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1 Models and methods

1.1 Local travel model

We first consider a local epidemiological model as in Warne et al. (2020) (1). In this local model,

for each country, at a given time, its population’s status is divided into 6 mutually exclusive com-

partments: susceptible (S), undetected infected (I), active confirmed (A), confirmed recovered

(R), confirmed deceased (D) and unconfirmed recovered (Ru). Its dynamic states evolve as:

S
α−→ I, I

γ−→ A, A
β−→ R, A

δ−→ D, I
β−→ Ru,

where α is the transmission rate, γ is the identification rate, β is the recovery rate, and δ

is the death rate. Suppose that for a given country the status of its population at time t is

X(t) = [S(t), I(t), A(t), R(t), D(t), Ru(t)], and θ = (α, β, δ, γ) represents the parameter of

the statistical model for the country. Using the tau leaping method by Gillespie (2001) (2), the

status of its population at time (t + τ) evolves as X(t + τ) = X(t) +
∑5

i=1 Yj
(
hj(X(t))τ

)
νi.

In the above formula, νi, i = 1, · · · , 5, are the transition vectors, ν1 = [−1, 1, 0, 0, 0, 0]T , ν2 =

[0,−1, 1, 0, 0, 0]T , ν3 = [0, 0,−1, 1, 0, 0]T , ν4 = [0, 0,−1, 0, 1, 0]T , and ν5 = [0,−1, 0, 0, 0, 1]T .

Let the random variables Yi
(
hi(X(t))τ

)
be Poisson distributed with rates hi(X(t)τ), for i ∈

{1, · · · , 5}. More specifically, h1(X(t)τ) = ατ S(t)I(t)
P

, h2(X(t)) = γτI(t) , h3(X(t)) =

βτA(t), h4(X(t)) = δτA(t), h5(X(t)) = βτI(t), and P is the country’s population.

We choose τ = 1, which represents the change in population status after each day. Then the

dynamic evolution of the epidemic in the country can be elaborated further as follows. After

each day, the state of the model evolves from X(t) = [S(t), I(t), A(t), R(t), D(t), Ru(t)] to

X(t+ 1) = [S(t+ 1), I(t+ 1), A(t+ 1), R(t+ 1), D(t+ 1), Ru(t+ 1)] by the transformation

X(t + 1) = X(t) +
∑5

j=1 Yj
(
hj(X(t))

)
νj . In particular, S(t + 1) = S(t) − Y t

1 , I(t + 1) =

I(t)+Y t
1 −Y t

2 −Y t
5 , A(t+1) = A(t)+Y t

2 −Y t
3 −Y t

4 , R(t+1) = R(t)+Y t
3 , D(1) = D(t)+Y t

4 ,
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Ru(t + 1) = Ru(t) + Y t
5 , where Y t

i are Poisson distributed with rates hi(X(t)), i = 1, · · · , 5,

h1(X(t)) = αS(t)I(t)
P

, h2(X(t)) = γI(t), h3(X(t)) = βA(t), h4(X(t)) = δA(t), h5(X(t)) =

βI(t).

Notice that the local model can be made more flexible by letting the transmission rate α

change over time, i.e., setting α = α1I0,T (1)(t) + α2IT (1),T (2)(t) + · · · + αmIT (m−1),T (m)(t),

where 0 = T (0) < T (1) < · · · < T (m) = T , and the indicator function IT (i),T (i+1)(t) = 1 if

T (i) < t ≤ T (i+ 1), and 0 otherwise.

1.2 Global travel model

Our global epidemiological model model is built based on the local model by utilizing travel

flow data as follows. For a given country i, suppose the status of its population at the end of

day (t − 1) is Xi(t − 1) = [Si(t − 1), Ii(t − 1), Ai(t − 1), Ri(t − 1), Di(t − 1), Ru
i (t − 1)],

and the parameter of the statistical model for this country is θi = (αi, βi, δi, γi). On day t, the

epidemic state in country i is updated via two steps. First, the state evolves based on country i’s

internal population. Second, the state evolves based on external factors, here the inflow of airline

travelers from other countries and the outflow of airline travelers to other countries.

We consider changes due to internal effects first. For country i, the transition from t− 1 to t

is characterized by the shift from Xi(t− 1) to Xi(t) = [Si(t), Ii(t), Ai(t), Ri(t), Di(t), R
u
i (t)]

where

Si(t) = Si(t− 1)− Y1,i(t− 1), Ri(t) = Ri(t− 1) + Y3,i(t− 1),

Ii(t) = Ii(t− 1) + Y1,i(t− 1)− Y2,i(t− 1)− Y5,i(t− 1), Di(t) = Di(t− 1) + Y4,i(t− 1),

Ai(t) = Ai(t− 1) + Y2,i(t− 1)− Y3,i(t− 1)− Y4,i(t− 1), Ru
i (t) = Ru

i (t− 1) + Y5,i(t− 1).

3
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and Yj,i(t− 1), j = 1, · · · , 5, are Poisson distributed with rates

h1,i(Xi(t− 1)) = αi
Si(t− 1)Ii(t− 1)

Pi(t− 1)
, h2(Xi(t− 1)) = γiIi(t− 1),

h3(Xi(t− 1)) = βiAi(t− 1), h4(Xi(t− 1)) = δiAi(t− 1),

h5(Xi(t− 1)) = βiIi(t− 1),

and Pi(t− 1) is the size of the population in country i on day (t− 1).

