Dear Editor,

Thank you for taking the time to oversee our submission revision process. Below find our replies
to the raised concerns and how we addressed them. Further, we would like to thank the
reviewers and the editor for their thorough and thoughtful reviews. VolPy is a big project and the
reviews touched upon almost all of its aspects leading to a large revision of our paper. We
believe that our current submission addresses all the issues raised by reviewers. In summary
the revised version of our paper includes (among many other improvements):

- Aless biased corpus of annotations obtained by involving three independent labelers

- Athorough and systematic comparison with existing methods in detecting spikes using
both simulated and real data.

- A more systematic description of the inner workings of VolPy, with more detailed
descriptions of motion correction and spike extraction

- A systematic study on the scalability in terms of computational time and memory
consumption of VolPy against comparable algorithms.

- A more detailed description of the image segmentation pipeline along with its failure
modalities. We also included a graphical user interface to refine the results obtained via
automatic segmentation, and a detailed protocol to annotate new datasets and retrain
the network with custom data.

Concurrently with this submission we also released a new version of VolPy, that presents a
simplified way to run the pipeline and refine the results at the different stages of analysis.

Please find our detailed responses below. Since our paper is long, we copied excerpts from the
paper (text, figures etc) that directly address the reviewers’ concerns. Please also note that
since the paper changed substantially, the marked-up version of the paper obtained with
latexdiff is very difficult to parse. We uploaded it anyway, since it was required. We tried to
highlight in the response to reviewers the most relevant changes in the paper.

Both reviewers agree on the need for analysis tools for voltage-imaging data. Due to the
nature of the underlying signals and the reporters, these data do pose a significant
challenge for analysis, to detect real signals, disambiguate the cellular sources etc. This
is obviously an evolving field since breakthroughs in reporters will change the
requirements for analysis, hopefully making life easier. Both reviewers agree that the
approaches taken in this article are reasonable given the data sets that they consider.
The proposed pipeline is a collection of previously described approaches and
techniques, not new techniques.

Both reviewers agree that the paper would have far higher impact if it included
comparisons to existing methods, some of which have been tested on voltage imaging
data. | agree and comparisons should be made to the tools mentioned by reviewer 1.
Claims of validity of methods were based on a small number of annotators, so again, it is

crucial to check claims and expected behavior against other methods and revise either
the methods or claims if and when unexpected results appear.

Both concerns are reasonable and we agree, they would make for a more impactful paper. We
have addressed all of the raised concerns, as outlined below in response to reviewers.

There are also a large number of specific questions and concerns from reviewer 1, which
must be addressed point by point.

We addressed all the questions and concerns by reviewers one and two.

Please also answer the following questions from the editor: 1. Were surrogate data sets
used or can they be used to test validity of the methods? 2. Were model data sets with
known ground truth spike times, cell identities, etc. constructed or used or can they be
used to test the validity of methods?

We addressed questions 1 and 2 from the editor in:

e Reviewer 1. Main comments, Point 1, and Specific comments, point 6
e Reviewer 2 Main point 2.

We do not add here a duplicate of responses to compress an already long rebuttal letter.
Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1:

The paper presents an automated analysis framework for Voltage imaging data alongside
a collection of 24 manually annotated datasets. The framework performs motion
correction, segmentation and spike extraction and has been incorporated in the CalmAn
python codebase. Performance on the included datasets, especially L1 is impressive.
This software pipeline along with the curated datasets will advance analysis of voltage
imaging in the community.

We thank the reviewer for the thorough review, and the useful suggestions, which we hope to
have satisfactorily addressed.

Main comments:

1. Why is there no comparison to other methods? While VolPy provides a complete
pipeline, its intermediate results such as cell segmentation or spike extraction can be
compared to other approaches. The authors make the point that NMF-based approaches
are not suitable for Voltage imaging, however other Cl approaches such as PCA/ICA,

Suite2p, ABLE, etc have less strict assumptions on the modeling of calcium imaging data
than the NMF-based approaches the authors have published in the past. Have these
methods been evaluated for voltage imaging?

The method in [13] has also been tested on voltage imaging — why is there no
comparison? If results are indeed poor, then the authors can at least report that they
attempted these approaches with poor performance. Comparison to demonstrate the
authors have indeed improved the SpikePursuit algorithm should also be included.

Following the suggestions of the reviewer we compared VolPy thoroughly to other approaches,
including calcium imaging analysis algorithms and [13]. In most cases some very specific
preprocessing of the data was necessary to get the algorithms working. Also, no evaluated
method, except SpikePursuit, had a means to automatically extract spikes. We therefore also
implemented some basic spike extraction methods. In the text we included the following
explanation regarding the methods we compared to:

Implementation of benchmarked algorithms 0

We compared VolPy against a set of other algorithms. Some of them could not directly
be applied to voltage imaging, and therefore we had to introduce some modifications to 4

adapt them. In what follows we describe how we deployed each of them. 433
CalmAn -
CalmAn is a software package for the analysis of calcium imaging data [16] and can be s
found at the github repository https://github.com/flatironinstitute/CalmAn. 436
For voltage imaging movie using indicator with reversed polarity (i.e. brighter for lower 47
voltages, such as Voltron), vanilla CalmAn failed to retrieve reasonable spatial or 438
temporal components because the NMF framework was unable to extract negative 430
spikes of voltage signals. Just flipping the signal and removing the minimum of the 440

whole movie also leads to poor performance. The best results were obtained by flipping 4
the signal and removing the minimum value of each pixel. This helps CalmAn focus on w2

the variance related to the voltage signal and not on baseline fluctuations. This 443
modified movie can be processed via the standard CalmAn pipeline. We used the greedy s
rot method for spatial footprint initialization. We turned off the deconvolution step a5
used for calcium signals, and instead we high-passed the temporal components with a = s
15Hz filter and applied a manual threshold to extract spikes. aa7

For simulations, as movies were simulated with negative spikes, we processed them s
in the same way as we did for movies using Voltron indicator. 449

For voltage imaging movies using the paQuasar indicator, as they had positive
spikes, we passed the original movie directly into the CalmAn pipeline without
preprocessing and performed the same spike extraction step as mentioned before.

MeanROI

Region of interests were provided from ground truth masks beforehand. The MeanROI
method extracts the voltage signal for each neuron by averaging the pixels within the
provided masks. Depending on the signal polarity the trace can be flipped. Analogously
to CalmAn, spikes are extracted by high-passing the signals with a 15Hz filter and
manual thresholding.

Suite2P

Suite2p is a software package for the analysis of calcium imaging data [17]. We tested
Suite2P on simulated datasets using the software available on github
https://github.com/MouseLand/suite2p. To obtain good spatial footprints, we set
the overlapping parameter to be True across simulations. When the spike amplitude
was lower or equal to 0.01, we turned off the sparse_mode and when the spike amplitude
was 0.005, we turned off the connected parameter. We flipped and high-passed the
signals with a 15Hz filter and applied a manual threshold to extract spikes.

SGPMD-NMF

SGPMD-NMF is a set of software packages that can be deployed for the analysis of
voltage imaging datasets [11,12]. We obtained SGPMD-NMF from the Github
repositories https://github.com/adamcohenlab/invivo-imaging and
https://github.com/m-xie/trefide.git. We fed the original movie into the
denoising step [11]. We flipped the output signal if it had reverse polarity and passed it
to the demixing step, which outputs spatial footprints and temporal traces, along with
subthreshold activities [12]. We high-passed the signals with a 15Hz filter and applied a
manual threshold to extract spikes.

450

451

452

453

454

455

456

457

458

459

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

PCA-ICA

We implemented the PCA-ICA algorithm based on previous work on calcium

imaging [14]. We chose the top 50 principal components in PCA and 15 components in
spatial-temporal ICA. The parameter which controls the relative contribution of spatial
and temporal information was set to 0.05. The output spatial components were updated
after Gaussian smoothing and thresholding. Temporal signals were extracted as the
weighted average of the updated spatial components. We flipped and high-passed the
signals with a 15Hz filter and applied a manual threshold to extract spikes.

SpikePursuit

We recovered the original SpikePursuit implementation in Matlab from the github
repository https://github.com/KasparP/SpikePursuitMatlab and ran it on
simulated data and scalability tests. Ground truth masks were provided as the input
and the algorithm used the adaptive threshold method to automatically select the
optimal threshold and spikes times. For the scalability tests, parameters were set
similarly to VolPy.

Spike Extraction

In this paper we tested the algorithms above and compared their performances against
VolPy. Since only VolPy and SpikePursuit were able to extract spikes automatically, we
modified the other algorithms to automate the spike detection process, and thus provide
a direct comparison with VolPy. The general process to extract spikes was to high-pass
the temporal components extracted by each algorithm with a 15Hz filter, and then to
apply a manual threshold to extract spikes. The manual threshold was an estimated
level of standard deviation of the signal based on the negative portion of the signal
(similarly to SNR measure for calcium traces in [16]). In simulations, instead of picking a
single manual threshold (for example 3.0), for each spike amplitude value we performed
a grid search (range 2.0-4.0 with interval 0.1), and selected the threshold outputting the
best average F) score across all neurons. In simultaneous electrophysiology and voltage
imaging datasets and in-vivo datasets, the thresholds for CalmAn , MeanROI and
SGPMD-NMF were chosen manually. In in-vivo datasets, the SpNR was computed only
on the intersection of detected spikes among different algorithms.

