( 1 − 𝜈2)
, where E is Young's modulus, t is the thickness of the pelvic floor and 𝜈is the 

Poisson’s ratio.  

 

In contrast to small deflection theory, deflections in the pelvic floor are analogous to membrane 

theory dominated by intrinsic stresses in the pelvic floor. The governing differential equation for the 

deflection of the pelvic floor is written as: 

 

𝛻
4 𝛿 =  

𝑃

𝛼
+

𝑡

𝛼 𝑟

𝜕𝜙

𝜕𝑟

𝜕2𝛿

𝜕𝑟2   and 𝛻
4 𝜙 =  −

𝐸

𝑟

𝜕𝛿

𝜕𝑟

𝜕2𝛿

𝜕𝑟2    (2)

   
where, 𝜙is the Airy stress function and 𝛻4 is the biharmonic operator. Airy stress function reduces the 

generalized formulation to the governing equations with solvable unknowns. Similar to the FE model, 

the boundaries of the pelvic floor are assumed to be fixed with no displacements, which yields: 

 

𝛿|𝑟 = 𝑒𝑑𝑔𝑒  =  0 and 
𝜕𝛿

𝜕𝑟
|𝑟 = 𝑒𝑑𝑔𝑒  =  0      

 (3) 

 
An additional boundary condition of stretch 𝜆at the edge of the pelvic floor is assumed to be zero. The 

stretch is written in terms of the circumferential strain,(𝜀𝜃) and residual strain (𝜀𝑟) is: 

 

𝜆|𝑟 = 𝑎  =  𝑟 (𝜀𝜃 − 𝜀𝑟)|𝑟 = 𝑎  =  0       (4) 
 
which yields the following differential equation: 

 

𝜕2 𝜙

𝜕𝑟2 − 𝜈
𝑟

𝜕𝜙
𝜕𝑟

= 𝜀𝑟𝐸         (5) 

 
The deflection and the Airy function have the following solutions: 

 

𝛿(𝑟)  =  𝛿𝑚𝑎𝑥(1 + 𝐶1𝑟2 + 𝐶2𝑟4) and 𝜙 =  𝛿2
𝑚𝑎𝑥 (𝐵1𝑟2 + 𝐵2𝑟4 + 𝐵3𝑟6 + 𝐵4𝑟8) 

 (6) 

 
where 𝛿𝑚𝑎𝑥is the maximum deflection of the pelvic floor. Applying the boundary condition (3) to eq 

(6), yields 

 

𝛿(𝑟)  = 𝛿𝑚𝑎𝑥 [1 − (𝑟
𝑎
)

2
]
2
         (7) 

 

https://paperpile.com/c/GVe6aK/lishw
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which has similar dependence to the small deflection theory. Substituting (7) in the PDE (1) simplifies 

the generic Airy function in eq (6) 

 

𝜙(𝑟) = 𝛿
2

𝑚𝑎𝑥  [𝐵1𝑟2 − 1
4 (

𝑟
𝑎)

2
+ 1

9
(

𝑟
𝑎)

6
− 1

48
(

𝑟
𝑎)

8
]    (8) 

 
and invoking the stretch boundary condition (4) yields the airy function.  

 

 

𝜙(𝑟)  = 𝛿
2

𝑚𝑎𝑥𝐸
12

 [((
5 −3 𝜈

1−𝜈
) + (

𝜀𝑟 
2(1−𝜈)

)) (
𝑟
𝑎

)
2

− 1
4

(
𝑟
𝑎

)
2

+ 1
9

(
𝑟
𝑎

)
6

− 1
48

(
𝑟
𝑎

)
8

]  (9)  

 
The maximum deflection 𝛿𝑚𝑎𝑥is solved by applying the Bubnov Galerking method by minimizing the 

governing differential equation (1) and assuming 𝛿(𝑟)is normal with respect to the coordinate 

functions. 