The travel data specify how many new individuals enter the country on day t from each of the

disease states. The current state is updated as X+
i (t) = [S+

i (t), I+
i (t), A+

i (t), R+
i (t), D+

i (t), Ru+
i (t)],

where X+
i (t) = Xi(t) + f in

i (t)− f out
i (t), where f in

i (t) represents the six compartments of people

entering the country on day t and f out
i (t) represents the six compartments of people leaving

the country on day t. Due to temperature checks and other approaches for screening travelers,

we assume that all active confirmed cases are unable to travel. We also assume that deceased

individuals do not travel between countries. Consequently, the compartments in f in
i (t) and f out

i (t)

only include four of the six disease states: susceptible (S), undetected infected (I), recovered

confirmed (R), and recovered unconfirmed (Ru). Travelers in the recovered confirmed (R) and

recovered unconfirmed (Ru) states do not impact the epidemiological state of destination popula-

tion. However, data on all four categories is not readily available. While each country keeps track

of the total number of confirmed recovered each day, they do not necessarily keep track of how

many of them leave the country. Therefore, we take a conservative approach and assume that each

traveler either belongs to the S category or the I category, meaning travelers bring some potential

risk when they arrive in a new country as undetected infected will likely spread the disease

and susceptible individuals reduce population immunity and can proliferate disease spread. In

other words, we impose f in
i (t) = [S in

i (t), I in
i (t), 0, 0, 0, 0] and f out

i (t) = [Sout
i (t), Iout

i (t), 0, 0, 0, 0],

where I in
i (t) and Iout

i (t) are the number of undetected infected that enter and leave country

4
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i on day t, respectively. S in
i (t) and Sout

i (t) are the total numbers of susceptible individuals

who enter and leave the country i on day t, respectively. S in
i (t) + I in

i (t) = Tin
i (t) gives the

total number of travelers that enter country i on day t, and Sout
i (t) + Iout

i (t) = Tout
i (t) gives

the total number of individuals who leave the country i on day t. As such, Xi(t) and X+
i (t)

only differ in the first two categories, where X+
i (t) = [S+

i (t), I+
i (t), Ai(t), Ri(t), Di(t), R

u
i (t)],

S+
i (t) = Si(t)+S in

i (t)−Sout
i (t), and I+

i (t) = Ii(t)+I in
i (t)−Iout

i (t). On day (t+1), the internal

model will be updated based on X+
i (t). The compartmental quantities are updated as follows

Si(t+ 1) = S+
i (t)− Y1,i(t), Ri(t+ 1) = Ri(t) + Y3,i(t),

Ii(t+ 1) = I+
i (t) + Y1,i(t)− Y2,i(t)− Y5,i(t), Di(t+ 1) = Di(t) + Y4,i(t),

Ai(t+ 1) = Ai(t) + Y2,i(t)− Y3,i(t)− Y4,i(t), Ru
i (t+ 1) = Ru

i (t) + Y5,i(t).

and Yj,i(t), j = 1, · · · , 5, are Poisson distributed with rates

h1,i(Xi(t)) = αi
S+
i (t)I+

i (t)

Pi(t)
, h2(Xi(t)) = γiI

+
i (t), h3(Xi(t− 1)) = βiAi(t),

h4(Xi(t)) = δiAi(t), h5(Xi(t)) = βiI
+
i (t).

Our model assumes that active confirmed cases do not spread the disease due to self-isolation

or hospitalization. Therefore, undetected infected cases are the only ones to spread the disease.

Moreover, when I = 0, the pandemic in the country will cease if we stop admitting undetected

infected cases from other countries. Each day, among the people that travel from country i

to other countries, there may be some undetected infected cases. If an undetected infected

individual enters a country with zero undetected infectious cases, they will seed a new outbreak

in this country. Suppose that on day t, there are Iout
i (t) undetected infected people departing

from country i to country j, j 6= i. Then Iout
i (t) =

∑n
j=1,j 6=i I

out
ij (t), where Iout

ij (t) is the number

of undetected infected moving from country i to country j at day t, and n is the total number of

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255465doi: medRxiv preprint 



countries. We model the number of undetected infected people who are leaving country i for

country j at day t using a multinomial distribution with probabilities based on travel network

data. In other words, {Iout
ij (t)}1≤j 6=i≤n ∼M(Iouti (t), {pij(t)}1≤j 6=i≤n), where pij(t) =

Tout
ij (t)

Tout
i (t)

and

Tout
ij (t) is the total number of travelers leaving country i for j at day t. Let us denote Sout

ij (t)

as the number of susceptible people who travel from country i to country j at day t. Then

Tout
ij (t) = Sout

ij (t) + Iout
ij (t). Therefore, at the end of day t, the six states for country i are updated

as X+
i (t) = [S+

i (t), I+
i (t), Ai(t), Ri(t), Di(t), R

u
i (t)], where

S+
i (t) = Si(t) + S in

i (t)− Sout
i (t) = Si(t) +

∑
1≤j 6=i≤n

Sout
ji (t)− Sout

i (t)

I+
i (t) = Ii(t) + I in

i (t)− Iout
i (t) = Ii(t) +

∑
1≤j 6=i≤n

Iout
ji (t)− Iout

i (t).

