
 

 

1 

 

Supplementary Information for: 

Biological pathway expression complementation contributes to biomass 

heterosis in Arabidopsis 

 

Wenwen Liua, Guangming Hea,1, Xing Wang Denga,b,1 

 

aSchool of Advanced Agricultural Sciences and School of Life Sciences, 

State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua 

Center for Life Sciences, Peking University, Beijing 100871, China. 

bPeking University-Southern University of Science and Technology Institute 

of Plant and Food Science, Department of Biology, Southern University of 

Science and Technology, Shenzhen 518055, China. 

1Corresponding authors: Guangming He (heguangming@pku.edu.cn); Xing 

Wang Deng (deng@pku.edu.cn). 

 

This PDF file includes: 

Materials and Methods  

Figures S1 to S6 

Tables S1 to S2 

Legends for Datasets S1 to S11 

SI References  



 

 

2 

 

Other supplementary materials for this manuscript include the 

following:  

Datasets S1 to S11 
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Materials and Methods  

Plant materials and sampling  

We obtained A. thaliana accessions Col-0 and Per-1 from the Arabidopsis 

Biological Resource Center and used hand pollination with Col-0 as the 

maternal line to generate Col-0 × Per-1 F1 hybrid seeds. The plants used for 

phenotyping and transcriptomic analyses were grown on Murashige & 

Skoog plates containing 1% sucrose under long-day conditions (16-h light at 

18 W/m2 and 22°C and 8-h dark at 18°C) after the seeds had been surface-

sterilized and stratified for 7 d. For RNA-seq, we grew the parental lines 

alongside the hybrids in the same plate so that each plate was a biological 

replicate, and all plates in the light incubator were rotated twice a day. In the 

mornings, plant shoots were harvested at 3–8 DAS, and the first or second 

true leaf from each plant was harvested at 7–21 DAS. We set up three 

biological replicates for each time point and each genotype, with each 

replicate comprised of samples collected from at least 10 plants. For 

phenotyping, plants were grown under the same conditions as for RNA-seq 

and the tissues were sampled in the mornings at 3–21 DAS with at least five 

biological replicates. 

 

Phenotyping  

The sampled tissues were bleached with ethanol and then placed in chloral 

hydrate solution for clearing (1). After obtaining images of the cotyledons 

and true leaves using microscopes, we measured the cotyledon and leaf sizes 

using ImageJ (https://imagej.nih.gov/ij/).  
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RNA sequencing and data processing  

We used an RNeasy Plant Mini Kit with on-column DNase treatment 

(Qiagen) to extract total RNA from each of the 189 samples. Next, we 

constructed mRNA sequencing libraries and sequenced the samples on a 

HiSeq X Ten platform (Illumina) to generate 150-nucleotide paired-end 

reads. Each sample yielded approximately 29,000,000 to 59,000,000 raw 

reads (Dataset S2). Quality control was conducted using fastp version 0.20.0 

(2) with the parameter “length_required” set to 150 to generate 

approximately 7,600,000,000 high-quality reads for all RNA-seq samples, 

and yielding approximately 28,000,000 to 57,000,000 for each sample. 

Using Salmon version 1.0.0 (3), we quantified transcript expression 

against a high-quality modified version of the Arabidopsis Thaliana 

Reference Transcript Dataset 2 (AtRTDv2_QUASI_19April2016), which is 

specifically designed to be used with Salmon to accurately quantify 

alternatively spliced isoforms; it contains 81,620 non-redundant transcripts 

from 33,681 genes (4). We built a mapping-based index in a default type 

(“puff”) using an auxiliary k-mer hash over k-mers with a length of 31, and 

then we quantified reads directly against this index using the mapping-based 

mode in Salmon while correcting for sequence-specific biases with the 

option --seqBias. The number of bootstrap samples to compute was set to 

30, and the “--validateMappings” flag was passed to enable selective 

alignment, which can improve the accuracy of both mapping and 

quantification estimates. All other options were set to default (3). The 

number of mapped equivalence reads and the mapping rate are listed in 

Dataset S2. 
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The transcript-level quantifications were merged to the gene level, and 

then length-scaled transcripts per million (TPM) and estimated read counts 

were calculated for genes using R package tximport version 1.12.3 with the 

option lengthScaledTPM to correct for possible gene length variations across 

samples (5). We then removed genes expressed at very low levels, defining a 

low-expressed gene as having no transcripts with ≥ 1 counts per million in 3 

or more of the 189 samples. A total of 20,427 expressed genes were used for 

downstream analysis. 

