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S1 Mathematical notations

Summary table with all the notations used in the study.

notation meaning
tracked densities of individuals

S susceptible
J non-critical infectious
Y critical infectious
H long-stay ICU hospitalised
W other critical hospitalised patients
R recovered immunised
D dead (cumulative mortality)
E latent]

derived densities or flows
C cumulative incidence
∆C daily incidence
I community infectious
A daily ICU admissions
L ICU discharges
M daily mortality

Table S-1: Density related notations.
]: only applies to the Markovian continuous-time model.
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notation meaning value origin
infection related quantities

Λi force of infection calculated
Z, ζk generation time distribution [3]
I effective community infectious

density
calculated

R0 basic reproduction number estimated
S0 population size [28,29]
k· current per capita contact rate unknown[
k·,0 pre-epidemic per capita contact

rate
unknown[

c· per capita contact ratio unknown[
κ lock-down effect estimated

illness related quantities
IFR· infection fatality ratio [30]
H, η· contamination to hospitalisation

interval distribution
[31,32]

P, ρ· long stay ICU length distribution [32] and fitted
Υ, υ· hospitalisation to death outside

ICU interval distribution
[32] and fitted

θ critical illness frequency calculated and fitted
ψ long-stay ICU admission fre-

quency
calculated and fitted

µ long-stay ICU fatality ratio [32]
b long-stay ICU admission fre-

quency among hospitalised pa-
tients

[20]

d fatality ratio among hospitalised
patients

[20]

ω−1 average latency period] fitted
γ−1 average infectious period] fitted

Table S-2: Main parameter notations.
]: only applies to the Markovian continuous-time model. [: the calculation of these values
are bypassed by the estimation of κ, as shown in S2.3.
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notation meaning
derived output quantities

Rt temporal reproduction number
ι population immunisation
ιh herd immunity threshold
qf final size proportion
π community prevalence

other estimated/fitted parameters
t0 epidemic initiation date
E [H] critical case contamination to hospitalisation in-

terval expectation
V [H] critical case contamination to hospitalisation in-

terval variance
E [P] long ICU stay length expectation
E [Υ] critical case hospitalisation to death interval ex-

pectation (non long-stay ICU patients)
CF infection fatality ratio correction factor
CM long-stay ICU fatality ratio correction factor
CΨ long-stay ICU frequency correction factor

Table S-3: Output-related quantities and fitted accessory parameters.

notation meaning value origin
other notations

·i age group (average, density...) calculated
·̃ moving-averaged data [15]
·̂ adjusted parameter fitted
f. demographic frequency [28,29]

Table S-4: Other generic notations.
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S2 Model details25

S2.1 Recurrence relation system

Instead of classical ordinary differential equations (ODE), the dynamics of the model sat-

isfy a system of recurrence relations (one could as well write as finite difference equations

(FDE)), which is detailed below. For the sake of simplicity, we omit time dependence in

the notations. Instead, Xi denotes a density at a given time t and X ′i the density at time30

t+ 1. The equations are formally identical for all age groups i. Between-group dynamics

are coupled through the forces of infection Λ· defined in the next subsection.



S ′i = (1− Λi)Si,

J ′i,1 = (1− θi) ΛiSi, J ′i,k = Ji,k−1, 1 < k ≤ g,

Y ′i,1 = θiΛiSi, Y ′i,k = (1− ηk−1)Yi,k−1, 1 < k ≤ h,

H ′i,1 = ψi
h∑
k=1

ηkYi,k, H ′i,k = (1− ρk−1)Hi,k−1, 1 < k ≤ r,

W ′
i,1 = (1− ψi)

h∑
k=1

ηkYi,k, W ′
i,k = (1− υk−1)Wi,k−1, 1 < k ≤ u,

D′i = Di +
u∑
k=1

υkWi,k + µi
r∑

k=1
ρkHi,k,

R′i = Ri + Ji,g + (1− µi)
r∑

k=1
ρkHi,k.

(S-1)

S2.2 Force of infection

In the SIR-like continuous-time modelling framework, the force of infection refers to the

infection rate per capita of susceptibles, often expressed as λ := βI [13]. Equivalently,35

the instantaneous incidence is βIS = λS, which is the translation of the mass action law

implied by the mean-field approximation made by such spatially unstructured models.