1.3 Travel regulation policies

Our goal is to find the value p so that the number of undetected infected I+(1), I+(2), · · · , I+(T )

stay below a given threshold c. More specifically, we consider two types of regulation, an average

control policy and a probability control policy described below:

1. Regulation in terms of average control, where we find a proportion p such that the average

number of undetected cases each day in the next T days stays below a threshold c, i.e.,

E(I+(1)), E(I+(2)), · · · , E(I+(T )) < c, where E denotes the expectation.

2. Regulation in terms of probability control, where we find a proportion p such that the

probability of undetected cases each day in the next T days being lower than a threshold c

is at least at π, i.e. P (I+(1) < c, I+(2) < c, · · · , I+(T )+ < c) ≥ π.

The following lemmas gives us the proportion p that satisfies the above requirements.

Lemma 1. Under the assumptions of our model, for a given country with population size P , the

6
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initial status X(0) = [S(0), I(0), A(0), R(0), D(0), Ru(0)] and the parameter of the statistical

model is θ = (α, β, δ, γ), let us denote ψ = 1 + αS(0)
P
− γ − β,

1. The average control requirement is satisfied if

p = min

(
(c/I(0))1/k

ψ
− 1

)
k=1,··· ,T

(1)

2. The probability control requirement is satisfied if

p = min

(
(c(1− π)/I(0))1/k

ψ
− 1

)
k=1,··· ,T

(2)

Proof:

1. Average control. With an initial number I(0) of undetected infected cases, on the first

day, from the internal evolution process we have I(1) = I(0) + Y1,0 − Y2,0 − Y5,0, then

at the end of this day, we have I+(1) = I(1)(1 + p), where Y1,0 ∼ Poisson(αS(0)I(0)
P

),

Y2,0 ∼ Poisson(γI(0)) and Y5,0 ∼ Poisson(βI(0)). Therefore, we have: E(I+(1) =

E
(
E(I+(1)/I(0))

)
= I(0)(1 + αS(0)

P
− γ − β)(1 + p) < I(0)ψ(1 + p). Similarly, we

have: E(I+(2)) = E
(
E(I+(2) /I+(1))

)
= E

(
I+(1)(1 + αS(1)

P
− γ − β)(1 + p)

)
<

(1 +p)ψE(I+
1 ) = (1 +p)2ψ2I(0). Repeating this argument until reaching day T results in

E(I(T )+) < (1 + p)TψT I0. For average control, therefore, we want to find a p such that:

(1 + p)ψI(0), (1 + p)2ψ2I(0), · · · , (1 + p)TψT I(0) < c. By solving the above inequality,

the p that satisfies the requirements is

p = min

(
(c/I(0))1/k

ψ
− 1

)
k=1,··· ,T

�
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2. Probability control. Here we have

E
(
I+(1)/I(0)

)
= ψ(1 + p)I(0), E

(
I+(2)/I+(1)

)
< ψ(1 + p)I+(1),

E
(
I+(3)/I+(2)

)
< ψ(1 + p)I+(2), · · · , E

(
I+(T )/I+(T − 1)

)
< ψ(1 + p)I+(T − 1).

Let us denote I+(1)
ψ(1+p)

= I∗(1), I+(2)
ψ2(1+p)2

= I∗(2), · · · , I+(T )
ψT (1+p)T

= I∗(T ). The sequence

I∗(1), I∗(2), · · · , I∗(T ) forms a non-negative supermartingale sequence. Since

E
(
I∗(1)/I(0)

)
= I(0), E

(
I∗(2)/I∗(1)

)
< I∗(1),

E
(
I∗(3)/I∗(2)

)
< I∗(2), · · · , E

(
I∗(T )/I∗(T − 1)

)
< I∗(T − 1).

Applying the maximal inequality for a non-negative supermartingale we have: P (∪i≥1(I∗(i) ≥

m)) ≤ E(I∗(1))
m

, for a given m > 0. This gives 1−P (∪i≥1(I∗(i) ≥ m)) ≥ 1− E(I∗(1))
m

. In

other words, P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) ≥ 1 − E(I∗(1))
m

= 1 − I(0)
m

.

If we want P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) ≥ pc, then the smallest

value of m must satisfy the relation 1 − I(0)
m

= π. We choose m = I(0)
1−π . We have:

P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) = P
(
I+(1) < mψ(1 + p), I+(2) <

mψ2(1 + p)2, · · · , I+(T ) < mψT (1 + p)T
)
. So, if we want I+(1), I+(2), · · · , I+(T ) < c,

then we need to find a p such that mψ(1+p) < c,mψ2(1+p) < c, · · · ,mψT (1+p)T < c.

In other words, we need a p that satisfies: p < (c/m)1/k

ψ
− 1, ∀k = 1, · · · , T , or

p < (c(1−π)/I(0))1/k

ψ
− 1, ∀k = 1, · · · , T . In conclusion, for a probability control level π

and a threshold c in the next T days, the required p is

p = min

(
(c(1− π)/I(0))1/k

ψ
− 1

)
k=1,··· ,T

�

Remark: The probability control policy is more conservative than the average control policy.

Under the same threshold c, the difference between the two policies is the factor (1− π) in the

8
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numerator of the probability control strategy. If we want the probability control to have at least

0.9 of the threshold c of average control, this factor becomes 0.1. As a result, the proportion of p

in probability control is much smaller than the proportion of p in average control. If we want to

use the probability control with a probability of at least 0.9, we need to set up the threshold c

in probability control higher than the threshold c in average control to make sure that our p is

non-negative.

Example 1. Here we give one example of using the average control policy to regulate the travel.

