SUPPLEMENTARY MATERIAL

Magnetic-field gradient %—E uniformity in radial direction
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FIG. S1. Calibrated FEM simulation on magnetic-field gradient %—];
dependence on radial position r, normalized by igragien;- An axial
coordinate of x=0 is used.

Magnetic field By uniformity in axial and radial directions
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FIG. S2. Calibrated FEM simulation on magnetic field Bx depen-
dence on (A) axial position x and (B) radial position r, both, normal-
ized by ifielg- (A) and (B) have a radial coordinate of r=0, and an
axial coordinate of x=0, respectively.

Accuracy of measurements using microprobes
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FIG. S3. Accuracy of single probe measurements. Solid line with
0% denotes for the mean value, while dashed line marks the SD.

Force calibration of the micromanipulators 1-2
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FIG. S4. Micromanipulator calibration against macrorheometry.

(A) Micromanipulator 1 and (B) 2 compared against
macrorheometer-based measurements, based on mean moduli
IGl.  Final volumetric force IA-TV_Pmbe conversion is based on the
slope of 1.00 for the relationship (plotted). The errorbars show the
measurement SDs.



Viscoelasticity of collagen type 1 matrix Effect of initial fibroblast density on collagen matrix vis-
coelasticity at the incubation of T=32h
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FIG. S5. Macrorheometer quantification of collagen type 1 at a con-
centration of ¢c=1.0 mg/mL.

(A) Frequency dependence of viscoelasticity at a strain of 1 %. The
means and SDs are based on 3 repetitions.

(B) Viscoelasticity versus strain at an angular frequency of 1 rad/s.

FIG. S7. Initial cell density affects on microscale viscoelasticity.
(A) Relative-modulus values of matrices with wild type and
GM6001-treated cells are larger than the ones of the control at an
increased initial fibroblast density of 2.0 M cells/mL (ie. both stiffer;
*Pr < 0.05, paired t-test, n=3). (B) Matrices’ loss tangent insignif-
icantly varies from the one of control matrices (n.s. Pr > 0.20, n=2
for wild type).

Spatial variance of the collagen matrix viscoelasticity
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FIG. S6. Spatially varying viscoelastic properties at the microscale
measured for collagen matrices at a concentration of c=1.0 mg/mL:

(A) modulus-related |G|E§Lbe Jbatch and (B) loss tangent-related

;erlobe /batch’ The SDs illustrate the spatially varying properties.