In our discrete-time model, the force of infection Λi is not a rate but a daily probability

of infection (per capita of susceptibles from group i) that saturates with the prevalence.

Individual contributions of infected individuals are not additive when prevalence is high40

because a susceptible host surrounded by contagious individuals can be infected by several
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of them the same day. When prevalence is low, the probability of contamination by

multiple infectors the same a day is low and the force of infection is well approximated

by the sum of contributions of each infected individual. Λi is therefore a monotonically

increasing function of prevalence, bounded by 1 and with a positive initial slope recovering45

the continuous-time mass action law.

The most parsimonious expression compatible with such constraints is the well-known

Michaelis-Menten (or Holling type II physiological response) function of the form x 7→ x
a+x .

However, we cannot use the prevalence as the argument of Λi here because all infected

individuals, whether they are critically ill (Y ) or not (J), do not contribute equally to50

transmission events. This heterogeneity in contagiousness originates from differences in

infection ages (individuals contaminated 6 days earlier are more contagious than those 10

days earlier) and in contact rates.

To address this issue, we introduce the effective infectious density I (t),

I (t) :=
∑
j

cj (t)
∑
k

ζk (Jj,k (t) + Yj,k (t)) , (S-2)

which is the sum over all infected community compartments weighted by both the gen-55

eration time distribution ζk, which is the time between the infection of an ‘infector’ and

the infection of his or her ‘infectee’, and the per-capita contact ratio ci (t). The latter is

defined as the current contact rate per-capita of individuals of age group i (ki (t)) relative

to their pre-epidemic baseline contact rate (ki,0),

ci (t) := ki (t)
ki,0

. (S-3)

With I kept constant, Λi is expected to display a Michaelis-Menten behavior (i.e. pos-60

itive initial slope, increasing and upper-bounded) with respect to the current per-capita

rate as well. Consequently, the force of infection should satisfy

Λi (t) = ki (t) I (t)
a+ ki (t) I (t)

, (S-4)

as shown in Fig.S-1.
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We then derive the expression of a using known parameters. To do so, we consider the

probability for a given susceptible individual to be part of the first generation of cases,65

that is, to have been infected by the index case. Let us denote Λi,index (t) the probability of

being infected by the index case on day t. By definition of the basic reproduction number,

the index case infects R0 secondary cases, on average, by the end of its contagious period.

Under the mean-field approximation, the probability of being part of these secondary

cases is simply R0/S0 (which is an extremely rare event). Summing over all possible70

days, we therefore have ∑
t≥1

Λi,index (t) = R0/S0 ≪ 1. (S-5)

For simplicity, we make the following three assumptions:

• the index case is not critically ill (less than 5% of cases are),

• the index case has infected all his or her secondary cases before public health mea-

sures are implemented.75

It follows from these assumptions that if we set the contamination day of the index

case to t = 0, the force of infection generated by the index case is proportional to

I index (t) = ζt,

(note that, for all j, kj (t) = kj,0 over the considered period of time, hence cj (t) = 1 and

all densities are equal to 0 except Jj,t = 1).

Applying these results to equation S-4, the daily probability of infection by the index80

case therefore becomes

Λi,index (t) = ki,0ζt
a+ ki,0ζt

.

Now, from the magnitude comparison (S-5), we have a≫ ki (t) ζt, and hence

∑
t≥1

Λi,index (t) ≈ ki,0
a

∑
t≥1
ζt,

In the limit of low prevalence (or low contact rates), the mass action law is recovered.
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Figure S-1: Daily force of infection as a function of the product of daily contact
rate and effective infectious density
Λi is the probability for one susceptible individual from group i to be infected a given day.
The initial non-zero slope comes from the law of mass action implied by the mean-field
approximation. The derivation of Λi is based on the remarkable coordinates shown near
the origin of the graph (not to scale). When the effective infectious density is equal to
1 (i.e. as if the generation time distribution were concentrated in a single day) and the
contact rate is that in absence of any health measure (denoted by k0,i), then, by definition
of the basic reproduction number, Λi equals R0/S0.