For simplicity, we consider a small world with only three countries, with the following initial

states and true parameter values:

X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] = (28718795, 68, 167, 259, 149, 101)

θ1 = (α1, β1, δ1, γ1) = (0.82, 0.18, 0.09, 0.68)

X2(0) = (6358016, 40356, 1573, 454, 55, 320)

θ2 = (0.74, 0.15, 0.02, 0.06)

X3(0) = (28507087, 206, 764, 619, 72, 188)

θ3 = (0.92, 0.13, 0.02, 0.76)

and we want to regulate the incoming travel in the first country (country 1). These choices of

initial conditions and parameter values are based on our simulations where benefits of travel

restriction can be seen clearly. We now need to find the regulation sequences {p21(t)}t=1,··· ,7

and {p31(t)}t=1,··· ,7 that can regulate airline travel from country 2 to country 1 and from country

3 country 1 such that for the next T = 7 days, the number of undetected infected cases in the

arriving country will not exceed c = 70 cases on average per day. Applying Lemma 1a, we can

find parameter p for country 1 as p = min
(
(c/I0)1/k/ψ − 1

)
k=1,··· ,7 = 0.035.

So the sequence of the number of undetected infected imported cases that country 1 can

9
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accept each day as
((

(1 + p)ψ
)i
I(0)

)
i=1,··· ,7

= (2, 2, 2, 2, 2, 2, 2). Because country 1 has two

“neighbors”, so country 1 can accept about 1 undetected infected from each neighbor each day

during the regulation period.

The next step is to predict, for each day, the number of undetected infected travelers from

countries 2 and 3 that can enter country 1 for the next 7 days when full travel is allowed. We get

these numbers by simulating data given the true parameters under the fully open scenario. We

first simulate 10000 stochastic realizations under this scenario and use the 0.975 percentile of

the simulated sequence of undetected infected in countries 2 and 3 in the next 7 days as proxies

for the number of undetected infected cases in these countries. Then we simulate a deterministic

realization under the fully open scenario during the regulation period and use the values from the

deterministic realization to calculate the percentage of undetected infected people in countries 2

and 3. Based on these percentages and the travel data, we estimate how many undetected infected

individuals enter country 1 from country 2 and country 3 daily during the regulation period if

full travel is allowed. The final step is obtaining the regulation sequence that country 1 can allow

country 2 and country 3 to enter its border. The regulation sequence that country 1 can allow for

country 2 to enter its border during the regulation period is obtained by dividing the number of

daily undetected infected cases that country 1 can tolerate from country 2 by the daily estimated

number of imported undetected infected cases from country 2 if full travel is allowed. Notice

that if the daily proportion is greater or equal to 1, we set it to 1. Repeat the same procedure, we

can also find the regulation sequence that country 1 can allow for country 3 to enter its border.

Following the above steps, we can find that in the next 7 days, the regulation sequence of

proportions of people who can move from country 2 to country 1 is (0.103, 0.076, 0.051, 0.035,

0.022, 0.014, 0.009), and the sequence of proportions of people who can move from country

3 to country 1 is (1, 1, 1, 1, 1, 1, 1). Compared to the fully open scenario, using the average

control approach with the threshold of 70 cases during the 7-day regulation period, about 6.03%

10
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of travelers from country 2 are allowed enter the country 1, and all travelers from country 3 are

allowed to enter country 1. Overall, the volume of inbound travelers in country 1 is about 88.64%

of the normal levels.

In practice, the value of the transmission rate α varies over time, and we therefore provide an

additional lemma that generalizes Lemma 1 to address the aspect of varying α.

Lemma 2. Under the assumptions of our model, for a given country with population size P ,

initial status X(0) = [S(0), I(0), A(0), R(0), D(0), Ru(0)] and the parameter of the statistical

model for this country over the time period from 0 = T (0) to T = T (m) is θ = (α, β, δ, γ),

where α = α1I0,T (1)(t) + α2IT (1),T (2)(t) + · · · + αmIT (m−1),T (m)(t). Let us denote ψmax =

max
(

1 + αi
S(0)
P
− γ − β

)
i=1,...,m

.

1. The average control requirement is satisfied if

p = min

(
(c/I0)1/k

ψmax
− 1

)
k=1,··· ,T

(3)

2. The probability control requirement is satisfied if

p = min

(
(c(1− π)/I0)1/k

ψmax
− 1

)
k=1,··· ,T

(4)

Proof:

1. Average control. Follow the same argument as in the proof of Lemma 1, we have

E(I+(1) = E
(
E(I+(1)/I(0))

)
= I(0)(1 + αS(0)

P
− γ − β)(1 + p) = I(0)(1 + α1

S(0)
P
−

γ − β)(1 + p) < I(0)ψmax(1 + p). Repeating the argument until we reach day T

yields : E(I(T )+) < (1 + p)TψTmaxI(0). Therefore, we want to find a p such that

(1 + p)ψmaxI(0), (1 + p)2ψ2
maxI(0), · · · , (1 + p)TψTmaxI(0) < c. Hence the value p that
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satisfies the requirements for average control is

p = min

(
(c/I(0))1/k

ψmax
− 1

)
k=1,··· ,T

�

2. Probability control. Here we have

E
(
I+(1)/I(0)

)
< ψmax(1 + p)I(0), E

(
I+(2)/I+(1)

)
< ψmax(1 + p)I+(1),

E
(
I+(3)/I+(2)

)
< ψmax(1 + p)I+(2), · · · , E

(
I+(T )/I+(T − 1)

)
< ψmax(1 + p)I+(T − 1).