We compared these algorithms on simulated datasets, voltage imaging with simultaneous
electrophysiology datasets and in-vivo datasets using two metrics: the precision/recall
framework and Spike To Noise Ratio (SpNR).

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Voltage imaging datasets
In-vivo datasets

The datasets we employed were all previously published: Recordings from the tegmental
area of larval zebrafish (TEG) and mouse L1 cortex (L1) are described in [5];
Recordings from mouse hippocampus (HPC) are described in [6]. For details about
animal protocols and data acquisition refer to the original papers. The name, size and
number of labeled neurons for each dataset is reported in Table 2.

Voltage imaging with simultaneous electrophysiology datasets

The simultaneous imaging and electrophysiological data presented in this paper were
previously published in [5]. Two of them were extracellular recordings from the TEG
area of larval zebrafish, and one intracellular recording from mouse L1 cortex. For
details about animal protocol and acquisition refer to the original paper.

Simulated datasets

We generated simulated voltage imaging movies modelled upon the L1 dataset examples
(Figure 4a). Fluorescence traces were obtained by combining the following components:
(1) Spikes times were simulated with an inter spike interval uniformly distributed
between 0.1 and 0.2 seconds; (ii) Fluorescence signals associated to spikes were obtained
by convolving with a kernel matching the dynamics of Voltron signal in L1 neurons; (iii)
Subthreshold activity was simulated by applying a Gaussian filter to white noise; (iv)
Fluorescence signals of spikes and subthreshold activity were flipped to match the
reverse polarity of the Voltron indicator; (v) To simulate photo-bleaching, the resulting
fluorescence signal was modulated with an exponential decaying with a 2500s time
constant.

Spatial footprints were simulated as ring shaped and real-valued masks with a small
process protruding at different angles (Figure 4a). The shape and size was matched to
L1 neurons in real data. The signal associated to each neuron within the movie was
obtained by multiplying the simulated fluorescence signal times the spatial footprint.
The sum of all neurons represented the imaging movie without background. In order to
generate a realistic background signal, we summed the movie without background with

a 50x50 pixels patch with no visible neurons from a motion corrected L1 dataset movie.

When summing neurons and background, the baseline fluorescence of neurons
(brightness) was selected to approximately correspond to in-vivo recordings. The spike
amplitude was adjusted by changing the amplitude of fluorescence signals with the
baseline fluorescence fixed (i.e. changing DF with F fixed). We added out of focus
signals for different neurons on our simulated data. The out of focus signal was
generated by multiplying the signal of each neuron times a spatial weight computed by
applying a Gaussian filter on a randomly selected pixel in the FOV. Finally, white noise
was added to every voxel in the simulated data.

For experiments with non-overlapping neurons, we tested neurons with spike

331

332

333

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

350

360

361

362

363

364

365

366

367

368

369

amplitudes 0.05, 0.075, 0.1, 0.125, 0.15, 0.175. 0.2. For overlapping cases, we tested 570
neurons with overlapping areas 0%, 6%, 19%, 26% and 35%, and spike amplitudes 0.075, sn
0.125 and 0.175. 372

Spike-to-noise-ratio 420

In order to compare the performance of different algorithms when no ground truth data .

is available, we have defined a metric to quantify how well an algorithm was able to 22
increase the detectability of spikes in voltage imaging traces. When comparing two 423
algorithms, the Spike-to-noise-ratio (SpNR) is computed by identifying the set of spikes s
which were detected by both algorithms, and then calculate, for each denoised trace 425

independently, the ratio between the average spike amplitude and the noise estimated as s
the standard deviation of the negative portions of the 15Hz high-pass filtered signal. We
believe this metric is independent on thresholding methods and should provide an 428
unbiased estimate of an algorithm denoising capability. 429

For the simulations, we compared VolPy to all benchmarked algorithms mentioned above. The
results showed that in most cases, especially in the low SNR settings, Volpy performed better
than other methods in F1 score and SpNR. Since the spike extraction accuracy (F1 score)
changes with different thresholds, we selected for each algorithm (including VolPy) a threshold
which outputs the best F1 score given spike amplitude. This threshold provides the best result
an algorithm could ideally get (Fig 4c left). SpikePursuit adopts an adaptive thresholding method
which does not need manual thresholding and was therefore directly compared to VolPy with
automatic threshold (Fig 4c right). The performance of VolPy was slightly better than
SpikePursuit mainly because we introduced a more robust way to remove the background. We
also compared VolPy with CalmAn, MeanROI and SGPMD-NMF on voltage data with
simultaneous electrophysiology. Only VolPy and MeanROI were able to extract reasonable
fluorescence traces on two fish datasets. We believe that CalmAn and SGPMD-NMF failed
because neurons in these datasets were not firing with homogeneous spatial footprints, as one
can observe from S4 Vid. Also, the denoising step in SGPMD-NMF sometimes reduced the
SNR on these noisy datasets. For other voltage imaging datasets (L1, TEG, HPC), VolPy
showed a better SpNR compared to CalmAn, MeanROI and SGPMD-NMF. These comparisons
were reported in Figs 4,5.

Since some of the algorithms we compared against VolPy require a substantial amount of work
and tweaking to run, often entailing to execute multiple portions of code in different languages,

we did not carry out multiple runs of the simulations. We do think the results across simulations
and real datasets display sufficient evidence of the superiority of VolPy.

av example traces b e overlapping neurons
Spike | o n
ampl |

0.05

0.1 : 8
[4
0.15 g
02s 008 _ 012 _ 016
spike amplitude
C
spike detection performance spike to noise ratio
1.07-e- VoIPy 1.0 55+ = VoIPy
-o CalmAn |- CalmAn
09 09 >0
454
£ 038+ £ 08 o 4.0
o] O =
[} v a 3‘5 Al
T 0.7 o 0.7 “
3.0
-o- SGPMD-NMF 0.6 —o—VolPy (adaptive) —— SGPMD-NMF
0.6 -e- Suite2 /' @ SpikePursuit 251 —— Suite2
-e- PCA-ICA / —— PCA-ICA
-o- MeanROI 0.5 2.0 —— MeanROI
0.5+ []
"008 " 072 06 020 006 010 014 018 008 012 016 020
spike amplitude spike amplitude spike amplitude

Fig 4. Evaluation of VolPy on simulated data. (a) Example of simulated data.
Left. Average of movie across time. Right. Three example traces with different average
spike amplitude. Higher spike amplitude are associated with higher signal to noise ratio.
(b) The result of Mask R-CNN in segmenting the simulated movie (0.1 spike amplitude)
laying over the correlation image. (c-d) Performance of VolPy, CalmAn, SGPMD-NMF,
Suite2P, SpikePursuit, PCA-ICA and MeanROI on simulated data. (c¢) Average Fy
score against ground truth in function of spike amplitude. (Left) All algorithms
(including VolPy) were evaluated with the optimal threshold. (Right) Comparison with
SpikePursuit, adaptive threshold in both cases. (d) Spike-to-noise ratio (SpNR) in
function of spike amplitude. (e) Evaluation of VolPy on overlapping neurons. Average
F; score detecting spikes in function of spike amplitude and overlap between two
neurons.

TEG,

L N N T T T [LRI TR)

b electrophysiology
1.0 4
0.8 -
[
5 064
bt
— 0.4
w
0.0-
d splke to noise ratio
== \/0|Py
10 CalmAn "
MeanRoi i " A
8—SGPMD ; & o
o 6 V "
=
o -
s 1 - Volpy i 41 g ;
—~ CalmAn
MeanRoi T
24 i - SGPMD .
0- £ A .

L1 TEG HPC 0.25s

Fig 5. VolPy performance on real data. (a-b) Evaluation of VolPy spike
extraction performance against simultaneous electrophysiology. (a) Three neurons, two
from larval zebrafish TEG area (TEG; and TEG3) and one from mouse L1 (L1,), for
which we had available both electrophysiology and imaging. Top. Spatial footprint
extracted by VolPy. Middle. Ground truth spikes from electrophysiology (blue) and
spikes extracted by VolPy (orange), gray vertical lines indicate matched spikes. Bottom.
Electrophysiology (blue, top) and fluorescence signal denoised by VolPy (bottom,
orange). (b) We compared the performance of VolPy, CalmAn, MeanROI, and
SGPMD-NMF in retrieving spikes on the three neurons in (a). (¢) Examples of trace
extraction results for VolPy, CalmAn, MeanROI, and SGPMD-NMF. On the left mean
image overlaid to example neurons (top L1, middle TEG, bottom HPC). On the right
traces and inferred spikes for datasets L1 (top three traces), TEG (traces 4-5 from top)
and HPC (bottom trace). (d) Spike to noise ratio (SpNR) for each considered algorithm
and dataset type.