Using equation (S-5) and the fact that the sequence (ζt)t≥1 is a mass function, it sums up

to 1, we get85

a = ki,0
S0

R0
. (S-6)

Combining equations (S-3), (S-4), and (S-6) finally leads to a generic expression of the

force of infection:

Λi (t) = ci (t) I (t)
S0
R0

+ ci (t) I (t)
. (S-7)

The equation indicated in the main text is finally obtained using (S-2), (S-3), ele-

mentary algebra and assuming that the total population size is almost constant over the

investigated time period.90

S2.3 Lock-down effect

In the special case where strong public health control measures such as lock-down are being

implemented, all individuals may exhibit similar per capita contact rates, ki (t) = klock.
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From (S-4), it is then possible to express the force of infection in the following way:

Λi = I
a

klock
+ I

,

=

∑
j

klock
ki,0

∑
k
ζk (Jj,k + Yj,k)

ki,0
klock

S0
R0

+∑
j

klock
ki,0

∑
k
ζk (Jj,k + Yj,k)

,

Λi = I+(
ki,0
klock

)2
S0
R0

+ I+

, (S-8)

where I+ is the effective infectious density as if it were calculated in absence of health

measures (i.e. with ci = 1). In equation (S-8), one can interpret the quantity c2
i,lock :=(

klock
ki,0

)2
< 1 as a factor lowering the basic reproduction number R0. The lock-down effect,

defined as the reduction of R0 due to this measure, can be calculated by averaging ci,lock95

over age groups (according to demography). Hence,

κ := 1− clock
2. (S-9)

S2.4 Times series

The largest and most reliable nationwide data for the COVID-19 epidemic in France is

that of daily COVID-related death toll in hospitals, communicated daily since Feb 16 2020

by the national public health agency (Santé Publique France). This is why our model100

neglects COVID-related deaths occurring outside hospitals. In particular, we removed

nursing homes (or EHPAD) from calculations.

Starting from Mar 18 2020, two additional time series are communicated: daily ICU

admission and current ICU occupied beds. While the former capture the dynamics from

contamination to ICU admission, the latter captures moreover the kinetics of ICU stay.105

These time series are altered by week-ends and bank days: e.g. death tolls are notably

lower on Sundays than previous days, while it increases the next Mondays. It has even

been suggested that reporting delays propagate also to Tuesdays. In order to smooth

these artifactual weekly oscillations, a right-shifted 7-days moving average was performed
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over all time series prior to analysis. We will refer to these smoothed datasets as M̃ for110

daily hospital mortality, Ã for daily ICU admissions and H̃ for current ICU occupied

beds. Since H̃ contains part of the cumulative information of Ã, we also considered D̃,

the cumulative counterpart of M̃ to equilibrate the first step of the fitting procedure (see

below).

S2.5 Criticality-related probabilities115

Symptom severity of COVID-19 is increasingly classified into mild, moderate, severe and

critical. Because we rely on hospital mortality and ICU flow data, we focus on critical

cases, i.e. the ones concerned by intensive care and COVID fatality. In the absence of

detailed large-scale hospitalisation data, we made the following assumptions:

• non-critical cases are not admitted into ICU (even though some do need hospitali-120

sation),

• all critical cases need hospitalisation, and only survive if they go through intensive

care.

For medical reasons not addressed here, in France not all critical cases are admitted

soon enough into ICU. Part of them die in non-intensive care wards, while others die125

shortly after entering the ICU, therefore not contributing to ICU bed occupancy. We

therefore need to estimate two key criticality-related probabilities, namely θi, the propor-

tion of critical cases within age group i, and ψi, the proportion of critical cases in age

group i that contribute to ICU bed occupancy (i.e. their stay in the ward exceeds one

day). Because these probabilities differ among age classes and improper averaging could130

lead to substantial bias (see below), we first need to make calculations focused on the

smallest age stratification unit (usually a decade). In the following, θ (a) and ψ (a) are

the age-specific critical case frequency and long-stay admission given critical illness re-

spectively. In addition, Pa [X1|X2] reads as the probability of event X1 given X2 has occurred

for an individual of age a.135

Let us consider the four events needed to derive θ (a) and ψ (a) from available data:
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• I, being infected by SARS-CoV-2,

• U, being hospitalised,

• B, occupying an ICU bed for more than a day,

• D, dying at the hospital from COVID-19.140

The interplay between these events is formally depicted by the tree diagram in Fig.S-2.