Let us denote I+(1)
ψmax(1+p)

= I∗(1), I+(2)
ψ2

max(1+p)2
= I∗(2), · · · , I+(T )

ψT
max(1+p)T

= I∗(T ). Similar to

Lemma 1, the sequence of I∗(1), I∗(2), · · · , I∗(T ) forms a non-negative supermartingale

sequence. Hence, following the same arguments as in Lemma 1, we have for a probability

control level π and a threshold c in the next T days, the required p is

p = min

(
(c(1− π)/I(0))1/k

ψmax
− 1

)
k=1,··· ,T

�

1.4 Choosing distance and summary statistics in Approximation Bayesian
Computational

There are many variants of ABC, but they are all based on a comparison of observed and

simulated data, which in most cases requires specification of data summary statistics, a distance

measure, and a scalar distance threshold ε. The most basic ABC algorithm, the so-called accept-

reject method, starts by simulating a parameter value from a prior distribution and then uses the

model, given this parameter value, to generate one realization of data. If the distance between

the summary statistics for the observed data and the summary statistics for the simulated data

is less than or equal to ε, the sampled parameter value is retained; otherwise, it is discarded.

The collection of accepted parameter values constitutes a sample from an approximation of the
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posterior distribution. The approximation generally improves with smaller values of ε, but at the

same time it becomes more computationally expensive to obtain acceptances.

This basic ABC algorithm is computationally inefficient when working with a small threshold

ε as a vast majority of sampled parameter values are rejected. To address this inefficiency, some

sequential variants of ABC have been proposed, such as the ABC Markov chain Monte Carlo

algorithm (ABC-MCMC) by Marjoram, et al. (2003) and the ABC Sequential Monte Carlo

algorithm (ABC-SMC) by Sisson et al. (2007), Toni, et al. (2009), and Drovandi and Pettitt

(2011) (3–6). In this paper, we use the variant from Drovandi and Pettitt (2011) (6), called

replenishment ABC (RABC). For its implementation, we use the R package protoABC from

Ebert (2020) (7). This package is very flexible as the users can employ any priors, generative

models, and distance functions.

A commonly used distance is the Euclidean distance due to its simple form. In our problem

setting, this Euclidean distance L
(
S(Data(i)), S(Data)

)
can be written as:

(
1

T

T∑
t=1

[(
A(i)(t)− A(t))2 + (R(i)(t)−R(t))2 + (D(i)(t)−D(t)

)2
])1/2

,

where
(
A(i)(t), R(i)(t), D(i)(t)

)
and

(
A(t), R(t), D(t)

)
are active confirmed, accumulated re-

covered confirmed, and accumulated death confirmed cases on day t of the simulated data and

the real (empirical) data, respectively. However, simply using the Euclidean distance may not

be the best choice since it does not account for the scale of different quantities, and may need

to be standardized (see for example Beaumont et al. (2002), Csilléry et al. (2012), or Prangle

(2017) (8–10)). This is why we also consider the following weighted Euclidean distance, with

weights given by the inverse variances:

(
1

T

T∑
t=1

[(
A(i)(t)− A(t)

sd(A(t))

)2

+

(
R(i)(t)−R(t)

sd(R(t))

)2

+

(
D(t)(i) −D(t)

sd(D(t))

)2
])1/2

,
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where {sd(A(t)), sd(R(t)), sd(D(t))}t=1,··· ,T are the prior predictive standard deviations of

A(t), R(t), D(t) at each time step. These standardization values are obtained by first generating

N (N being large) parameters values θ = (α, β, δ, γ) from the prior π(θ), and then generating

one realization of simulated data for each of them. The standard deviation at each time step is

then calculated based on these N simulated data, giving {sd (A(t)), sd (R(t)), sd (D(t))}t=1,··· ,T .

In our simulation study, we choose N = 5000.

To improve the predictive quality of ABC algorithms, we can also use additional information

from parameter estimates to make new summary statistics. Under our model assumptions, we

can learn additional knowledge about how parameters can be estimated. We are thus going to

include as summary statistics estimates of our epidemiological parameters. For simplicity, we

first limit our discussion to the local model, where each country is considered separately. The

choice of the distance for the global model will be discussed in Section 1.5.

Under our model assumptions, we have: R(t) = R(t − 1) + Poisson (βA(t− 1)) ,∀t =

1, · · · , T . So for a given A(t − 1), we have: E (R(t)−R(t− 1)) = βA(t − 1). This yields

E
(
R(t)−R(t−1)

A(t−1)

)
= β. So for a given sequence of known {A(t)}t=1,··· ,T , the sequence of

independent variables {R(t)−R(t−1)
A(t−1)

}t=1,··· ,T has β as common mean value. Therefore, we can

use its median value to estimate β. If our algorithm generated a reasonable θ(i), then the data

generated by θ(i) should also gives us a sequence {R
(i)(t)−R(i)(t−1)

A(i)(t−1)
}t=1,··· ,T with median value

close to the corresponding median value of {R(t)−R(t−1)
A(t−1)

}t=1,··· ,T . Therefore under our model

assumptions, adding the term |median{R(t)−R(t−1)
A(t−1)

}t=1,··· ,T − median{R
(i)(t)−R(i)(t−1)

A(i)(t−1)
}t=1,··· ,T |

when calculating L
(
S(Data(i)), S(Data)

)
would help to improve the estimation of β. Similarly,

the median of the sequence {D(t)−D(t−1)
A(t−1)

}t=1,··· ,T can be used to estimate the death rate δ, and

adding the term |median{D(t)−D(t−1)
A(t−1)

}t=1,··· ,T −median{D
(i)(t)−D(i)(t−1)

A(i)(t−1)
}t=1,··· ,T | would help to

improve the estimation of δ.