 

PCA and sample correlation analysis  

Gene expression values (TPM) for the top 1,000 genes with the highest 

standard deviations across the 189 RNA-seq samples were used for PCA 

using the prcomp function in R, with default settings. We also calculated 

Pearson correlation coefficients between pairwise samples with the TPM of 

all 20,427 expressed genes. 

 

Differential gene expression analysis  

For each time point within the early shoot and true leaf transcriptomes, we 

compared the differential gene expression between the three genotypes (Col-

0, Per-1, and hybrid) against each other. To calculate differential expression 

for pairwise tests, we modeled the read counts of the expressed genes using 

the linear fit function voom in R package limma version 3.40.6 to correct for 

library size differences. The limma empirical Bayes function was used to 

identify significant differential expression of genes (6, 7), and these genes 

were filtered to retain only those with 1) an average of ≥ 1 TPM of 
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biological replicates in at least one of the pairwise groups and 2) an adjusted 

p-value < 0.05. In general, we classified the genes into 14 categories 

(Dataset S11), including patterns of above parent expression, above high-

parent expression, high-parent expression, below parent expression, below 

low-parent expression, low-parent expression, and additive expression in the 

hybrid compared to its parents. 

 

Weighted gene coexpression network analysis (WGCNA)  

For transcriptome atlases of 3–8 DAS shoots, WGCNA was performed for 

the individual gene expression dataset of each genotype using the functions 

in R package WGCNA version 1.68 (8). Each individual dataset contained 

the log2(TPM + 1) of genes that had an average of ≥ 1 TPMs of biological 

replicates in at least one time point during the 3–8 DAS period for the 

corresponding genotype and were within the top 75% of the above genes 

that had the highest median absolute deviation of log2(TPM + 1) across 

different time points. Each of these datasets underwent network analysis 

with a soft threshold (power/β) that was determined to produce a scale-free 

network with optimal scale-free topology model fit and mean connectivity 

(SI Appendix, Fig. S3 and Table S2). Next, we used the WGCNA 

blockwiseModules function to construct a signed network. Briefly, gene 

coexpression relationships were calculated as bi-weight mid-correlation 

coefficients raised to the soft threshold, transforming the gene expression 

correlation adjacency matrix to a TOM, which was then converted to a 

dissimilarity matrix that was used to generate a hierarchical cluster tree. To 

identify the coexpressed gene modules, we used the dynamic tree cut 
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method with the following parameters: deepSplit level 2, detectCutHeight of 

0.995, minModuleSize of 100, and tree mergeCutHeight of 0.25. 

We performed module preservation analysis among the individually 

constructed gene coexpression networks of the three genotypes using the 

WGCNA modulePreservation function with nPermutations of 50 and 

networkType “signed” (9). The permutation test defined the preservation 

degree of a module in 2 networks by providing a Zsummary value that 

summarized density- and connectivity-based preservation statistics, where 

Zsummary < 2 represented no preservation, 2 < Zsummary < 10 represented weak 

to moderate preservation, and Zsummary > 10 represented strong preservation. 

Using the function blockwiseConsensusModules in WGCNA, we 

detected the conserved gene coexpression network (i.e., the consensus 

modules) underlying early shoot development among the three genotypes 

(10, 11). Briefly, a consensus adjacency matrix was created using the scaled 

adjacency matrices from each individual dataset with consensusQuantile set 

to 0, and then a consensus TOM was generated from the consensus 

adjacency matrix. Consensus modules were calculated using hierarchical 

clustering and dynamic tree cutting with the following parameters: deepSplit 

level 2, detectCutHeight of 0.99, minModuleSize of 50, and 

mergeCutHeight of 0.25. Modules presenting both high correlation and 

similar expression profiles were merged using the WGCNA 

mergeCloseModules function with cutHeight set to 0.25 and 

consensusQuantile set to 0.25. To examine the gene expression patterns of 

the consensus modules across samples, each module was represented by an 

module eigengene (ME), which was calculated as the first principle 
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component of the expression profiles of each module (8). The connectivity 

of each gene to its corresponding module was calculated using a module 

membership (kME) value that was defined as the bi-weight mid-correlation 

between the gene expression and the corresponding ME (8). Using each 

gene’s intramodular kME, we found hub genes in the conserved network of 

each genotype (8, 12). The relationships between consensus coexpression 

modules in each genotype were studied by examining the eigengene 

network, which was built using the bi-weight mid-correlation between 

module eigengenes (10). 