 

∫
𝐴

𝛿 [𝛼𝛻4𝛿 −
𝑡

𝑟
(

𝜕

𝜕𝑟
) (

𝜕𝜙

𝜕𝑟

𝜕𝛿

𝜕𝑟
) − 𝑃] 𝑑𝐴 =  0      

 (10) 

 
Integrating equation 10 gives 

 

2𝐸𝑡(1+𝜈)(23 − 9𝜈)

63𝑎2 (1 − 𝜈2)
 𝛿3

𝑚𝑎𝑥 +  
16 𝐸 𝑡3

9𝑎2 (1 − 𝜈2)
𝛿𝑚𝑎𝑥  −  

𝑃𝑎2

3
=  0    

 (11) 

 
The solution to 𝛿𝑚𝑎𝑥is a cubic equation with three roots. The real roots of 𝛿𝑚𝑎𝑥 is: 

 

𝛿𝑚𝑎𝑥 =  √−
𝛽

2
+ 𝛾

3
+ √−

𝛽

2
− 𝛾

3
,       

 (12) 
 
where 

 

𝛾 = √𝜃
3 

27 + 𝛽
2

4 ,   𝜃 = 14 4𝑡2+3𝑎2𝜀𝑟 (1+𝜈)
(1+𝜈)(23 − 9𝜈)

 ,  𝛽 = −7 𝑃𝑎4ℎ
2

8𝛼(1+𝜈)(23−9𝜈)
 

 
The deflection at any point in the pelvic floor can be computed using eq (7). In this study, we use the 

maximum deflection for comparison with the FE results.  

 

The analytical solution (eq. 12) is used to compute the evolution of maximum deflection with changes 

in the geometry of the pelvic floor. Three different geometric variations are considered: (a) changing 

the radius while keeping the mean thickness (6 mm) and pressure (4 kPa) constant, (b) changing the 

radius and thickness proportionately and (c) varying the radius, thickness and pressure 

proportionately. The analytical solution assumes an elastic material whose stiffness corresponds to the 

initial slope of the stress-stretch relation presented in Fig. S1 and a Poisson’s ratio of 0.43 is used to 

represent a weakly compressible muscle tissue. A normalized dimension of 1 corresponds to the mean 

base model with a thickness of 6 mm. The horizontal axis represents the deviation from this 

normalized mean geometry, a value of 1.2 represents the radius, thickness and pressure scaled by a 

factor of 1.2. It can be observed from Fig. S1 that the deflection increases as a cubic function of the 
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radius when all else being equal. However, when the thickness of the idealized pelvic floor is 

increased proportional to the increase in the radius, the deflection increase showed a more linear 

increase for both the constant pressure and pressure scaled proportionately with the dimension. When 

the pressure is increased proportionately with the radius and thickness, the deflection increased at a 

rate of 2.5 times the increase in deflection when the pressure was kept constant. The pelvic floor 

displacement increases with increase in the size of the pelvic floor, even with a proportional increase 

in thickness. The increase in thickness is critical to minimize deflection especially at larger 

dimensions where a significant increase in the deflections are observed. 

 

 

 
Fig. S1. An analytical solution using the Airy’s stress function for the deflection of an idealized circular 

linear-elastic pelvic floor with a uniform thickness subjected to pressure. The three curves refer to the 

different combinations of parameters that were varied.  
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Supplementary figures for Results  
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Fig. S2. Development of the displacement (in mm) in the anterior and posterior compartments when 

varying the average radius (constant thickness; experiment 1). Models are viewed from above (cranial 

view), and the posterior compartment of the pelvic floor is located towards the top of each figure. 
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Fig. S3. The stress-stretch relationship for an increase in radius and constant thickness and pressure (4 

kPa) in the anterior compartment (experiment 1). 
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Fig. S4. Development of the displacement in the anterior and posterior compartments (in mm) when 

the radius and thickness are scaled proportionately (experiment 3). Models are viewed from above 

(cranial view) and the posterior compartment of the pelvic floor is located at the top of each figure. 
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Fig. S5. The stress-stretch relationship for an increase in radius and proportionately scaled thickness 

at constant pressure (4 kPa) in the anterior compartment (experiment 3). 

 

Further anatomical detail for levator ani group of muscles 

The levator ani originates at the pubic bone and arcus tendineus and consists of several muscles (Fig. 

