
Supplementary Material

Data availability

Our microCT data can be publicly viewed online through Neuroglancer: (http://neuroglancer-
demo.appspot.com/) with http://nova.kasthurilab.com:8000/neuroglancer/recon_crop8_neurog/image
as the precomputed source link. Raw data will be made available from the corresponding author
upon reasonable request.

dMRI diffusion gradient directions

Supporting Information Figure S1. Yellow points represent the direction of each of the 30 noncolinear
diffusion gradients used for the dMRI data. Axis orientations are encoded with color, with red
encoding left–right, green anterior–posterior, and blue encoding the superior–inferior direction.
As can be seen here, a software error led to nonuniform sampling of the diffusion gradients,
with oversampling along the super–inferior axis and undersampling of the orthogonal plane. For
this reason, we chose to forego quantitative evaluation of dMRI performance and instead present
qualitative demonstrations of the utility of microCT.
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dMRI–microCT registration results

Supporting Information Video S1 presents a visualization of spatial registration results between
microCT and dMRI fODFs. Axial slices of fODFs and intensity data covering the whole brain are
shown side-by-side, with microCT on the left and dMRI on the right.

Structure-tensor analysis

For each voxel, the structure tensor is constructed by taking the outer product of the image
intensity gradient vector with itself, followed by averaging over a local neighborhood. The result
is a symmetric, 3 × 3, semi-positive definite tensor at each voxel. The eigenvector of the tensor
corresponding to the smallest eigenvalue indicates the direction of smallest intensity variation in
the local neighborhood. For voxels representing nerve fibers, we make the assumption that this
eigenvector is parallel to the local fiber orientation. Confidence in the orientation estimate can
be represented by a scalar fractional anisotropy metric constructed from the eigenvalues of the
tensor:

FA =

√
1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2
λ21 + λ22 + λ23

, (1)

where λ1, λ2, and λ3 represent the first, second, and third eigenvalues of the structure tensor at
each voxel. This metric is bounded from 0 to 1, where a higher value represents more confidence
in the orientation estimate.

fODF generation

The voxel-wise orientation estimates were used to directly construct fODFs within larger regions of
interest (ROIs) across the whole brain. First, the data were divided into cubic ROIs the same size
as the corresponding dMRI voxels (150 µm). Of theN ≈ 2×106 total microCT voxels in each dMRI-
voxel-sized region, N ′ voxels containing fibers were identified by thresholding the raw grayscale
values to discard voxels representing microvasculature (GV ≥ 38), as well as by thresholding the
FA metric to discard voxels with low orientation confidence (FA ≥ 0.7). Within each region, the
fODF, ψ, can be directly expressed as the sum of N ′ fiber orientations represented as Dirac delta
functions in spherical coordinates (2, 3),

ψ(θ, φ) =
1

N

N ′∑
j=1

δ(cos θ − cos θj)δ(φ− φj), (2)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and azimuth angles, respectively, and j indexes the
N ′ fiber orientations.

ψ represents a band-unlimited distribution of voxel-wise fiber orientations in a specified region
of microCT data. It is convenient to expand ψ onto a finite (i.e., band-limited) number of spherical
harmonic functions for computational ease and direct comparison with dMRI-derived fODF representations.
It can be shown (4) that the spherical harmonic coefficients, Ψm

` , of a sum ofN ′ discrete orientations
are given by

Ψm
` =

1

N

N ′∑
j=1

Ȳ m
` (θj , φj), (3)
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where Y m
` is the spherical harmonic function of degree ` and order m and the overbar denotes

a complex conjugate. As with dMRI, we assume that these fODFs have even symmetry, so
coefficients were calculated for even harmonic degrees. For this study, we chose to expand the
fODF to `max = 8, in accordance with recommendations for the highest `max typically used in dMRI
studies (1).

Fiber density

Because each fODF was generated from N ′ separate orientation estimates but normalized by
N ≈ 2× 106, where N ′ < N (Eq. 3), the relative size of the fODFs reflects the fraction of microCT
voxels within each ROI that were identified as containing valid fibers. The fraction of identified fiber
voxels can be calculated directly from the c00 coefficient of the SH representation of the fODFs:

FD =
N ′

N
=
c00
Y 0
0

, (4)

where FD is a proxy for the fiber density within each ROI and Y 0
0 =

√
1/4π is the constant ` = 0

SH function.
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