	Overall (N=314)
Age	
Median [Min, Max]	64.0 [22.0, 92.0]
Missing	13 (4.1%)
SEX	
Male	135 (43.0%)
Female	179 (57.0%)
SMOKING	
Ever	248 (79.0%)
Never	66 (21.0%)
TREATMENT_TYPE	
Monotherapy	224 (71.3%)
Combination	90 (28.7%)
ТМВ	
Mean (SD)	9.12 (10.1)
Median [Min, Max]	5.70 [0.184, 91.8]
PDL1	
≥1%	70 (22.3%)
0%	59 (18.8%)
Missing	185 (58.9%)
RECIST	
CR	8 (2.5%)
PR	69 (22.0%)
SD	108 (34.4%)
PD	126 (40.1%)
NE	3 (1.0%)
DURABLE_CLINICAL_BENEFIT	
YES	113 (36.0%)
NO	181 (57.6%)
NE	20 (6.4%)

Table S 1. Patient characteristics of the discovery cohort

Abbreviations: TMB, Tumor mutational burden; PD-L1, Programmed cell death ligand-1; CR,Complete response; PR, partial response; SD, stable disease; PD, progression of disease.

Gene Mutation Number Mutation Number					
Symbol	with DCB	with NCB	Total Mutation Number		
ALK	7	8	15		
APC	9	10	19		
ARID1A	11	12	23		
ARID1B	8	4	12		
ARID2	10	8	18		
ASXL2	8	3	11		
ATM	12	13	25		
ATR	6	4	10		
ATRX	12	7	19		
BARD1	6	4	10		
BCOR	10	5	15		
BRAF	6	6	12		
BRCA1	6	6	12		
BRCA2	9	2	11		
BRIP1	7	7	14		
CARD11	6	6	12		
CDKN2A	8	10	18		
CREBBP	10	9	19		
CTNNB1	2	9	11		
DDR2	8	3	11		
DOT1L	8	4	12		
EGFR	10	31	41		
EP300	4	7	11		
EPHA3	14	13	27		
EPHA5	16	8	24		
EPHA7	8	8	16		
ERBB2	5	9	14		
ERBB4	13	5	18		
FAT1	19	9	28		
FLT1	9	7	16		
FLT4	10	5	15		
GNAS	3	7	10		
GRIN2A	10	8	18		
HGF	10	10	20		
INHBA	6	5	11		
INPP4B	11	5	16		
IRS1	5	5	10		
KDM5C	9	2	11		
KDR	7	- 4	11		
12/11	,		11		

Table S2. Identified oncogenes and tumor suppressor genes (n=82)

KEAP1	25	38	63
KMT2A	10	3	13
KMT2C	22	14	36
KMT2D	12	14	26
KRAS	49	67	116
LATS2	6	4	10
MDC1	6	7	13
MED12	8	6	14
MET	8	9	17
MGA	17	6	23
NCOR1	8	5	13
NF1	12	14	26
NF2	6	4	10
NOTCH1	7	3	10
NOTCH2	8	4	12
NOTCH4	9	11	20
NSD1	4	6	10
NTRK3	9	7	16
PBRM1	3	9	12
PDGFRA	4	7	11
PGR	10	4	14
PIK3C2G	6	4	10
PIK3CA	7	11	18
PIK3CG	10	9	19
PTPRD	23	17	40
PTPRT	20	13	33
RB1	10	10	20
RBM10	12	20	32
RET	9	4	13
SETD2	10	8	18
SF3B1	6	5	11
SMAD4	3	11	14
SMARC4	19	19	38
SMO	9	4	13
STK11	17	50	67
TBX3	5	9	14
TET1	11	2	13
TET2	6	8	14
TP53	67	89	156
TP63	6	4	10
TSC2	7	3	10
TSHR	7	3	10
ZFHX3	8	7	15

Cohort	Matthew D Hellmann	Hira Rizvi	Diana Miao	Naiyer A. Rizvi	Robert M Samstein
Journal	Cancer Cell	Journal of Clinical Oncology	Nature Genetics	Science	Nature Genetics
Year	2018	2018	2018	2015	2019
Regimen	Combination (PD-1 plus CTLA-4 blockade)	Anti-PD-1/PD- L1, or combined with anti-CTLA-4		Anti-PD-1	Anti-PD-1/PD-L1, or combined with anti-CTLA-4
Cancer type	NSCLC	NSCLC	Pan-cancer	NSCLC	Pan-cancer
No. of nonsqumous NSCLC patients	59	206	29	30	305
Outcome	ORR, PFS	ORR, PFS	ORR, PFS	ORR, PFS	OS
NGS testing	Whole-exome sequencing	MSK-IMPACT gene panel: 468genes;410 genes;341 genes	Whole-exome sequencing	Whole-exome sequencing	MSK-IMPACT gene panel: 468genes;410 genes;341 genes

Table S3. Clinical cohorts analyzed in this study

	MGA wild type	MGA mutated type	p-value	
	(N=242)	(N=24)		
Age (mean (SD))	64.16 (10.80)	65.52 (10.47)	0.56	One-way Anova
Sex			0.83	Fisher's exact test
Male	101 (41.7%)	11 (45.8%)		
Female	141 (58.3%)	13 (54.2%)		
Histology			0.67	Fisher's exact test
Adenocarcinoma	129 (53.3%)	14 (58.3%)		
Others	113 (46.7%)	10(41.7%)		
Smoking			0.79	Fisher's exact test
Ever	193 (79.8%)	20 (83.3%)		
Never	49 (20.2%)	4 (16.7%)		
Treatment type			0.24	Fisher's exact test
Monotherapy	172 (71.1%)	14 (58.3%)		
Combination	70 (28.9%)	10(41.7%)		
TMB (mean (SD))	8.18 (8.53)	15.79 (12.53)	< 0.001	Man-Whitney U tes

Table S 4 . Baseline characteristics according to MGA mutation status

Figure Legends

Fig.S1. Enrichment of gene mutations in patients with CR/PR vs. PD in the discovery cohort (two-tailed Fisher's exact test, n = 77 patients with CR/PR, n = 126 patients with PD). Red dashed line denotes false discovery rate adjusted q = 0.05 (Fisher's exact test).

Fig.S2. Kaplan-Meier curves comparing PFS of patients with or without MGA mutations in the TCGA-LUAD cohort (A) and TCGA-LUAD cohort with stage IV patients (B).

Fig.S3. Lollipop plot shows the distribution of MGA mutations in the ICI-treated cohort and TCGA-LUAD cohort.

Fig.S4. Association of MGA Mutation with DNA damage repair gene mutations in MSKCC ICI-treated cohort (A) and MSKCC non-ICI-treated cohort (B).

Fig.S5. Association of MGA Mutation with relative abundance of infiltrated immune cell by CIBERSORT in the TCGA-LUAD cohort. Gene expression data were uploaded to the CIBERSORTx web portal (https://cibersortx.stanford.edu/), with batch correction performed and permutation number setting to 1000 for significance analysis. *p<0.05(Mann-Whitney U test).

Fig. S1

Fisher's exact test in Patients with CR/PR vs. PD

Fig. S2

В

TCGA-LUAD cohort (stage IV)

Fig. S4

В

MSKCC non-ICI-treated cohort

Fig. S5

celltype