We now try to learn the transmission rate α under our model assumptions. We have S(t) =
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S(t− 1) + Poisson
(
αS(t−1)I(t−1)

P

)
,∀t = 1, · · · , T , where P is the total population size of the

country. So for a given S(t− 1), I(t− 1), we have E (S(t)− S(t− 1)) = αS(t−1)I(t−1)
P

. This

yields E
(
S(t)−S(t−1)
S(t−1)I(t−1)

P
)

= α. Unfortunately, S(t− 1) and I(t− 1) are hidden states and not

available in our data. To use the above strategy to improve the estimation of α, we need to

reconstruct these hidden states based on the available data {(A(t), R(t), D(t))}t=1,··· ,T . Because

our model is stochastic, all values would change each time we rerun the model. However,

based on the available data {(A(t), R(t), D(t))}t=1,··· ,T we can reconstruct the mean realization

that adopts these three states. Let us denote U(t) the total number of confirmed cases at

time t, ∆U(t − 1) the number of new confirmed cases at time t as, and ∆Ru(t − 1) the

number of new undocumented recover cases at day t. Note that U(t) = A(t) + R(t) + D(t),

∆U(t− 1) = U(t)− U(t− 1), and ∆Ru(t− 1) = Ru(t)−Ru(t− 1).

From the local model we have:

U(t) = A(t) +R(t) +D(t)

= A(t− 1) + Y2(t− 1)− Y3(t− 1)− Y4(t− 1)

+R(t− 1) + Y3(t− 1) +D(t− 1) + Y4(t− 1)

= A(t− 1) +R(t− 1) +D(t− 1) + Y2(t− 1)

= U(t− 1) + Y2(t− 1)

So Y2(t−1) = U(t)−U(t−1) = ∆U(t−1). Moreover, since Y2(t−1) ∼ Poisson (γI(t− 1)),

we have

E (I(t− 1)) = E

(
∆U(t− 1)

γ

)
. (5)

Equation (5) tells us that with the observed data {A(t), R(t), D(t)}t=1,··· ,T , if the identification

rate γ is known, the average realization I(t) can be reconstructed up to time T − 1.

Similarly, since Ru(t) = Ru(t− 1) + Y5(t− 1), where Y5(t− 1) ∼ Poisson (βI(t− 1)), we
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have

E (∆Ru(t− 1)) = E (βI(t− 1)) .

Using (5), we obtain

E (∆Ru(t− 1)) = E

(
β∆U(t− 1)

γ

)
. (6)

Moreover, using Ru(t) = Ru(0) +
t−1∑
i=1

∆Ru(i) and (6), the average value of Ru(t) can be

reconstructed as

E (Ru(t)) = E (Ru(0)) +
t−1∑
i=1

E (∆Ru(i))

= E (Ru(0)) +
t−1∑
i=1

E (βI(i))

= E (Ru(0)) +
t−1∑
i=1

E

(
β∆U(i)

γ

)
(7)

Equations (5) and (7) tell us that based on the available data {(A(t), R(t), D(t)}t=1,··· ,T if

the identification rate γ and the recovered rate β are available to us, then we can reconstruct the

average realization of I(t) and Ru(t), ∀t = 1, · · · , T − 1. As a result the average realization

category at time t can also be reconstruct as P − E (I(t)− A(t)−R(t)−D(t)−Ru(t)) =

P − U(t)− ∆U(t)
γ
−
∑t−1

i=0
β
γ
∆U(i), where P is the country population.

Overall, based on the observed data {(A(t), R(t), D(t))}t=1,··· ,T , suppose that the identifi-

cation rate γ and the recover rate β are available to us. The average realization that adopts
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{(A(t), R(t), D(t))}t=1,··· ,T can be reconstructed up to time T − 1 as

{S(t), I(t), A(t), R(t), D(t), Ru(t)}t=1,··· ,T−1

={P (t)− U(t)− ∆U(t)

γ
−

t−1∑
i=0

β

γ
∆U(i),

∆U(t)

γ
,A(t), R(t), D(t),

t−1∑
i=0

β

γ
∆U(i)}t=1,··· ,T−1.

Therefore α can be estimated as the median of the sequence { S(t−1)−S(t)
S(t−1)I(t−1)

P}1,··· ,T−1. Unfortu-

nately, β and γ are not known in advance and need to be estimated.