Similarly, we generated a gene expression dataset of 7–21 DAS leaf 

transcriptomes for WGCNA of each genotype. The construction and analysis 

of individual and consensus gene coexpression networks were performed as 

described above (SI Appendix, Fig. S5 and Table S2). 

 

Gene annotation and ontology enrichment analysis  

Gene descriptions and GO terms for A. thaliana were assigned according to 

The Arabidopsis Information Resource (https://www.arabidopsis.org/) and R 

package org.At.tair.db. The GO enrichment analysis was performed with GO 

Biological Process Complete using the R package clusterProfiler version 

3.10 (13) and applying a hypergeometric test with FDR correction (adjusted 

P < 0.05). 

 

Data availability 

All code used to perform RNA-seq analysis and WGCNA is publicly 

available on github at https://github.com/WenwenLiu54. All original 
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transcriptome sequences and gene expression data have been deposited in 

the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo) 

under accession number GSE157957. Additional data, such as raw image 

files, that support this study are available from the corresponding authors 

upon request. 
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Fig. S1. Cotyledon and true leaf growth heterosis in Col-0 × Per-1 

during seedling development. Mid-parent heterosis (MPH) and best-parent 

heterosis (BPH) levels of the cotyledon area at 3–12 days after sowing 

(DAS) (A) and the first true leaf area at 3–21 DAS (B) in Arabidopsis Col-0 

× Per-1. Asterisks (*) indicate significant differences between the F1 hybrid 

and Col-0, Per-1, and MP (mid-parent, the average level of both parents). 

**P < 0.01, *P < 0.05; Student’s t-test, n ≥ 5. 
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Fig. S2. Dynamic growth of cotyledon at 3–12 days after sowing (DAS) (A) 

and the first true leaf at 3–21 DAS (B) in Col-0, Per-1, and Col-0 × Per-1. 

Data are presented as mean area ± standard error in each genotype at each 

stage (n ≥ 5). 
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Fig. S3. Determination of soft thresholds (power/β) that provided 

optimal scale-free topology indices of gene coexpression networks 

underlying early shoot development (3–8 DAS) and the corresponding 

topological overlap matrices (TOMs) for gene expression correlations.  

(A-C) Network scale-free topology model fit and mean connectivity under 

different soft thresholds for individual gene expression datasets of ecotypes 

Col-0 (A), Per-1 (B), and their F1 hybrid (C). (D) Network scale-free 
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topology model fit and mean connectivity under different soft thresholds for 

integrated gene expression datasets in Col-0, Per-1, and the hybrid. (E and 

F) Heat maps showing TOMs for gene expression correlations (soft 

threshold =18) in Col-0, Per-1, and the hybrid used for individual gene 

coexpression network construction (E) and consensus gene coexpression 

network construction (F). See SI Appendix, Table S2. 
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Fig. S4. Preservation of gene coexpression networks between the hybrid 

and its parents underlying early shoot development (3–8 DAS). 

Hierarchical cluster dendrograms showing gene coexpression modules 

identified by weighted gene coexpression network analysis (WGCNA) of 

Arabidopsis ecotypes (Col-0, Per-1) and their F1 hybrid. In the dendrograms, 

each leaf represents one gene and each module below the dendrograms is 

labeled with one color. The genes without coexpression with any module are 

marked in grey. Below the dendrograms are pairwise module preservation 

analyses of the networks of the three genotypes. Dashed red and blue lines 

represent the Zsummary thresholds for strong (Zsummary > 10) and weak to 

moderate (2 < Zsummary < 10) preservation levels, respectively. Colored dots 

represent the corresponding modules in the reference network, and the 

module size is the number of overlapped genes within each reference 

module.
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Fig. S5. Determination of soft thresholds (power/β) that provided 

optimal scale-free topology indices of gene coexpression networks 

underlying true leaf development (7–21 DAS) and the corresponding 

topological overlap matrices (TOMs) for gene expression correlations. 