Although there is an only mild increment in accuracy of detecting spikes versus SpikePursuit,
the computational performance of VolPy is significantly improved over SpikePursuit (Fig 6 c, d).
Volpy was 3.5X faster than SpikePursuit and consumed 3X less memory. Simulation results
showed that VolPy with adaptive and simple threshold outperforms SpikePursuit. Besides,
VolPy was packaged into a usable, documented and maintained open source package, already
popular within the community. Finally, VolPy was more than 10X faster and used much less
memory compared to SGPMD-NMF.

processing time allocation parallelization gains
. . 1500 -
500 { == motion corection
== mem mapping 1250
@ 4001 == segmentation Z 1000
@ 3004 ™ spike extraction g
= | = 750
200 500 4
100 -J 250
0 0
1 2 4 1 2 4 8
frames (107) number of processors
C 1 - d _
total processing time memory consumption
| S 259 @ Volpy
== \olPy o ; ;
2000+ : ;
== SpikePursuit % 20 @ SpikePursuit
1500+ == SGPMD S
%) £151@
21000~ =
=] =< 10
500+]
0 =
1 2 4 8
frames (10%) number of processors

Fig 6. Evaluation of VolPy scalability. VolPy scalability was evaluated based on a
512x128 pixels movie with 75 annotated neurons. (a) Processing time allocation of
VolPy with 10000, 20000 and 40000 frames using 8 processors. (b) Processing time of
VolPy on 40000 frames with 1, 2, 4 and 8 processors. (¢) Comparison of performance
among VolPy(8 processors), SpikePursuit and SGPMD-NMF with 10000, 20000 and
40000 frames. (d) Peak memory usage of VolPy and SpikePursuit on 40000 frames.

Since VolPy supports parallelization we reported memory usage with 1, 2, 4 and 8
Processors.

2. Why were only 2 annotators used? What was the level of agreement between them?

We thank the reviewer for the opportunity to improve the paper. We re-annotated datasets with
three independent annotators and different strategies for selecting neurons only based on mean

and correlation images. We assessed the degree of agreement between annotators. We
explained these points in the text as follows:

Creation of a corpus of annotated datasets 56

To date there are no established annotated datasets for single cell localization and/or 57
segmentation in cellular-resolution voltage imaging. Towards filling this gap, and with s
the goal of developing new supervised algorithms, we generated a corpus of 24 manually s
segmented datasets (Ground truth, GT) by combining annotations from three 60
independent human labelers. To provide annotations, human labelers relied upon two 61

summary images (mean and local correlation images, Figure 1b,c Figure S1), which 62
were built as follows: 63
Mean image: We averaged the movie across time for each pixel yielding a 2D image. &
We normalized the 2D image by subtracting the mean of its pixels and dividing by the e

standard deviation of its pixels. The normalization step enables different datasets to 66
share the same scale as the input to the segmentation step. 67
Correlation image: The correlation image is a variation of that implemented in [20]. s
After removing the baseline of the movie by high-pass filtering, we averaged the 69
temporal correlation of each pixel with its eight neighbor pixels yielding another 2D 70
image. The resulting image was then mean-subtracted and divided by its standard n
deviation. 72

Guided by these visual cues, three annotators marked the contours of neurons using
the FIJI ImageJ Cell Magic Wand tool plugin [21] (Figure S1). Labelers were trained 74
using a test dataset and instructed to look for ring or circle-shaped structures which 75
were clear on either the mean or the correlation image. An exception to this rule were 7
blood wvessels perpendicular to the imaging plane, which looked like dark circles in the =
mean image and bright circles in the correlation image. We then generated a consensus

ground truth by combining the three annotations. For a neuron to be included in the 79
consensus ground truth, it either had to be selected by two or more annotators, or all 80
annotators had to agree on accepting it in a separate follow-up session. The finally 81
selected pixels associated to a consensus mask was selected more based on masks 82
provided by the most experienced annotators of the three. Summary information about s
the annotated datasets is reported in Table 1. 84
C
Il N & In Fig 3¢, we compared the performance of the VolPy and the

performance of the annotators. We regarded the combined annotations
as ground truth and compared each human annotation against it. The
level of agreement was measured as F1 score. The level of agreement
also represented a measure of the difficulty of each dataset. For the L1
datasets, the average F1 score of the human annotation was
0.92+0.01; for the TEG datasets, 0.89+0.02; and for the HPC datasets,

0.6 1

0.4 1

0.2 1

0.0-

L1 TEG HPC
mtrain mval mmanual

0.8210.09. Human annotators achieved high agreement on the L1 datasets, lesser on the TEG
datasets and the least agreement on the HPC datasets.

3. Pages 7-8: multiple parameters and algorithmic choices are made in the processing
and spike time estimation algorithms. Can the authors provide some insight or
motivation to the selection parameters and heuristics used? For example why are 8
principal components used to estimate the background in line 1807

In our experience, many of the largest principal components describe structured global noise in
voltage recordings. We chose to subtract the largest 8 components because subtracting fewer
components would remove less spurious variants, while subtracting many more components
would risk subtracting neuronal signals. We admit that this is a rudimentary denoising method,
but it is simple to implement and effective. We have clarified this in the text.

B = Uy Uy + XUl F1) U 8, (3)
where Uy, is the first n,. (default is 8) components of U, A, (default is 0.01) is the 21
regularization strength and f is the estimated ridge regression coefficients. In our 242

experience, many of the largest principal components describe structured global noise in = 24

voltage recordings. We choose to subtract the largest 8 components because on real 244
datasets subtracting fewer components would remove less spurious variants, while 245
subtracting many more components would risk subtracting neuronal signals. Compared 2
to SpikePursuit, we add an L, regularizer to penalize large regression coefficients caused 24
by small components of background pixels with signals bleeding through from the 248
neuron of interest. This provides more reliable results compared to the original linear 21
regression method (see Results section). We choose A, to be 0.01 because we find that 20

strong regularization strength (greater or equal to 0.1) will not help subtract the 251
background from the signal while small regularization strength will not be able to 252
penalize large regression coefficients enough. We next subtract the background signal — 2s3
from the trace t ((3) in Fig 2b): 254

Do the authors have a model for the spike detection? The algorithm as described on top
of page 8 is a collection of multiple processing steps without motivation.

e Noise is estimated twice. Line 192 says peaks are 3.5 times the noise level, while
line 203 states 4 times the noise level.
Are the spikes detected using the matched filter or using the noise threshold?
This subsection can be better organized to guide the reader so that the method is
clear. For clarity perhaps the pseudo-code should be included here and not in the
supplementary?

We thank the reviewer for the suggestion and we think that indeed we were not precise in
discussing the above points. We hope to have addressed in detail the above points in the
following sections of the paper. In summary:

We described the model underlying spike detection (lines 259-268)

We specified in more details the two different portions of the algorithms when spikes are

extracted and noise is estimated
We clarified that the threshold is used to extract events after the matched filtering

We added pseudocodes for the described function directly in the main text and further

organized in section the text

Our spike extraction model is based on the idea of matched filters [22,34]. A
matched filter is an optimal linear filter for the detection of a given template from the
signal under the hypothesis of additive white Gaussian noise. It has the goal of
estimating the location of a given known waveform within a noisy signal while
maximizing the SNR. Template matching is performed by correlating a template
waveform with the noisy signal. As a consequence, we need two rounds of spike
detection. The former is required to prewhiten the signal and form the template
waveform. This is used to perform matched filtering by cross-correlating it and the
prewhitened trace (matched-filtering). The latter consists in identifying and extracting
the peaks from the whitened matched filter trace.

To threshold and extract spikes from the filtered signal tg we provide two methods,
adaptive and simple threshold. The adaptive threshold method selects a threshold (h)
based on the distribution of local maxima, P,,,.(x), approximated by kernel density
estimation. The symmetrization of P,,,,(z) around the median g is used to
approximate the noise distribution of peaks.

jsnoise(ﬂf + z) = Ppoz(p — |2|) (5)

The two distributions are then combined to estimate the threshold by minimizing the

function: - _ o
h = arg max ((] Pyna_x (.’If) dﬂ:)p — ((f 1_5;;;3 d.L')p) 4 (6)
heR h I

1

where p sets the stringency of the diserimination, reflecting a trade off between the
benefit of including more (lower-amplitude) spikes in defining the template, and the cost
of including additional noise spikes. Smaller values of p result in a more stringent
threshold. Although the assumption that the noise distribution of peaks is symmetric
around the median p is not always fulfilled, experiments with ground truth and
simulated data demonstrate that this approach is effective. We set p = 0.25 for the first
round of spike detection. In our experiments, manual tuning of p was not needed for
later stages of the algorithm to identify improved spatial and temporal filters.

In VolPy, we provide a second thresholding method, simple threshold, which solely
relies on the noise level estimation. simple threshold only considers values below the
median of the filtered trace to estimate the noise level . Only peaks larger than [
(default as 3.5) times the noise level o are selected. This method too assumes that the
distribution of noise is symmetric around the median. In rigorous terms, the assumption
of symmetric distribution is more realistic on the filtered signal than on peak heights.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

217

278

279

280

281

282

283

284

285

286

287

288

Our rationale to introduce a second thresholding method is to help users with a more
intuitive parameter to explore in the cases of adaptive threshold failure.