I

U

B

D

1− P
a [D|B ∩ U ∩ I]

D

B

D
µ (a)

D

Pa [B|U ∩
I]

P
a [U|I]

U B D
11

Figure S-2: Tree diagram of critical COVID-19 related events. A fraction Pa [U|I]
of infected (I) are hospitalised (U). Among these, a proportion Pa [B|U ∩ I] are admitted
into ICU for a stay longer than a day B. The fatality ratio (D) equals µ (a) for these
patients and Pa [D|B ∩ U ∩ I] for the others.

We need to find two independent equations involving probabilities related to these

events for which age-stratified data is known in order to solve θ (a) and ψ (a). First, we

need to identify such data:

• Pa [D|I] is the proportion of deaths among COVID-19 infected individuals, better145

known as the Infection Fatality Ratio (IFR), which has been calculated using the

Diamond Princess data by Verity et al. and corrected for non-uniform attack rate

by Ferguson et al. and will be denoted by IFR (a) hereafter,

• Pa [D|B ∩ U ∩ I] is the proportion of deaths among COVID+ ICU hospitalised pa-

tients; this age stratified data has been communicated by Santé Publique France as150

a weekly epidemic report on May 7 2020 [32], and will be denoted by µ (a) hereafter
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• Pa [B|U ∩ I] and Pa [D|U ∩ I] are respectively the proportions of hospitalised patients

(whether they are critical or not) admitted in ICU, and those that die (whether in

ICU or not), and hereafter denoted by b (a) and d (a). These data come from the

SI-VIC database and made available by [20]. (Tables S1 and S2).155

A first equation comes by noticing that the probability for an infected individual to die

from COVID-19 is the probability of developing critical illness if infected (namely θ (a))

times the proportion of deaths among critical cases. The latter is the sum of critical cases

that die in ICU after a stay longer than one day (µ (a)ψ (a)) and the critical cases that

are not lengthily admitted in ICU and cannot be saved (1− ψ (a)):160

IFR (a) = (µ (a)ψ (a) + 1− ψ (a)) θ (a) ,

hence

θ (a) = IFR (a)
1− (1− µ (a))ψ (a) .

Now, to find ψ (a), let us notice that the proportion of deaths not occurring in ICU

can be expressed as

1− ψ (a)
µ (a)ψ (a) + 1− ψ (a) = Pa [B|D ∩ U ∩ I] ,

hence

ψ (a) = 1− Pa [B|D ∩ U ∩ I]
1− (1− µ (a))Pa [B|D ∩ U ∩ I] .

The unknown probability can be calculated as follows

Pa [B|D ∩ U ∩ I] = Pa [B ∩ D|U ∩ I]
Pa [D|U ∩ I] ,

= Pa [D|U ∩ I]− Pa [B ∩ D|U ∩ I]
d (a) ,

= d (a)− µ (a) b (a)
d (a) .
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After elementary calculations, we finally get165

ψ (a) = 1
1− µ (a) + d(a)

b(a)

,

hence both θ (a) and ψ (a) can be calculated from age-stratified available data.

The mean proportion of critical cases among a specific age group, θi, is simply the

demographic-weighted average of θ (a) over the considered ages, as infection samples uni-

formly the susceptible compartment (NB: the IFR stratified data used here from [30] is

already corrected for non-uniform attack rate). However, as the probability of the next170

events related to critical illness are not homogeneous with respect to age, the age group

averages ψi and µi cannot be weighted directly with relative demographic age frequencies.

Instead, they must be calculated by taking into account that ages with higher ψ (a) and

then µ (a) will be over-sampled in Yi → Hi and Hi → Di transitions respectively.

To account for this bias and as well to allow adjusting the parameters to both the175

model (for ψ (a) and µ (a)) and the French epidemic (for the IFR), we introduce a series

of corrections detailed hereafter in the calculation of the parameters used to run the

model.

First, we account for the fact that the ICU fatality ratio might mix both short and

long-stay patients, while our model splits these two flows. The corrected age-specific180

long-stay ICU fatality ratio will be denoted by µ̂ (a) and calculated as the product of the

corresponding data and a correcting factor denoted by CM, i.e. µ̂ (a) := CMµ (a). Likewise,

the age-specific IFR (which was not estimated from French data) will be corrected as
ˆIFR (a) := CFIFR (a). Now, equations S2.5 and S2.5 rewrite as

ψ̂ (a) := CΨ

1− µ̂ (a) + d(a)
b(a)

and θ̂ (a) :=
ˆIFR (a)

1− (1− µ̂ (a)) ψ̂ (a)
.