(A-C) Network scale-free topology model fit and mean connectivity under 

different soft thresholds for individual gene expression datasets of ecotypes 

Col-0 (A), Per-1 (B), and their F1 hybrid (C). (D) Network scale-free 
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topology model fit and mean connectivity under different soft thresholds for 

integrated gene expression datasets in Col-0, Per-1, and the hybrid. (E and 

F) Heat maps showing TOMs for gene expression correlations (soft 

threshold = 20) in Col-0, Per-1, and the hybrid used for individual gene 

coexpression network construction (E) and consensus gene coexpression 

network construction (F). See SI Appendix, Table S2. 
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Fig. S6. Preservation and divergence of gene coexpression networks 

between hybrid and parents underlying true leaf development (7–21 

DAS). (A) Hierarchical cluster dendrograms showing gene coexpression 

modules identified by weighted gene coexpression network analysis in 

ecotypes (Col-0, Per-1) and their F1 hybrid. In the dendrograms, each leaf 

represents one gene and each module is labeled with one color. The genes 

without coexpression with any module are marked in grey. Pairwise module 
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preservation analyses of the networks in the three genotypes appear below 

the dendrograms. Dashed red and blue lines represent the Zsummary thresholds 

for strong (Zsummary > 10) and weak to moderate (2 < Zsummary < 10) 

preservation levels, respectively. Colored dots represent the corresponding 

modules in the reference network, and the module size is the number of 

overlapped genes within each reference module. (B) Hierarchical cluster 

dendrogram showing consensus gene coexpression modules. The red line 

above is the cut height (0.99) for consensus module (CM) identification. CM 

colors are relabeled independent of the separately identified modules in each 

genotype, and the genes not coexpressed in all three genotypes are marked in 

grey. (C) Differential eigengene expression patterns of the CMs in the three 

genotypes across 7–21 DAS. Blue and red represent lesser and greater 

expression, respectively. (D) Heat map summarizing GO enrichment of 

genes in each CM. The color intensity represents the significance (–

log10[adjusted p-value]) of GO term enrichment. (E) Heat map of eigengene 

networks showing relationships among CMs in each genotype. 
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Table S1. Overview of the high temporal resolution samples used for RNA-

seq analysis 
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Table S2. Parameters and properties of individual and consensus gene 

coexpression networks 
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Dataset S1 (XLS). Dynamic growth and heterosis of the cotyledon and the 

first true leaf in Col-0, Per-1, and the hybrid. 

Dataset S2 (XLS). Overview of the RNA-seq raw data and mapping 

information. 

Dataset S3 (XLS). GO enrichment information for the genes in each CM of 

the conserved gene coexpression network underlying early shoot 

development. Significance is presented as the adjusted p-value. NS, no 

significance. 

Dataset S4 (XLS). Overlap of the hub genes identified in the core regulatory 

network underlying early shoot development among Col-0, Per-1, and the 

hybrid. 

Dataset S5 (XLS). GO enrichment information for all hub genes of the core 

regulatory network underlying early shoot development identified in three 

genotypes. 

Dataset S6 (XLS). Differential expression patterns (adjusted p-value < 0.05) 

and function descriptions of hub genes involved in the mitotic cell cycle and 

photosynthesis underlying early shoot development. 

Dataset S7 (XLS). GO enrichment information for genes in each CM of the 

conserved gene coexpression network underlying true leaf development. 

Significance is presented as the adjusted p-value. NS, no significance. 

Dataset S8 (XLS). Overlap of the hub genes identified in the core regulatory 

network underlying true leaf development among Col-0, Per-1, and the 

hybrid. 
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Dataset S9 (XLS). GO enrichment information for all hub genes of the core 

regulatory network underlying true leaf development identified in three 

genotypes. 

Dataset S10 (XLS). Differential expression patterns (adjusted p-value < 

0.05) and function descriptions of hub genes involved in the mitotic cell 

cycle and photosynthesis underlying true leaf development. 

Dataset S11 (XLS). The 14 categories of differential gene expression 

patterns identified in the hybrid compared to its parents (adjusted p-value < 

0.05). 
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