After the first round of spike detection, a spike template z € R?*"*! is computed by
averaging the waveforms of the extracted peaks:

z(t') = %Zts(tﬂ’) t e [-1,7],t' € Z (7)

les

where s is the set of spikes, n(s) is the total number of spikes ((5) in Fig 2b) and 7 the
waveform half size with default time bin of 20 ms (that is 8 frames if the movie was
recorded at 400 Hz). Subsequently, a whitened matched filter [22] is used to enhance
spikes with shape similar to the template ((6) in Fig 2b). This operation is composed of
two steps: (i) the signal is prewhitened in the frequency domain based on the noise
spectrum estimated by the Welch method. The prewhitened signal has noise
distribution similar to the white noise which is important as the matched filter is an
optimal linear filter when the signal has additive white Gaussian noise. (ii) a new
template z’ € R?7*! is computed from the prewhitened signal (equation 7) and
template matching is performed by computing the cross-correlation between the
prewhitened signal and the new template z’. This final signal has peaks associated to
spikes enhanced with respect to the original trace.

After the whitened matched filtering operation, a second round of spike detection
using adaptive/simple threshold is carried out. While in the first round of spike detection
p is set to 0.25 in order to avoid False Positives and gather spikes with high confidence
to build a representative template, during the second round we aim to maximize Fj
score, and therefore set p = 0.5. When using the simple threshold, a threshold of 3.0 is
used by default for a second round of spike detection. The newly detected spikes are
transformed into a spike train q € R?. This new spike train is used to reconstruct a
denoised version of the original signal, by convolving q with the template z:

1 if there is a spike at time t
trec = qQ*Z where q(t) = { 0 otherwise (8)

289

290

291

292

293

204

295

296

297

208

209

300

301

302

303

304

305

306

307

308

300

310

311

312

Spatial filter refinement ((7) in Fig 2b): The second step is to refine the spatial
filter. The updated spatial filter is computed by regressing the reconstructed trace t,q.
on the high-passed movie Y, through Ridge regression:

W = (Y Yy + A [[YallF) 7Y e, (9)

where A\, (default is 0.01) is the regularization strength. Instead of solving the ridge
regression problem in its analytical form as SpikePursuit, we apply an iterative and
efficient algorithm [35] implemented in the Scikit-Learn package ('lsqr’) for better time
performance. Subsequently, the weighted average of the movie with the refined spatial
filter is used as the updated temporal trace for the following iteration:

t=Y,w (10)

For the final round, the spatial filter and the temporal trace are not updated.
Subthreshold activity extraction () in Fig 2b): After three iterations of spike
time estimation (in our experience this was generally sufficient to converge to a stable
solution) and spatial filter refinement, the subthreshold activity is extracted. First, a
residual signal is computed by subtracting the reconstructed trace from the temporal

trace tres = t — trec. Second, A 5th order Butterworth low-pass filter (f. = 20Hz by
default) is applied on the residual trace tpes.

Locality test: A locality test is performed finally to evaluate whether the
reconstructed signal represents the original ROI or is contaminated by neighboring
structures. First, we compute the correlation between the reconstructed signal tyec
and each pixel in the movie context region Y},. Second, we check whether the pixels
with maximal correlation are inside the original region of interest S or not. In case
this did not happen, it would mean that the extracted signal represents other
surrounding structures, and therefore it is discarded.

Importantly, inactive neurons are generally identified by the segmentation
algorithm, but given the absence of spikes the spatial filters might not match
structures internal to the provided masks, thereby failing the locality test. Therefore,
inactive neurons with signals not representing the ROI can be removed since they fail
locality tests.

316

nr

318

319

320

322

323

324

325

326

3y

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Algorithm 1 Trace Denoising and Spike Extraction

Require: Movie in the context region Y € RT*¥ where T is number of frames and N

=

10:
L1
12
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

il B R

is number of pixels in the context region, the set of pixels in the region of interest
S, the set of pixels in the local background B, the number of selected background
principal components n,., the Ridge regression regularization coefficients Ay, Ay,
the number of iterations K, and remaining parameters params

if REVERSEPOLARITYINDICATOR = 1 then

Y«VY-(-1)
end if
Y) < HIGHPASSFILTER(Y, params) > Correct for photobleaching
if w is None then
t + ﬁ I;g Yo () > Averaging the signal across pixels in ROI
else
t— YViw > Compute weighted average across
all pixels inside the context region
: end if
Y, + Y,(:,, B) > Extract the background movie
UZ,V« SVD(Yz) > Compute the singular value decompostion of Y;,

Uy =T3¢ rige)
for k+ 1: K do
B — (ULU, + Xo||Us||21)~1UTE > Ridge regression to remove background
t—t-—U,pB
ts, S, trec, z < DENOISESPIKES(t, params) © See Algorithm 2. Compute trace
after whitened matched filter tq,
spike time s, reconstructed trace

trec and spike template z
if k < K then

W (YhTYh + Aw”Yh“%I)“lthrec > Refine spatial filter
t < Y,w
end if
end for
tsub ¢ LOWPASSFILTER((t — tyec), params) > Extract subthreshold activity
m ARGZ\-‘IAX(threC) > Locality test
if m € S then
loc 1
else
loc + 0
end if
return ts,t,tsub, S. trec, 2, l0C

Algorithm 2 DenoiseSpikes

Require: Tracet € RT, waveform half size T, stringency parameter for adaptive thresh-

]

10:

11:
12:
13:
14:
15:
16:
1:7:
18:
19:

20:

B e I = B = e

old p1 and po, threshold parameter for simple threshold 1, and l2, and remaining
parameters params

. ts ¢ HIGHPASSFILTER(t, params) > Remove low frequency baseline

ts « ts — MEDIAN(t,)
if USEADAPTIVETHRESHOLD = 1 then

§1 ¢ ADAPTIVETHRESHOLD(ts, p1) > see Algorithm 3
else
s1 < SIMPLETHRESHOLD(ts, [1) > see Algorithm 4
end if
q1 « ZEROS(T) > Create a zero vector with dimension T
qi(s1) + 1 > q is the spike train
nis
Z ﬁ .(Ez)tS(Sl(i) —T1:81(i) + 1) > Compute the spike template
i=

ts <« WHITENEDMATCHEDFILTER(tg, qq,81, 7) & See Algorithm o see Algorithm 5
if USEADAPTIVETHRESHOLD = 1 then
So ¢ ADAPTIVETHRESHOLD(tg, p2)
else
Sp < SIMPLETHRESHOLD(tq, l5)
end if
Qs + ZEROS(T)
qz(s2) < 1
trec & Q2 %2 > Convolve the spike train with
temporal template to get the re-

constructed signal
return t,, s, t,.., 2

Algorithm 3 AdaptiveThreshold

Require: Trace t, € R?, stringency parameter p, and remaining parameters params

1
2:

[B E A

-1

p < LOCALMAXIMA(ts) > Find peak heights of all local maxima
X < LINSPACE(MIN(p), MAX(p), params) > Evenly spaced samples between
min and max of peak heights

Pmax < KDE(p,x) > Estimated distribution of local maxima at points x
i <— MEDIAN(p)

j ¢« FIND(x(i) < pt,x(i + 1) > p)

Proise ¢ ZEROS(LEN(Pmax)) i Create a zero vector same size as Pmax
Posical Lokt Poaea(]1 ng > Estimate noise distribution by symmetrization

8: if 2j > LEN(Pmax) then

10:
35 i
1:2:
13:
14:
L5E
16:
172
18:
19:
20:

Proise(7 + 1 : end) < Proise(7 : 2§ — LEN(Pmax) + 1)
else
Pnoise(,j g it B 2?) <~ Pnoise(.j .]-)
end if
Fmax ¢+ CUMSUM(Pmax) > Cumulative distribution function
Froise ¢ CUMSUM(Ppoise)
Fonex 4 Bl oiid)] — Frax
Fnoise I Fnoise(eud) S Fnoise
g (Fmax)p - (Fnoise)p
h +— x(ArRGMAX(g))
s + LOoCALMAXIMA(ts,h) © All local maxima with height greater or equal to h
return s

Algorithm 4 SimpleThreshold

Require: Temporal trace ts € R”, threshold parameter 1

1:

2:

3:

4:

t' — —ts(ts < 0)

n(t’)
o \/ ﬁ > t'(i)? > Estimated std based on negative
=1 part of the signal ts
s <+ LOCALMAXIMA(ts, [- o) > Find peaks higher than 1 times
the noise level
return s

Algorithm 5 WhitenedMatchedFilter

Require: Temporal trace tg € RT, spike train q € RT, spike times s € R, waveform

o

half size 7
q < CONVOLVE(q, ONES(27 + 1))

tnotse & tslq < 0.5) > The noise signal

Sn < SQRT(WELCH(t05se)) > s, is the scaling factor in the frequency domain

ts « IFFT(FFT(t:)/sn) > Scale trace in the frequency domain
nis

7' ﬁ E) ts(s(z) — 7 :8(1) +7) > Compute a spike template based
=k on the prewhitened trace

ts ¢« CROSSCORRELATION(ts,2’) > Template matching

: return tg

Specific comments:

1. Fig 1: mean image displayed in “back” of subplot b — image is clearly not visible, not
clear why it is included. Both images can be plotted on a smaller scale so they will both
be visible if the authors want to display both.