Note that there is no need for a fourth correction factor as CM, CF and CΨ already185

capture possible corrections for θ̂. These corrections are yet of unknown values but

will be estimated by the fitting procedure detailed below. As the corrected values are

still probabilities, the correction factors are necessarily upper bounded, respectively by
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(maxaµ (a))−1, (maxaIFR (a))−1, and (maxaψ (a))−1.

The last step consists in age-group averaging as mentioned above. Let us denote by190

f (a) the frequency of individuals of age a in the French metropolitan population (after

having removed the ca 730,000 individuals living in nursing homes). We call the i-group

relative frequency of age a as the standardised age frequency fi (a) := f (a)
/ ∑
j∈Ai

f (j), where

Ai is the set of ages belonging to age group i. As previously implied, the frequency of

critical cases in age group i is the straightforward demographic weighted average195

θi =
∑
a∈Ai

fi (a) θ̂ (a) .

The frequency of long-stay ICU patients among hospitalised critical cases in age group

i is then weighted by both the relative age frequencies and the ratio of critical illness

probability to the group average, i.e.

ψi =
∑
a∈Ai

fi (a) ψ̂ (a) θ̂ (a)
θi

.

Finally, as the last event to occur, the average fatality ratio for long-stay ICU patients

belonging to group i must be corrected by the ratio of the product of the two previous200

frequencies relative to the group average φi, i.e.

µi =
∑
a∈Ai

fi (a) µ̂ (a) θ̂ (a) ψ̂ (a)
φi

,

where φi := ∑
a∈Ai

fi (a) ψ̂ (a) θ̂ (a).

S2.6 Waiting times

Four time distributions underlie the dynamics: the generation time (or index-contamination-

to-secondary-contamination interval), the contamination-to-hospitalisation interval of crit-205

ical cases, the ICU length of stay and the hospitalisation-to-outside-ICU death interval

of critical cases. Each of these events can be seen as a random waiting time variable,

denoted by Z◦ (capital zeta), H◦ (capital eta), P◦ (capital rho) and Υ◦ (capital upsilon)
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respectively.

Initially, all four random variables are assumed to follow Weibull distributions, with210

shape parameters greater than one. Such distributions are widely used in the biomedical

literature, along with Gamma and Lognormal distributions, for fitting the probability

density function (PDF) of ageing processes, for which the probability for the focal event

to occur increases with lapsed time [33]. Preliminary exploratory fittings of the model to

daily mortality data indicated that maximum likelihood estimates of the shape param-215

eter of P◦ and Υ◦ were close to unity. Because the computational procedures used for

maximum likelihood estimation misbehave in the vicinity of parameter range boundaries,

the shape parameter of these two distributions was set to 1, turning them into exponen-

tial distributions by fitting (the exponential distribution being a special case of Weibull

distributions), though not by assumption.220

Weibull distributions have a right-unbounded support [0,∞), which means that true

distributions require truncation for obvious computational reasons. Let us introduce the

generic notations Ξ ≡ Z,H,P,Υ and x ≡ g, h, r, u. We construct the right-truncated

analogous distributions by setting the finite upper boundary of their support

x := min {n ∈ N : FΞ◦ (n) ≥ 0.99}, i.e. the upper-integer-rounded 99%-quantile of the225

original distribution Ξ◦, where F· denotes the cumulative distribution function (CDF).

The truncated distributions Ξ are therefore such that their CDF satisfy FΞ = FΞ◦

/
FΞ◦ (x),

and having as their supports FΞ (Ω) = [0;x].

Dynamics unfold in discrete time in our model, which means these continuous dis-

tributions need to be discretised into sequences to be implemetend into the framework.230

The generation time sequence is straigtforwardly defined as ζk := FZ (k)− FZ (k − 1) for

1 ≤ k ≤ g. Indeed, transmission events do not affect the progression of the infector within

its compartment. However, the three other sequences of parameters, ξk ≡ ηk, ρk, υk, repre-

sent the proportion of individuals that leave the compartment k days after having entered

it. These parameters need to capture the probability that the corresponding event occurs235

on day k but they also need to be standardised by the probability of not having left the
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compartment by that day. They are therefore calculated as

ξk := FΞ (k)− FΞ (k − 1)
1− FΞ (k − 1) for 1 ≤ k ≤ x.