We therefore use the testing argument to recover the average realization and estimate α. This

argument is based on the following observation. In step 1 of the ABC algorithm, a parameter

value θ(i) =
(
α(i), β(i), δ(i), γ(i)

)
is generated and available to us. If γ(i), β(i) are correctly speci-

fied as γ, β of the underlying true parameter θ = (α, β, δ, γ). We would expect that the median

value of the sequence { S(t−1)−S(t)
S(t−1)I(t−1)

P}1,··· ,T−1 constructed using γ(i), β(i) and the available data

{(A(t), R(t), D(t))}t=1,··· ,T , should give us a good estimator for the underlying true α value. A

similar statement holds for the median value of the sequence { S
(i)(t−1)−S(i)(t)

S(i)(t−1)I(i)(t−1)
P}1,··· ,T−1 that was

constructed by γ(i), β(i) and the available data {(A(i)(t), R(i)(t), D(i)(t)}t=1,··· ,T should also give

us a good estimator for the underlying true α value. Therefore the distance |median{ S(t−1)−S(t)
S(t−1)I(t−1)

P}t=1,··· ,T−1−

median{ S
(i)(t−1)−S(i)(t)

S(i)(t−1)I(i)(t−1)
P}t=1,··· ,T−1| in L

(
S(Data(i)), S(Data)

)
should be close to 0. On the

other hand, if the generated parameters γ(i), β(i) are far away from the underlying true param-

eters, then |median{ S
(i)(t)−S(i)(t−1)

S(i)(t−1)I(i)(t−1)
P}t=1,··· ,T−1 −median{ S(t)−S(t−1)

S(t−1)I(t−1)
P}t=1,··· ,T−1| should not

be close to 0.

Based on this observation, we then add the term

|median{ S
(i)(t)− S(i)(t− 1)

S(i)(t− 1)I(i)(t− 1)
P}t=1,··· ,T−1 −median{ S(t)− S(t− 1)

S(t− 1)I(t− 1)
P}t=1,··· ,T−1|

in L
(
S(Data(i)), S(Data)

)
to improve the estimation for α.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255465doi: medRxiv preprint 



Finally, our proposed distance for the model is designed as follows:√√√√ 1

T

T∑
t=1

[

(
A(i)(t)− A(t)

sd(A(t))

)2

+

(
R(i)(t)−R(t)

sd(R(t))

)2

+

(
D(i)(t)−D(t)

sd(D(t))

)2

] +
√
d,

where

d = |median{R(t)−R(t− 1)

A(t− 1)
}t=1,··· ,T −median{R

(i)(t)−R(i)(t− 1)

A(i)(t− 1)
}t=1,··· ,T |

+ |median{D(t)−D(t− 1)

A(t− 1)
}t=1,··· ,T −median{D

(i)(t)−D(i)(t− 1)

A(i)(t− 1)
}t=1,··· ,T |

+ |median{ S(t− 1)− S(t)

S(t− 1)I(t− 1)
P}t=1,··· ,T−1 −median{ S

(i)(t− 1)− S(i)(t)

S(i)(t− 1)I(i)(t− 1)
P}t=1,··· ,T−1|.

1.5 Marginal approach to parameter estimation

In the following, we will discuss how to use ABC to estimate parameters in each country for our

global model. The challenge of using ABC to estimate the global model parameters is that many

parameters need to be estimated. Therefore directly using ABC to estimate all the parameters for

all countries at once may result in very unstable parameter estimations and will be extremely

computationally intensive. We propose a marginal estimating approach to estimate each country

parameter for the global model separately while still taking into account the travel data.

For simplicity, let us first consider a given country m with the represented parameter

θm = (αm, βm, δm, γm). Let us denote Ak(t), Rk(t), Dk(t) as the number of active con-

firm cases, accumulated recover confirmed, and accumulated death confirmed at country k

on day t, respectively. We denote T (t) = [Tij(t)]i,j=1,··· ,n is the global traveling matrix at

day t, where Tij(t) is the number of travelers from country i to country j at day t. Notice

that Tij(t) = 0 if i = j,∀t ∈ 1, · · · , T . With the available data from the global model

{Ak(t), Rk(t), Dk(t)}k=1,··· ,n;t=1,··· ,T and the travel data {T (t)}t=1,··· ,T , we need to estimate θi.

Before introducing our estimation procedure, we rewrite how our global model evolved for
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the country m at day t and (t+ 1):

Step 1a The internal pandemic evolves at day t: The internal pandemic situation in the country

evolves from Xm(t− 1) to Xm(t) = [Sm(t), Im(t), Am(t), Rm(t), Dm(t), Ru
m(t)], where

Sm(t) = Sm(t−1)−Y1,m(t−1), Im(t) = Im(t−1)+Y1,m(t−1)−Y2,m(t−1)−Y5,m(t−

1), Am(t) = Am(t− 1) + Y2,m(t− 1)− Y3,m(t− 1)− Y4,m(t− 1), Rm(t) = Rm(t− 1) +

Y3,m(t− 1), Dm(t) = Dm(t− 1) + Y4,m(t− 1), Ru
m(t) = Ru

m(t− 1) + Y5,m(t− 1). And

Yj,m(t−1), j = 1, · · · , 5 are Poisson distributed with rates (hj,i(Xm(t−1))), respectively,

as h1,m(Xm(t−1)) = αm
Sm(t−1)Ii(t−1)

Pm(t−1)
, h2(Xm(t−1)) = γmIm(t−1) , h3(Xm(t−1)) =

βmAm(t− 1), h4(Xm(t− 1)) = δmAm(t− 1), and h5(Xm(t− 1)) = βmIm(t− 1).

Step 1b The external pandemic added at day t: From the travel data, Xm(t) is updated to X+
m(t) =

[S+
m(t), I+

m(t), Am(t), Rm(t), Dm(t), Ru
m(t)], where S+

m(t) = Sm(t)+S in
m(t)−Sout

m (t), and

I+
m(t) = Im(t) + I in

m(t)− Iout
m (t).