Thank you for pointing this out. We updated Fig 1 as suggested:

2. Line 63: what do the authors mean by “normalizing by the z-score”? Are they z-scoring
each pixel or are they dividing each pixel by the number of standard deviations the value
is above/below the mean (this is the definition of the z-score)? Same applies to line 66.

We thank the reviewer for pointing out the confusing definition. We have updated the text to
address this point as follows.

Mean image: We averaged the movie across time for each pixel yielding a 2D image. e
We normalized the 2D image by subtracting the mean of its pixels and dividing by the e

standard deviation of its pixels. The normalization step enables different datasets to 66
share the same scale as the input to the segmentation step. 67
Correlation image: The correlation image is a variation of that implemented in [20].
After removing the baseline of the movie by high-pass filtering, we averaged the 69
temporal correlation of each pixel with its eight neighbor pixels yielding another 2D 70
image. The resulting image was then mean-subtracted and divided by its standard 7
deviation. 7

3. A short description of the motion correction algorithm and its suitability for voltage
imaging would make the paper more self-contained.

Following reviewers’ advice, we complemented the motion correction section and discussed the
suitability of the same algorithm for voltage imaging.

The motion correction algorithm in CalmAn is an efficient implementation of 107
NoRMCorre [23]. NoRMCorre is an online algorithm that uses normalized 108
cross-correlation of each frame with a denoised template to infer shifts. Such shifts can 100
be computed either on the overall frame (rigid motion correction) or on patches of the 1o
movie (piece-wise rigid motion correction). The latter case is required when movement
is non rigid and a simple translation is not sufficient to compensate for the movement. 1
Such algorithm can in many cases be directly applied to the voltage imaging datasets s

we have considered, because the frames and templates (see for instance Figure le) 114
generally contain high-frequency features. Such features are crucial to precisely 115
identify shifts. Importantly, when this fails we allow the option to apply a high-pass 116
spatial filter to help sharpen such features [16]. In VolPy the ¢Sig_filt parameter 17

controls the size of the kernel for high-pass spatial filtering. We usually inspect visually s
the results of motion correction, and in all considered cases rigid motion correction was 19
sufficient to capture motion. This might be due to the small size of the field of view 120
(see [23] for a discussion about size of the FOV and its impact on motion correction). =

4. Lines 124-125: do the authors mean that instead of a 3-channel RGB image, they are
inputting an image that has the mean duplicated to two channels and the correlation in
the third? Doesn’t this create artifacts as the original network learns features dependent
on relations between the color channels that now don’t exist?

Thank you for pointing this out. It is correct that the input image has the mean duplicated to two
channels and the correlation in the third. Even though the correlations among channels are
captured in the original network weights, our results seem to indicate that this problem is
attenuated by retraining the last 22 layers of the ResNet (50 layers in total). Mask R-CNN
pretrained weights for segmentation tasks are only available for the COCO dataset. Retraining
from scratch is not possible in our case considering that we have a reduced training set. We
have included a discussion of this point in the text:

translation. Each mini-batch contained six patches. We trained on one GPU the head 15
(the whole network except the ResNet) of the network for 20 epochs (2000 iterations) 1o
with learning rate 0.01 and then trained the head together with the last 28 layers of 161
the ResNet for another 20 epochs with learning rate 0.001. We used stochastic 162
gradient descent as our optimizer with a constant learning momentum 0.9. The weight 13
decay was 0.0001. It is possible that correlations among RGB channels existing in the 14
original COCO datasets are not present in our datasets, however retraining some of 165
the ResNet layers is likely compensating for this potential issue. 166

5. Lines 139-143: this is not clear. Is this magic wand interface to be used to annotate
videos in order to then retrain the deep network? Or is it intended to add/remove/correct
cells?

We apologize for the lack of clarity. The VolPy GUI we developed, with Python Cell Magic Wand
Tool, is used to add/remove/correct cells from the Mask R-CNN outputs (see S2 Vid). Besides,
users can choose to bypass the neural networks step and directly input their own masks

annotated through the VolPy GUI or other softwares. We have clarified that in the text as
follows, and with added supplements.

While VolPy segmentation method achieved good performance on similarly
collected datasets, we do not expect it to generalize to completely new datasets out of
the box. To overcome this issue, we developed a manual annotation graphical user
interface (GUI) tool within VolPy to refine the segmentation results. The GUI loads
summary images and segmentation results. It enables users to add/delete neurons and
save the results for subsequent steps in the VolPy pipeline. We equipped the GUI with
one-click semi-automatic neuron segmentation based on the Python Cell Magic Wand
Tool [27]. See Video V1 and Figure S2 for more details. Segmenting neurons on
datasets significantly different from the ones we employved to train Mask R-CNN might
lead to poor performance. In this case, users may retrain Mask R-CNN based on a
step-by-step guide we provide
(https://github.com/flatironinstitute/CalmAn/wiki/Training-Mask-R-CNN).
Moreover, we also allow users to bypass the Mask R-CNN step and provide their own
manual annotations or annotate the data through VolPy GUI. This is especially
helpful when only few neurons appear in the FOV. We summarize the whole process of
segmentation through a flow chart in Figure S3.

Figure S2 Manual annotation VolPy GUI. The interface helps user to select
neurons either using polygons (point by point) or a Python implementation of the
ImageJ Cell Magic Wand [27]. Users can then remove or add masks, and finally save in
hdf5 format the output.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

723

724

725

726

7T

Start segmentation with
voltage imaging data

4

Bypass the neural networks
and provide you own
manual annotations or
annotate the data through

Compute summary images

A 4

VolPy GUI Segment neurons using Retrain the network and
Mask R-CNN update the weights
A
4

Create manual annotations
using Imagel

Correct labels using the GUI

3 v

Finish segmentation and
output masks

Figure S3 Flow chart for segmentation. Summary images are computed from
input voltage imaging movies. Subsequently masks of neurons can be provided in two
ways. 1. Neurons can be segmented via a Mask R-CNN neural network trained on the
three types of datasets presented in this paper (L1, TEG and HPC). The output labels
can be further corrected by the VolPy GUI (See Video V1). If users are not satisfied
with results of Mask R-CNN, they can manually annotate voltage imaging datasets
using ImageJ. Such new annotations can then be used to retrain Mask R-CNN. Details
for retraining Mask R-CNN are explained at the page
https://github.com/flatironinstitute/CalmAn/wiki/Training-Mask-R-CNN
2.Users can also bypasss the Mask R-CNN step and choose to provide their own manual
masks labelled either through other softwares or VolPy GUIL

6. Line 164: What happens if the dilated background region includes pixels from
overlapping neurons?

728

729

730

731

732

T33

734

735

736

737

738

739

This is indeed an important problem. We quantified in detail, via simulations, how performance
in detecting spikes changed in function of the overlap with other neurons. The results in Fig 4e

showed that VolIPy is robust to overlaps smaller than about 20%, but then the performance
started degrading as the overlap increases, especially for low spike amplitude scenarios.

On separate simulations, we evaluated the performance of VolPy in the case of
overlapping neurons. We simulated movies with two overlapping neurons and assessed
the F} score for VolPy when varying the degree of overlap (Figure 4e). In terms of
spatial footprint extraction, VolPy started failing to segment neurons in the large
overlapping case (35%). The result could potentially be improved if Mask R-CNN was
trained on the simulated datasets as well, especially on neurons featuring similar
overlap. Given this, we provided manual masks for testing VolPy in such simulated
overlapping scenarios. In terms of spike detection, VolPy maintained good results when
the total overlap was less than 20%. However, the F; score dropped as the overlapping
area further increased.

e overlapping neurons

008 012 016
spike amplitude

599

600

601

602

603

604

605

606

607

608

spike amplitude. (e) Evaluation of VolPy on overlapping neurons. Average Fj score

detecting spikes in function of spike amplitude and overlap between two neurons.

7. Line 170: can the authors elaborate about a spatial filter w? is this the filter in equation

(8)?