S2.7 Fitting and estimation procedure

The fitting procedure was performed using the mle2 routine from the bbmle package [34]

implemented in R [35]. Starting from the initial parameter values v0, an ordinary least240

square optimum v1 was found by minimising the euclidean distance to Ã, M̃ , H̃ and D̃

simultaneously, thus accounting for all events, from contamination to death or recovery.

Having great confidence in both ICU admissions and current ICU occupancy is especially

valuable for forecasting hospital needs, while mortality predictions cannot be ignored by

decision makers. This first step is only used to locate the closest parameter region from245

v0 where likelihoods further calculated might reach their maximum value.

Maximum likelihood estimates (MLE) and 95%-likelihood intervals (LI) were calcu-

lated using the same routine. We assume observed data to be Gaussian-noised reali-

sations of the model prediction, then considering each daily count to be distributed as

Xobs (t) ∼ N (Xsim (t) , Xsim (t)), where Xsim is the simulated daily count. The choice of250

the distribution is supported by the large numbers involved and the Poissonian nature of

count processes (NB: pre-lock-down mortality data was ignored for the central limit to

apply). Contrary to the first step, only one time series was used for each estimation. MLE

and LI of R0, t0, E [H], V [H] and κ were estimated with respect to Ã, while the other

parameter values were set as in v0. The resulting MLE of the free parameters replaced255

the corresponding values in v0, providing vector v1. This new parameter set served as

the starting point to estimate the MLE and LI for E [P], CM and CΨ with respect to L̃,

the derived time series of daily ICU discharges (calculated as the daily ICU admission

minus the daily difference in ICU bed occupancy). The resulting parameter set v2 then

initiated the estimation of the remaining parameters, E [Υ] and CF, with respect to M̃ ,260

giving vector v3.

Using the fact that the maximum likelihood estimators are asymptotically normally
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distributed, we used the range of the LI as proxies for the standard deviation of the

marginal distribution of each MLE. Then, we randomly drew parameter sets in a mul-

tivariate Gaussian distribution with mean v3 and diagonal variance-covariance matrix.265

For each of them, we calculated their likelihood with respect to M̃ and kept only those

whose likelihood was not significantly different from that of v3, according to Wilk’s theo-

rem [36]. Sampling stopped once 103 draws have satisfied the condition. Importantly, we

considered all the retained parameters equivalent from the likelihood point of view, i.e.

they are assumed to represent equally likely versions of adjusted parameter sets. Their270

diversity thus allows to account for uncertainty in the real parameter values.

For any further analysis of the model, system S-1 was run independently with each

of the 103 parameter sets. The confidence intervals of simulated tracked densities (S (t),

J (t)...) as well as any derived quantity (R (t), ι (t)...) were then simply calculated for

each time point as the unweighted 2.5% and 97.5% sample quantiles of the 103 outputs275

at the given time point. The central estimations correspond to the median value of these

distributions.

S2.8 Derived outputs

Tracked densities are the number of individuals in each clinical-epidemiological compart-

ment Xi,k, the dynamics of which satisfy S-1 and are thus directly provided by numerical280

iteration of the recurrence relations. However, several quantities of interest require addi-

tional calculations, hereafter exposed.

Let us first introduce two notations for the sake of concision. Tracked densities without

indices will refer to sum over all groups, and, for multiple-days compartments, over all

possible days of progression as well: X ≡ ∑
i

∑
k
Xi,k (e.g. J (t) represents all individuals285

belonging to Ji,k for all groups i and all ages of infection k). The daily difference ∆X (t) ≡

X (t)−X (t− 1) is straightforwardly used to extract the instantaneous dynamics from a

cumulative time series.

The following three time series are crucial as they are used for likelihood calculations

with respect to their data counterpart:290
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• M (t) := ∆D (t) is the daily mortality,

• A (t) := ∑
i
Hi,1 (t) is the daily ICU admissions number,

• L (t) := A (t)−∆H (t) is the daily ICU discharge number.

The next times series are intermediate calculations required for further key quantities.