S6), for which we follow the nomenclature by Hershorn (2004). Relevant pelvic floor anatomy is 

briefly reviewed below. 

The innermost fibres of the levator ani insert into the urethral sphincter, vagina and rectum, 

creating a continuous sheath of tissue (Fig. S6). Sphincter muscles are normally contracted for 

continence, whereas the vagina closure is maintained by the action of the intra-abdominal pressure 

and the levator ani muscle. The vertically oriented fibres that circle the back of the rectum belong to 

the puborectalis part of the levator muscle. It creates a sling around the rectum and plays an important 

part in faecal continence. Laterally to the puborectalis lies the pubococcygeus muscle, whose fibres 

pass almost horizontally and insert into the rectum and the coccygeal raphe. Finally, the lateralmost 

and the posterior part of the levator ani is composed of a thin layer of iliococcygeus and slightly 

thicker coccygeus muscles. The former originates on the arcus tendineus, while the latter originate on 

the ischial spines (left and right). Both are supported by fatty cushions underneath and insert into the 

last two vertebrae of the coccyx. 

Different pelvic floor muscles vary in thickness (Fig. S6). Even within the levator ani, the 

puborectalis and pubococcygeus are considerably thicker than the iliococcygeus and coccygeus 

muscles. The medical literature reports thicknesses of the puborectalis muscle ranging from 6.23 mm 
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to 8.12 mm (Table S1). The in vivo thickness of the posterior portions of the levator ani (e.g., the 

iliococcygeus) has not been studied in the same level of detail but has been reported to lie between 2.5 

and 4 mm 2. This, therefore, excludes muscles such as the M. obturator internus (Fig. S6), which are 

much thicker, but which are also less involved in continence and childbirth.  

 

 

Fig. S6. The different pelvic floor muscles are shown in a transverse plane (coronal view), obtained 

by segmentation of a CT scan from the New Mexico Decedent Image Database. Skeletal elements are 

shown in grey, obturator internus in turquoise, pyriformis (partial) in magenta, levator ani and 

urogenital membrane in yellow. Centrally, from the pubic bones towards the coccyx, the tissues of the 

urethra (pink), vagina (red) and rectum (blue) are visible. Three parts of the levator ani are marked: 

(a) puborectalis, (b) iliococcygeus, (c) coccygeus muscles. Note that the latter are very thin.  

 

Table S1: Reported thickness of the pelvic floor muscles (non-exhaustive list of sources). 

Publication Method 
Number 

of cases 
Thickness in healthy women 

Mørkved et al. 20043 
Perineal 

ultrasound 
103 

Urogenital diaphragm at relaxation 

7.15±0.33 mm 

Silva et al. 20174 
static MRI, 

transverse plane 
4 

Mid-vagina left 8.12±2.00 mm, right 7.29 ±2.28 mm; 

Anal canal left 5.20±1.27, right 5.68±1.78. 

Yaşar et al. 20195 
static MRI, 

transverse plane 
45 Puborectalis left 6.23±0.73, right 7.00±0.71 

Hoyte et al. 20046 static MRI 10 

right anterior levator (min-max) 4.66 -10.01 mm; 

left anterior levator (min-max) 4.66-11.35 mm; 

right posterior levator (min-max) 2.00-8.00 mm; 

left posterior levator (min-max) 2.00-7.33 mm. 

Dierick et al. 20182 static MRI 17 

mid-vagina iliococcygeus 3.7±0.38 mm 

mid-rectum iliococcygeus 3.95 ±0.4 mm 

mid-vagina puborectalis 9.15 ±0.68 mm 

mid-rectum puborectalis 8.35 ±0.9 mm 

https://paperpile.com/c/GVe6aK/aoQBD
https://paperpile.com/c/GVe6aK/JiR7W
https://paperpile.com/c/GVe6aK/qgCBV
https://paperpile.com/c/GVe6aK/QfVPN
https://paperpile.com/c/GVe6aK/YK1ew
https://paperpile.com/c/GVe6aK/aoQBD
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Finite element model and its validation 

We adopted an isotropic Mooney-Rivlin model (eq. 1) to represent pelvic floor tissues with the 

following parameters: c1=26 kPa, c2=14 kPa 4 and the bulk modulus, K = 1000 kPa to reflect the near-

incompressibility of the material  7. 