Indeed it is. We clarified in the text as follows:

The initial temporal trace t € RT of the neuron is computed either as the mean of ¥}, a7
over the pixels in the ROI, or -- if a spatial filter w € RV previously calculated is 218
available -- as the weighted average across all pixels in the context region: 219

(1)

n—(lg %:g Yi(x) if w is not given
= e
Y,w if w is given,

where S denotes set of pixels in the ROI, n(S) denotes the number of pixels in the ROI, 20
Y (z) € RT denotes the signal of Yj, at the pixel x. A spatial filter is a matrix of pixel 2
weights which maximizes the amplitude of extracted spikes calculated as a time-varying 2
weighted sum of pixels in the context region. A good spatial filter may be available from 2
processing another chunk of the movie. Compared to simply averaging pixels across the 24
ROI, the initial trace computed with a spatial filter is expected to have better SNR 25
hence enhance the performance of spike detection. 26

8. Line 201: why is the template time-flipped? Are the authors using correlation?

Exactly, as we further specified in the text, we performed template matching by cross-correlating
the spike waveform and the signal. We changed convolution to correlation in the new text to
avoid confusion. See answer to Main Comments, point 3.

9. Table 2: number of neurons in the HPC datasets is extremely low given data size.
Doesn’t this impact the training of the network? Line 240 claims table 2 includes a
“train/val” column. What column is this?

Table 2 -> It is actually Table 3. Sorry for the confusion.

Indeed the low number of samples has an effect on training. We have investigated in the paper
how the training set size affects the performance of the network on the different datasets. We
also have shown how the learning curves correspondingly behave. This is shown in Fig 3d and
S4, partially reported below. We also add the following discussion into the text.

We evaluated VolPy segmentation performance against a corpus of manually annotated

datasets obtained from three human labelers. Humans generally agreed well with a 673
consensus ground truth, with more consistent labeling for easy and high SNR datasets. e
More difficult datasets, such as HPC, produced controversial annotations and less 675
agreement. On the tested datasets, Mask R-CNN quickly reached asymptotic 676
performance even using small training sets (~30 neurons), and that performance did 677

not seem to dramatically improve with larger training sets. Our tests suggest that the e
objective difficulty is the main responsible for performance degradation, with training e
set size modestly affecting the performance in the tested range. We cannot exclude that s
a very large corpus of annotated datasets might increase the segmentation performance sa
on difficult datasets, such as HPC. As more dataset become available we plan to further e
test this possibility. 683

There were substantial differences in the performance among the three types of
datasets for VolPy, with L1 obtaining excellent results (close to human annotators) and
TEG and HPC progressively worse results (Fig 3¢). We hypothesized that two possible
sources of variability could account for these differences: the objective difficulty in
segmenting the datasets and the number of neurons for training. With regard to
segmenting difficulty, the differences among these three types of datasets could be seen
clearly through the performance of manual annotators, in which L1 yielded the highest
F score and HPC yielded the lowest one, and with the largest variance. With regard to
the number of neurons for training, in average 329 neurons in L1 datasets were used for
training compared to only 67 and 44 neurons in TEG and HPC datasets respectively
(see Tab 3). To test whether differences in the number of neurons for training mainly
account for the variability, we separately trained a network for each type of dataset and
varied the training set size (i.e. number of neurons for training, see Figure 3d).
Although most likely overfitting was present with less than ~100 neurons (See Figure
S4), VolPy still achieved 0.88 F score on the validation sets of L1 when trained with
only 29 neurons. We observed that increasing training set size moderately helped
improve VolPy’s performance on all three types of datasets. Our results suggest that
the objective difficulty accounts for most of the difference in performance within the
tested range. However, considering that very small training set size of TEG and HPC
were used for training, it is likely that VolPy’s performance on these two types of
datasets may further increase when trained with more neurons.

b o d

1.0
0.8 1
0.8 1
0.6 1
v 0.6
@
5 0.4 -
b 0.4
b 0.2 1
0.2 1
0.0- 0.0
0.0 L1 TEG HPC 29 65115 217 333 28 69 21 41
=1 =TEG =HPC mtrain mval mmanual training set size

Fig 3. Evaluation of VolPy performance. (a) Example of VolPy segmentation
results against three manually annotated datasets (mouse sensory cortex left, larval
zebrafish center, and mouse hippocampus right). Ground truth is built from three

different annotations. Matched and mismatched neurons between VolPy and ground

539

540

541

542

543

544

545

546

547

548

5449

550

551

552

553

554

555

556

557

558

559

truth are shown in upper and bottom panels respectively. (b) Fj scores of VolPy for all

evaluated datasets. (c¢) Average Fy score on training and validation sets grouped by

dataset type. Results are provided for training, validation and human annotators

(against consensus ground truth) (d) Performance of the network in function of training

set size for each dataset type.

L1217 L1333

20 400 20 40 0 20 40
epochs epochs epochs

ALL DATA

—— train_loss
val_loss

loss

|
0 20 40
epochs

0 20 40
epochs epochs

740

Figure S4 Learning curves in function of dataset size. (a-c) Learning curves

corresponding to data in figure 3d. Training (blue) and validation (orange) loss in 2
function of training set size for L1 (a), TEG (b) and HPC (c) datasets. (d) For 3
comparison, learning curves for training and validation set when training on all the o
datasets. 75

10. Line 253: can the authors comment on their cost choice for evaluating the spike
extraction performance? Why is M=25? The authors should add equations for the
Victor-Purpura distance to the paper.

We have adopted a new strategy for spike matching. Given the fact that we only want to
compute F1 score/precision/recall, the previous method based on Victor-Purpura distance and
Hungarian algorithm is not necessary. Now we use a greedy matching method which is much
faster and outputs the same F1 score as the previous method. The details of the algorithm can
be found in the paper. In this algorithm we only allow spikes within 10ms to be matched. We
chose 10ms based on the fact that neighboring spikes in the electrophysiology ground truth we
have evaluated had a minimum interspike interval of 30 ms.

In order to match spikes extracted from simultaneous voltage imaging and a14
electrophysiology datasets, we employed a greedy matching algorithm. Let v and e be s
two sequences of spike times extracted from voltage imaging and electrophysiology a6
datasets respectively. We started by matching the leftmost spike of v and e. Without a7
loss of generality, we assumed the leftmost spike is v(1). If the distance between spike s
v(1) and its closest spike e(1) in the other sequence was within 10ms, then two spikes a9
were matched and removed from the sequences; otherwise, spike v(1) was considered a a0
mismatch and removed from the sequence v. We then started to match the following a1
leftmost spike. This process was repeated until there is no spike in any of these two 422
sequences left. We chose to match spikes within 10 ms based on the fact that 423
neighboring spikes in the electrophysiology had a minimum interspike interval of 30 ms. 4

After identifying matches and mismatches, we proceeded similarly to what explained s
above. We defined TP, FP, FN, TN similar to Equation 11: 426

TP = number of matched spikes
FP = number of spikes in VolPy but not in GT

FN = number of spikes in GT but not in VolPy (13)
IN =10
Then we calculated the I score same as Equation 12. a7

11. Line 275 the authors comment that performance of TEG is “fair” because only 2
datasets were used, and in HPC there are not enough neurons. A more accurate
statement should connect the size of the image plane, number of time frames and
number of neurons. How much data is necessary to receive good training results?

Thank you for the great point and opportunity for improving the paper. We indeed performed a
more accurate analysis of the failure mode for each of the dataset types, as well as an analysis
of the network performance in function of the training set size. See also answer to point 9.

12. Figure 3:
Thank you for identifying these issues.

e subplot a — for HPC is this the best overlay? There are structures in the image that
were not annotated but appear bright? Are these not cells?

We think that in our previous round of annotations we did miss a few neurons especially
in HPC datasets. We think this is because only looking for active neurons in the
correlation image and correlation movie was unreliable. Our new annotations selects all
neurons in mean and corr image, thereby providing more consistent results. We added
more annotators and created a consensus ground truth that seems to capture most of
the visible neurons now.

e What are the vertical red lines that appear within the contours?
Vertical lines were the result of a visualization bug that we fixed.

e For HPC and TEG lines can be made thicker for better visibility. It is hard to see
yellow on top of the white cells, perhaps a different color would give better
contrast?

o We have made the lines for HPC and TEG thicker
o We have changed the yellow color to green to provide better contrast

e Plots (h) and (i) — how do the plots correspond to one another? How many
processors were used for plot h? how many time frames are included in data of
ploti?

o We have updated plots for scalability. All plots for scalability were performed on
an L1 movie with 512*128 FOV and 75 selected neurons. The processing time
depends on the number of frames and the number of processors used. We
controlled one variable and tried to see how processing time changed with the
other. in Plot (h) we showed the change of processing time with different number
of frames and in Plot (i) we showed the change of processing time with different
number of processors used.

Plot (h) was performed using 8 processors with 10000, 20000, 40000 frames.
Plot (i) was performed on 40000 frames using 1,2,4,8 processors.

Fig 3 (h) and (i) are now Fig 6 (a) and (b). The values are now reported in the text
at the following location.