• I (t) := J + Y is the community infectious density and represents all not hospi-295

talised infected individuals, which can be used to estimate the expected proportion

of COVID PCR+ in the general population,

• C (t) := ∑
τ≤t

∑
i

(Ji,1 (τ) + Yi,1 (τ)) = S0 − S (t) and ∆C (t) are the cumulative and

instantaneous incidence respectively.

The latter is used for the calculation of the most scrutinised indicator in epidemic moni-300

toring, namely the temporal (or effective) reproduction number, R (t), which we calculate

here following Wallinga & Lipsitch, at the time of the infectees’ contamination:

R (t) := ∆C (t)∑
τ≥1

∆C (t− τ) ζτ
.

In this work, (population) immunisation ι refers to the proportion of individuals that

have been infected by SARS-CoV-2. We assume waning immunity is negligible at this

timescale. Its calculation is simply305

ι (t) := R−D
S0 −D

.

In absence of waning immunity from the host and antigenic drift from the virus, and

assuming public health measures are fully relaxed, further epidemic can only be passively

prevented if the herd immunity threshold is reached, i.e. ι ≥ ιh where

ιh = 1− 1
R0

.

A classical result from Kermack & McKendrick is that if the epidemic has started

spreading, the final cumulative relative incidence will not stop at the herd immunity310
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threshold, but continue to a greater value, known as the final size proportion, that has no

close form solution, but can implicitly be defined as

qf := {q ∈ (0, 1) : R0q + log (1− q) = 0} .

Finally, current prevalence in the community is simply given by

π (t) = I

S + I +R
.

S2.9 Continuous time model

The Markovian continuous-time model analogous to S-1 is illustrated in Figure S-3315

Figure S-3: COVID-19 epidemic continuous time model structure
Each square represents a group of individuals who share the same clinical kinetics and
who contribute equally to the epidemic dynamics. Pink boxes correspond to infected indi-
viduals in the community. Light blue boxes represent critical cases cared for in hospitals.
Arrows between boxes correspond to instantaneous flow of individuals.
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and corresponds to the following set of ordinary differential equations



dSi

dt = −ΛiSi,

dEi

dt = ΛiSi − ωEi,

dJi

dt = (1− θi)ωEi − γJi,

dYi

dt = θiωEi − ηYi,

dHi

dt = ψiηYi − ρHi,

dWi

dt = (1− ψi) ηYi − υWi,

dRi

dt = (1− µi) ρHi + γJi,

dDi

dt = µiρHi + υWi,

where the force of infection is given by

Λi (t) = ci (t) γR0

S0

∑
j

cj (t) (Jj + Yj) .

Note that a latent compartment E has been added to account for a delay between

contamination time and the beginning of the infectious period. The average latency and

infectious period are equal to ω−1 and γ−1. By construction, all transition times are320

exponentially distributed.

To compare this model to the focal non-Markovian discrete-time model introduced in

this work, the output of the numerical integration was sampled at integer-valued time

points. Then the fitting procedure used for the focal model was applied, though with

a supplementary degree of freedom. Indeed, in the one hand, H is here exponentially325

distributed, therefore V [H] is determined by E [H] and, in the other hand, proper param-

eters ω and γ need to be fitted as there is no one-way relationship from generation time

to latency and contagious periods. For information purposes, the maximum likelihood

estimates and corresponding 95%-likelihood intervals of R0, t0 and κ found by the esti-

mation procedure applied to this Markovian model were respectively 4.3 [2.9, 5.8], 01−22330

[01− 20, 01− 23] and 26% [5, 47]%.
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S3 Supplementary Results

S3.1 Maximum likelihood parameter estimates

main input parameter notation maximum
likelihood
estimates

95% - likelihood
interval

basic reproduction number R0 2.99 [2.59, 3.39]
initiation day (YY-MM-DD) t0 20-01-20 [20-01-12, 20-01-28]
lock-down control (%) κ 75.9 [72.9, 78.7]
critical case contamination to hospitalisation
interval expectation (days)

E [H] 14.5 [13.6, 15.4]

critical case contamination to hospitalisation
interval variance (days2)

V [H] 20.0 [11.4, 30.9]

long ICU stay length expectation (days) E [P] 16.7 [14.9, 18.8]
critical case hospitalisation to death inter-
val expectation (non long-stay ICU patients
(days)

E [Υ] 6.63 [6.19, 7.10]

infection fatality ratio correction factor(%) CF 87.2 [85.8, 88.5]
long-stay ICU fatality ratio correction fac-
tor (%)

CM 100.3 [100.2, 100.5]

long-stay ICU frequency correction fac-
tor (%)

CΨ 93.8 [93.0, 94.5]

Table S-5: Maximum likelihood estimates and associated 95% - likelihood in-
tervals for the ten input parameters. Details about the estimation procedure are
provided in section S2.7.