𝑊 = 𝑐1(𝐼1 − 3) + 𝑐2 (𝐼2 − 3) +
1

2
𝐾(𝑙𝑛 𝐽) 2     eq. (1) 

Here, c1 and c2 are the Mooney-Rivlin material coefficients, I1 and I2 are the invariants of the 

deviatoric part of the right Cauchy-Green deformation tensor, and J is the Jacobian of the 

deformation.  

The Cauchy stress for the Mooney-Rivlin material under uniaxial loading depends on the 

stretch (λ) as 

𝜎𝑀𝑜𝑜𝑛𝑒𝑦 =  2 (𝜆2 −
1

𝜆
)(𝑐1 + 𝑐2 

1

𝜆
)     eq. (2) 

where stretch (λ)  is defined as the ratio of the deformed length over the original length. 

 

 

 

 
a.                                                                               b. 

 Displacement (mm) 

 dMRI (Silva et al. 2017)4 FE base model       

Y (horizontal) 6.235±4.004 5.729 

Z (vertical) 4.495±1.560 5.409 

 

c. 

 

Fig. S7. FE model validation. (a) The overall change in shape upon application of the pressure to the 

superior surface of the model. (b) Plot of the displacement of the posterior compartment in the 

horizontal (Y) axis (in mm). We exported average displacement of several elements at the outer 

surface of the posterior compartment. (c) dynamic MRI (dMRI) and modelled Y and Z displacements 

of the posterior compartment for the base model.  

https://paperpile.com/c/GVe6aK/qgCBV
https://paperpile.com/c/GVe6aK/5zv97
https://paperpile.com/c/GVe6aK/qgCBV
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Experiments  

Table S2: Experiments and models. Measurements are given in mm. Abbreviations: ML – mediolateral, 

AP – anteroposterior, SD – standard deviation from the mean. 

    ML AP thickness     

   Average 53 56 6 Base 

Model 

   

   SD 4.5 4.8 NA     

   

Experiment 1. Changing average radius Experiment 2. Changing 

thickness 

Experiment 3. Changing radius and thickness 

proportionately 

SD factor ML AP thickness ML AP thickness SD factor ML AP thickness 

           

-4.2 34.1 35.84 6 53 56 1 -4.2 34.1 35.84 3.89 

-4 35 36.8 6 53 56 2 -4 35 36.8 4.07 

-3.5 37.25 39.2 6 53 56 3 -3.5 37.25 39.2 4.31 

-3 39.5 41.6 6 53 56 4 -3 39.5 41.6 4.55 

-2.5 41.75 44 6 53 56 5 -2.5 41.75 44 4.79 

-2 44 46.4 6 53 56 6 -2 44 46.4 5.03 

-1.5 46.25 48.8 6 53 56 7 -1.5 46.25 48.8 5.28 

-1 48.5 51.2 6 53 56 8 -1 48.5 51.2 5.52 

-0.5 50.75 53.6 6 53 56 9 -0.5 50.75 53.6 5.76 

0 53 56 6 53 56 10 0 53 56 6.00 

0.5 55.25 58.4 6 53 56 11 0.5 55.25 58.4 6.24 

1 57.5 60.8 6 53 56 12 1 57.5 60.8 6.48 

1.5 59.75 63.2 6    1.5 59.75 63.2 6.71 

2 62 65.6 6    2 62 65.6 6.97 

2.5 64.25 68 6    2.5 64.25 68 7.21 

3 66.5 70.4 6    3 66.5 70.4 7.45 

3.5 68.75 72.8 6    3.5 68.75 72.8 7.69 

4 71 75.2 6    4 71 75.2 7.94 

4.5 73.25 77.6 6    4.5 73.25 77.6 8.18 

5 75.5 80 6    5 75.5 80 8.42 

6 80 84.8 6    6 80 84.8 8.91 

7 84.5 89.6 6    7 84.5 89.6 9.40 
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