Fig 6a reports VolPy processing time in function of the number of frames using 8
processors. The results showed that the processing time scales linearly in the number of
frames. Processing 75 candidate neurons in the 1.6 minutes long movie (40000 frames)
took about 8 minutes. Spike extraction (red bar) was the most time consuming step. In
order to probe the benefits of parallelization, we ran VolPy 4 times while limiting the
available CPUs to 1, 2, 4 and 8 on 40000 frames of the movie (Fig 6b). We observed
significant performance gains due to parallelization, especially in the motion correction
and spike extraction phase, with a maximum speed-up of 3X.

a processing time allocation parallelization gains
. . 1500 -
500 { == motion corection
== mem mapping 1250
& 400+ == segmentation < 10004
g 3004 ™ spike extraction g
= 1 = 750 -
200 - 500 -
100 J 250 4 l
0 0
1 2 4 12 4 8
frames (10%) number of processors
C total processing time d

memory consumption
VolPy

N
wu
1

) : :
9 59 ® SpikePursuit
g
o]
g 151@
E
= 104
]
o
5
1 2 4 1 2 4 8
frames (10%) number of processors

645

646

647

648

649

650

651

652

Fig 6. Evaluation of VolPy scalability. VolPy scalability was evaluated based on a

512x128 pixels movie with 75 annotated neurons. (a) Processing time allocation of

VolPy with 10000, 20000 and 40000 frames using 8 processors. (b) Processing time of
VolPy on 40000 frames with 1, 2, 4 and 8 processors. (c¢) Comparison of performance
among VolPy(8 processors), SpikePursuit and SGPMD-NMF with 10000, 20000 and

40000 frames. (d) Peak memory usage of VolPy and SpikePursuit on 40000 frames.

Since VolPy supports parallelization we reported memory usage with 1, 2, 4 and 8
processors.

13. Line 321: where were inactive neurons discussed or result presented for these? This
is the only place in the text the word “inactive” appears

Thank you, we did move the discussion about inactive neurons to the methods section. We
briefly discussed that they fail the locality test and they are automatically removed.

Importantly, inactive neurons are generally identified by the segmentation algorithm, s
but given the absence of spikes the spatial filters might not match structures internal to s
the provided masks, thereby failing the locality test. Therefore, inactive neurons with s
signals not representing the ROI can be removed since they fail locality tests. 238

14. Missing citations:

Line 113, 123: missing references to deep network architectures,
Line 223: Hungarian algorithm

Thank you for spotting this detail. We added citations for both:

Mask R-CNN (Figure 2a) provides simultaneous object localization and instance 138
segmentation via a combination of two network portions: backbone and head. The 139
backbone features a pre-trained convolutional network (such as VGG [28], ResNet [29], 140
Inception [30]) for feature extraction. Mask R-CNN also exploits another effective 141
backbone: feature pyramid networks [31], a top-down architecture with lateral 142

In order to measure the performance of VolPy segmentation, we compared the spatial 6

footprints extracted by VolPy with our manual annotations (see [16] component 307
registration for a detailed explanation). In summary, we computed the Jaccard distance s
(the inverse of intersection over union) to quantify similarity among ROIs, and then 309
solved a linear assignment problem with the Hungarian algorithm [36] to determine 400
matches and mismatches. Once those were identified, we adopted a precision/recall 401
framework and defined True Positive (TP), False Positive (FP), False Negative (FN), w2
and True Negative (TN) as follows: 403

15. S3 Video would not play on my computer.

We tested all new formatted videos on Linux, Mac and Windows, and we had success on the
three OSs. We used the VLC video player.

Typos:
Thank you for spotting these typos. We addressed all of the mistakes as specified below.

Author summary: “facilitate the process of this...” thisathese

paper, we present VolPy, a software framework that greatly facilitates the preprocessing
of this new type of imaging datasets. This pipeline incorporates efficient and optimized

Line 128: “crops” — should patches or sub-images

During training, we randomly cropped the input image into 128x128 patches and
applied the following data augmentation techniques using the imgaug [33] package: flip,
rotation, multiply (adjust brightness), Gaussian noise, shear, scale and translation.
Each mini-batch contained six patches. We trained on one GPU the head (the whole

— - ~ R FETRERR

Line 143: is citation [24] the correct citation for magic wand?

The citation for Cell Magic Wand in Python is correct. They first incorporated the Cell Magic

156

1

o

7

158

159

Wand into Python. Elsewhere we refer to the appropriate citation for Imaged Cell Magic Wand.

Guided by these visual cues, three annotators marked the contours of neurons using
the FLJI ImageJ Cell Magic Wand tool plugin [21] (Figure S1). Labelers were trained

21. Walker T. Cell magic wand tool. Cell Magic Wand Tool; 2014.

Line 187: Gaussian
Thank you, fixed in several locations

Equation 5: notation is mathematically imprecise. Colon : operator should be defined.
This reads like pseudo-code.

73

74

Following the reviewer’s advice, we replaced notations that are mathematically imprecise. We

removed the Colon operators from our notations.

13 ¥V, (x) if w is not given
t= {) el (1)

Y, w if w is given,

where S denotes set of pixels in the ROI, n(S) denotes the number of pixels in the ROI,
Yy (x) € RT denotes the signal of ¥}, at the pixel x. A spatial filter is a matrix of pixel
weights which maximizes the amplitude of extracted spikes calculated as a time-varying
weighted sum of pixels in the context region. A good spatial filter may be available from

no 1
2(t') = n(s)

where s is the set of spikes, n(s) is the total number of spikes ((5) in Fig 2b) and 7 the
waveform half size with default time bin of 20 ms (that is 8 frames if the movie was
recorded at 400 Hz). Subsequently, a whitened matched filter [22] is used to enhance
spikes with shape similar to the template ((6) in Fig 2b). This operation is composed of

Zts(t+t’) te[-n7),t' e (7)
tes

220

221

222

223

293

294

295

296

Line 198: more in details
Thank you, fixed in several locations
Line 283: VolPyspike

Thank you, fixed

Reviewer #2:

Voltage imaging with genetically encoded indicators is a powerful emerging technique
for measuring neural activity. In this manuscript, Cai et al. describe a suite of
computational tools — VolPy — for extracting time series proportional to voltage changes
from voltage imaging datasets. VolPy builds upon past algorithmic developments from
these authors to provide a scalable pipeline for motion correction, ROl segementation,
spike detection, and denoising. This tool efficiently handles large voltage imaging
datasets and should be extremely useful for labs establishing voltage imaging as an
experimental technique. The authors do a commendable job benchmarking VolPy on
several existing voltage imaging datasets and demonstrate generalization to new
datasets differing qualitatively from those used for training.

We thank Reviewer 2 for the useful comments, and hope we addressed them fully in this new
version of the paper.

Major comments:

1) In the most likely use case, labs implementing VolPy will annotate additional training
data and re-train the Mask R-CNN for best results. While the authors include a brief
description of this process in the Discussion, the manuscript would benefit from some
additional description of the tools included in VolPy for this purpose in the materials and
methods and results. | suggest the authors include some quantification of how precision,
recall, etc. change with increasing amounts of training data from new datasets differing
qualitatively from those used for initial training. This would help give prospective users a
better idea of the time investment that would be needed for adoption.

Thank you for pointing out this improvement. In Fig 3d we now evaluate the performance of our
algorithm in function of the training set size for different types of datasets. When users have
new datasets very different from the datasets we trained, we suggest that users retrain the
network. As shown in Fig 3d, to reach a reasonable performance level of Mask R-CNN, users
do not need to annotate a large number of datasets.

a L1 TEG HPC

o o
= =]

F1 scores

o
N

o

0-

L1 TEG HPC 29 65115217 333 28 69 21 41
mtrain =val mmanual training set size

0.0- II‘IT! |I!HIPCII
Fig 3. Evaluation of VolPy performance. (a) Example of VolPy segmentation
results against three manually annotated datasets (mouse sensory cortex left, larval
zebrafish tegmental area center, and mouse hippocampus right). Ground truth was built
from three different annotations. Matched and mismatched neurons between

VolPy (green) and ground truth (red) were shown in upper and bottom panels
respectively. (b) F score of VolPy for all evaluated datasets in validation. (c) Average
F} score on training and validation sets grouped by dataset type. Results were provided
for training, validation and human annotators (against consensus ground truth) (d)
Performance of the network in function of training set size for each dataset type.

In general we noticed that the performance of Mask R-CNN depends both on the objective
difficulty of the dataset (i.e. how easy is to generate consistent annotations), which is quantified
in Fig 3c, and on the training set size (Fig 3d). We observe that:

There were substantial differences in the performance among the three types of
datasets for VolPy, with L1 obtaining excellent results (close to human annotators) and
TEG and HPC progressively worse results (Fig 3c¢). We hypothesized that two possible
sources of variability could account for these differences: the objective difficulty in
segmenting the datasets and the number of neurons for training. With regard to
segmenting difficulty, the differences among these three types of datasets could be seen
clearly through the performance of manual annotators, in which L1 yielded the highest
Fy score and HPC yielded the lowest one, and with the largest variance. With regard to
the number of neurons for training, in average 329 neurons in L1 datasets were used for
training compared to only 67 and 44 neurons in TEG and HPC datasets respectively
(see Tab 3). To test whether differences in the number of neurons for training mainly
account for the variability, we separately trained a network for each type of dataset and
varied the training set size (i.e. number of neurons for training, see Figure 3d).
Although most likely overfitting was present with less than ~100 neurons (See Figure
S4), VolPy still achieved 0.88 F} score on the validation sets of L1 when trained with
only 29 neurons. We observed that increasing training set size moderately helped
improve VolPy’s performance on all three types of datasets. Our results suggest that
the objective difficulty accounts for most of the difference in performance within the
tested range. However, considering that very small training set size of TEG and HPC
were used for training, it is likely that VolPy's performance on these two types of
datasets may further increase when trained with more neurons.