S3.2 Alternative IFR initial values

The age-stratified IFR values used for the initialisation of the fitting procedure were the335

same as in [30]. The resulting demographic averaged IFR ranging from 1.13 to 1.17%,

which is close to the corresponding weighted mean IFR calculated from the estimates

found in [20], namely 0.9%. To investigate the impact of the choice of initial age-stratified

IFR values on our results, we ran the fitting and estimation procedure replacing the initial

the age-stratified IFR values with the estimates provided by [20]. Table S-6 shows the340

MLE and corresponding likelihood intervals of the parameters following this change.
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main input parameter notation maximum
likelihood
estimates

95% - likelihood
interval

basic reproduction number R0 3.33 [3.16, 3.50]
initiation day (YY-MM-DD) t0 20-01-22 [20-01-20, 20-01-25]
lock-down control (%) κ 77.6 [76.4, 78.7]
critical case contamination to hospitalisation
interval expectation (days)

E [H] 14.0 [13.7, 14.3]

critical case contamination to hospitalisation
interval variance (days2)

V [H] 19.4 [18.2, 20.6]

long ICU stay length expectation (days) E [P] 19.2 [18.4, 19.9]
critical case hospitalisation to death inter-
val expectation (non long-stay ICU patients
(days)

E [Υ] 9.43 [9.20, 9.66]

infection fatality ratio correction factor (%) CF 62.0 [61.0, 63.0]
long-stay ICU fatality ratio correction factor
(%)

CM 110.0 [74.4, 146.0]

long-stay ICU frequency correction factor
(%)

CΨ 100.2 [100.1, 100.2]

Table S-6: Maximum likelihood estimates and associated 95% - likelihood in-
tervals for the ten input parameters using alternative IFR values. Details about
the estimation procedure are provided in section S2.7.

Using this alternative parameter setting, the reproduction number value by the end of

lock-down was estimated to 0.70 [0.66, 0.73] while the immunisation proportion was equal

to 5.05 [4.45, 5.58]%. Additionally, the model thus configured estimates that implementing

the lock-down a week earlier could have led to 13,800 [13,400, 14,100] less deaths, while345

a one-week delay would have cause 54,700 [47,600, 61,600] more. These values are in line

with those provided by the main parameter configuration.
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S3.3 Forecasting

Figure S-4: The COVID-19 epidemic wave in France as forecasted by early
datasets.
The nationwide hospital time series are here simulated by the model solely based on the
publicly released daily figures available between Mar 18 and Apr 7 2020. The correspond-
ing 7-day rolling-averaged data points on which the inference was based are outlined in
black. Because of the limited number of points, the correction factors were excluded
from the analysis (i.e. set to 1). Top panel. The blue and pink curves respectively
represent the median daily ICU admissions and the median daily (hospital) mortality as
generated by the fitted model. Turquoise triangles and red circles are the (rolling 7-day
average) data counterparts. The black curve shows the median daily temporal reproduc-
tion number calculated from the simulated epidemic. The dotted horizontal line shows
the reproduction number threshold value, i.e. 1. Bottom panel. The blue and pink
curves respectively represent the median number of occupied beds in ICU nationwide
and the median cumulative (hospital) mortality as generated by the fitted model. The
turquoise triangles and red circles are the (rolling 7-day average) data counterparts. The
purple dotted horizontal line shows the initial French ICU capacity, ca. 5,000 beds. The
green curve shows the median proportion of the population that has recovered (and is
assumed to be immune). The green dotted horizontal line corresponds to the median herd
immunity threshold 1−R−1

0 .The two vertical lines show respectively (from left to right)
the beginning and the end of the French national lock-down. Shaded areas correspond to
95% confidence intervals.
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