In order to facilitate user interaction, we also introduced a new graphical user interface that

helps users manually annotate datasets or refine initial estimates from VolPy (See S2 Vid). In

540

541

542

543

544

545

546

547

548

549

550

5

@

2

553

554

555

556

557

558

559

the methods section we added a detailed explanation of the workflow to train a network from the

scratch, or to refine segmentation estimates produced by VolPy (See S3 Fig). Below the
relevant paper’s sections

While VolPy segmentation method achieved good performance on similarly
collected datasets, we do not expect it to generalize to completely new datasets out of
the box. To overcome this issue, we developed a manual annotation graphical user
interface (GUI) tool within VolPy to refine the segmentation results. The GUI loads
summary images and segmentation results. It enables users to add/delete neurons and
save the results for subsequent steps in the VolPy pipeline. We equipped the GUI with
one-click semi-automatic neuron segmentation based on the Python Cell Magic Wand
Tool [27]. See Video V1 and Figure S2 for more details. Segmenting neurons on
datasets significantly different from the ones we employed to train Mask R-CNN might
lead to poor performance. In this case, users may retrain Mask R-CNN based on a
step-by-step guide we provide
(https://github.com/flatironinstitute/CalmAn/wiki/Training-Mask-R-CNN).
Moreover, we also allow users to bypass the Mask R-CNN step and provide their own
manual annotations or annotate the data through VolPy GUI. This is especially
helpful when only few neurons appear in the FOV. We summarize the whole process of
segmentation through a flow chart in Figure S3.

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

Figure S2 Manual annotation VolPy GUI. The interface helps user to select
neurons either using polygons (point by point) or a Python implementation of the
ImageJ Cell Magic Wand [27]. Users can then remove or add masks, and finally save in
hdf5 format the output.

723

724

725

726

7T

Start segmentation with
voltage imaging data

4

Bypass the neural networks
and provide you own
manual annotations or
annotate the data through

Compute summary images

A 4

VolPy GUI Segment neurons using Retrain the network and
Mask R-CNN update the weights
'y
A 4

Create manual annotations
using Imagel

Correct labels using the GUI

3 v

Finish segmentation and

output masks

Figure S3 Flow chart for segmentation. Summary images are computed from
input voltage imaging movies. Subsequently masks of neurons can be provided in two
ways. 1. Neurons can be segmented via a Mask R-CNN neural network trained on the
three types of datasets presented in this paper (L1, TEG and HPC). The output labels
can be further corrected by the VolPy GUI (See Video V1). If users are not satisfied
with results of Mask R-CNN, they can manually annotate voltage imaging datasets
using ImageJ. Such new annotations can then be used to retrain Mask R-CNN. Details
for retraining Mask R-CNN are explained at the page
https://github.com/flatironinstitute/CalmAn/wiki/Training-Mask-R-CNN
2.Users can also bypasss the Mask R-CNN step and choose to provide their own manual
masks labelled either through other softwares or VolPy GUIL

728

729

730

731

732

T33

734

735

736

737

738

739

2) The manuscript appears to lack analysis of how spike identification is improved by the

modified Spike Pursuit algorithm compared to other simpler approaches.

Thank you for pointing out this weakness. We provided a set of comparisons with other

methods. In Figs 4 and 5 we show that VolPy in general outperforms simpler approaches such
as taking the average of the region of interest and then thresholding (MeanROI) on simulations
(Fig 4) and real data (Fig 5) with and without ground truth. In the same figures, we demonstrate
that VolPy outperforms other more complex approaches as well. In the case of SpikePursuit, Fig

4¢ shows that VolPy mildly outperforms SpikePursuit when both utilize adaptive thresholds,

whereas Fig 6¢-d demonstrates that the computational performance and scalability of Volpy are

about 3-fold improved over SpikePursuit.

av example traces b e overlapping neurons
spike I o
ampl

0.05

\
\
\
\
A
L@

»

o - %%
P - 19%
0.1 / b 8%

0”"/./*

T T T
0.08 0.12 0.16

C Bes spike amplitude
spike detection performance spike to noise ratio
1.07-e- VolIPy 1.0 5.5 == VolPy
- CalmAn = | = CalmAn
0.9+ 0.9 5.0
4.5
[11] @ -
5 0.8- 5 0.8 o 407
i s Oac |
T 0.7 07 b
3.0+
-s- SGPMD-NMF 06 —e- VolPy (adaptive) —— SGPMD-NMF
2.6 - EE',EGF i ' /@ SpikePursuit 257 o= Sgt&elz
i "o~ MeanROl 054 % 2,07 — MeanROI
0.5 e
T T T T T T T T T T T T T
"008 | 012 ' 016 020 006 010 014 018 008 012 016 020
spike amplitude spike amplitude spike amplitude

Fig 4. Evaluation of VolPy on simulated data. (a) Example of simulated data.
Left. Average of movie across time. Right. Three example traces with different average
spike amplitude. Higher spike amplitude are associated with higher signal to noise ratio.
(b) The result of Mask R-CNN in segmenting the simulated movie (0.1 spike amplitude)
laying over the correlation image. (c-d) Performance of VolPy, CalmAn, SGPMD-NMF,
Suite2P, SpikePursuit, PCA-ICA and MeanROI on simulated data. (c) Average F)
score against ground truth in function of spike amplitude. (Left) All algorithms
(including VolPy) were evaluated with the optimal threshold. (Right) Comparison with
SpikePursuit, adaptive threshold in both cases. (d) Spike-to-noise ratio (SpNR) in
function of spike amplitude. (e) Evaluation of VolPy on overlapping neurons. Average
F| score detecting spikes in function of spike amplitude and overlap between two
neurons.

b electrophysiology 23 i . - - i

d splketo noise ratio R O¥ O 4 : : ; ; i = |
VolP
10 am CalmyAn
MeanRoi ' MY =
== SGPMD ; o]
8+ i
WMMMM
o 64 ' ' : 2l
=
Q B
7 aq y =NolPy SR EE
—Caimhn) ’
MeanRoi T
2 — SGPMD o
0- AR T o

L1 TEG HPC 0.25s
Fig 5. VolPy performance on real data. (a-b) Evaluation of VolPy spike
extraction performance against simultaneous electrophysiology. (a) Three neurons, two
from larval zebrafish TEG area (T'"EG; and TEG5) and one from mouse L1 (L1y), for
which we had available both electrophysiology and imaging. Top. Spatial footprint
extracted by VolPy. Middle. Ground truth spikes from electrophysiology (blue) and
spikes extracted by VolPy (orange), gray vertical lines indicate matched spikes. Bottom.
E]ectrophv‘siology (blue, top) and fluorescence signal denoised by VolPy (bottom,
orange). (b) We compared the performance of VolPy, CalmAn, I\IeanROI and
SGPMD-NMF in retrieving spikes on the three neurons in (a). (¢) Examples of trace
extraction results for VolPy, CalmAn, MeanROI, and SGPMD-NMF. On the left mean
image overlaid to example neurons (top L1, middle TEG, bottom HPC). On the right
traces and inferred spikes for datasets L1 (top three traces), TEG (traces 4-5 from top)
and HPC (bottom trace). (d) Spike to noise ratio (SpNR) for each considered algorithm
and dataset type.

d

processing time allocation parallelization gains
' : 1500 +
500 { == motion corection
== mem mapping 1250 -
@ 4001 == segmentation < 1000 -
g 05| = spike extraction g
=] = 7504
200 - 500 -
100 J 250 -
0 - 0-
1 2 4 12 4 8
frames (107) number of processors
C total processing time d memory consumption
| 254 @ Volpy
Al = \/o Py) : .
2000 = SpikaPursuit 9 90 ® SpikePursuit
1500 = SGPMD -
= E151@
21000— =
= 500 7Y
& g
0_ 5_ l.l I L]]
1 2 4 1 2 4 8
frames (104) number of processors

Fig 6. Evaluation of VolPy scalability. VolPy scalability was evaluated based on a
512x128 pixels movie with 75 annotated neurons. (a) Processing time allocation of
VolPy with 10000, 20000 and 40000 frames using 8 processors. (b) Processing time of
VolPy on 40000 frames with 1, 2, 4 and 8 processors. (¢) Comparison of performance
among VolPy (8 processors), SpikePursuit and SGPMD-NMF with 10000, 20000 and
40000 frames. (d) Peak memory usage of VolPy and SpikePursuit on 40000 frames.

Since VolPy supports parallelization we reported memory usage with 1, 2, 4 and 8
processors.

Minor comments:

Line 198: “More in details” appears to be a typo and should be omitted or otherwise
corrected.

Thank you, we addressed this imprecision in different points of the paper