Step 2a The internal pandemic evolves at day (t + 1): The internal pandemic situation in the

country evolves from X+
m(t) to Xm(t + 1) = [Sm(t + 1), Im(t + 1), Am(t + 1), Rm(t +

1), Dm(t+1), Ru
m(t+1)], as Sm(t+1) = S+

m(t)−Y1,m(t), Im(t+1) = I+
m(t)+Y1,m(t)−

Y2,m(t)−Y5,m(t), Am(t+1) = Am(t)+Y2,m(t)−Y3,m(t)−Y4,m(t), Rm(t+1) = Rm(t)+

Y3,m(t), Dm(t+ 1) = Dm(t) + Y4,m(t), Ru
m(t+ 1) = Ru

m(t) + Y5,m(t). And Yj,m(t), j =

1, · · · , 5 are Poisson distributed with rates hj,m(Xm(t)), respectively, as h1,m(Xm(t)) =

αm
S+
m(t)I+m(t)
Pm(t)

, h2(Xm(t)) = γmI
+
m(t), h3(Xm(t − 1)) = βiAi(t), h4(Xi(t)) = δiAi(t),

and h5(Xm(t)) = βmI
+
m(t).

Step 2b The external pandemic added at day (t+ 1): From the travel data, Xm(t+ 1) is updated

to X+
m(t+ 1) = [S+

m(t+ 1), I+
m(t+ 1), Am(t), Rm(t+ 1), Dm(t+ 1), Ru

m(t+ 1)], where

S+
m(t+ 1) = Sm(t+ 1) + S in

m(t+ 1)− Sout
m (t+ 1), and I+

m(t+ 1) = Im(t+ 1) + I in
m(t+

1)− Iout
m (t).
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As shown in the model’s evolving process, step 1b and step 2b make the global model behave

differently from the local model. Therefore, if we can estimate quantities S in
m(t), I in

m(t), Sout
m (t), Iout

m (t)

for each day t, then we can use the marginal approach to estimate each country’s parameters

separately. The two quantities Sout
m (t), Iout

m (t) come from inside the considered country m. There-

fore the amount can be calculated during the data generation process of the ABC algorithm. Our

main task now is estimating S in
m(t), I in

m(t).

We have S in
m(t) =

∑
1≤j 6=m≤n

Sout
jm(t), I in

m(t) =
∑

1≤j 6=m≤n
Iout
jm(t), where Sout

jm(t) and Iout
jm(t) are

the number of susceptible people and undocumented infected people move from country j to

country m at day t, respectively. It should be noticed that under our model assumptions the

summation of Sout
jm(t) and Iout

jm(t) gives us the total number of people traveling from country j to

countrym at day t, i.e. Sout
jm(t)+Iout

jm(t) = Tji(t). So if we can estimate {Iout
jm(t)}1≤j 6=m≤n,t=1,··· ,T

then with the travel data, we can estimate {Sout
jm(t)}1≤j 6=m≤n,t=1,··· ,T . As a result we can then

estimate Sinm (t), and I inm (t).

We discuss the procedure for estimating Iout
jm(t). To estimate Iout

jm(t) we need to estimate the

pandemic situation in country j at day t, i.e. we need to estimate:

X+
j (t) = [S+

j (t), I+
j (t), Aj(t), Rj(t), Dj(t), R

u
j (t)]. Then based on these compartments and

the travel data Tjm(t), we can estimate Iout
jm(t) as Tjm(t) =

Tjm(t)I+j (t)

S+
j (t)+I+j (t)

.

From the global model we have:

Uj(t+ 1) = Aj(t+ 1) +Rj(t+ 1) +Dj(t+ 1)

= Aj(t) + Y2,j(t)− Y3,j(t)− Y4,j(t) +Rj(t) + Y3,j(t) +Dj(t) + Y4,j(t)

= Aj(t) +Rj(t) +Dj(t) + Y2,j(t) = Uj(t) + Y2,j(t),

so Y2,j(t) = Uj(t+ 1)− Uj(t) = ∆Uj(t).
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Since Y2,j(t) ∼ Poisson
(
γjI

+
j (t− 1)

)
, therefore, we have

E(I+
j (t− 1)) = E

(∆Uj(t)

γj

)
. (8)

Similarly we also have

E(I+
j (t− 2)) = E

(∆Uj(t− 1)

γj

)
(9)

From (8) and (9), we have

E(I+
j (t− 1))

E(I+
j (t− 2))

=
E
(∆Uj(t)

γj

)
E
(∆Uj(t−1)

γj

) =
E(∆Uj(t))

E(∆Uj(t− 1))
(10)

Applying (10) for t = 1, · · · , T − 1, we have the sequence of relationships:
E(I+j (1))

E(Ij(0))
=

E(∆Uj(2))

E(∆Uj(1))
,

E(I+j (2))

E(I+j (1))
=

E(∆Uj(3))

E(∆Uj(2))
, · · · , E(I+j (T−1))

E(Ij(T−2))
=

E(∆Uj(T ))

E(∆Uj(T−1))
. Therefore, based on the available data at

country j as {Aj(t), Rj(t), Dj(t)}t=1,··· ,T , we can approximate the average realization of the

sequence of undetected infected people in country j up to time (T − 1) by Ij(0), I+
j (1) =

Ij(0)
∆Uj(2)

∆Uj(1)
, I+

j (2) = I+
j (1)

∆Uj(3)

∆Uj(2)
,· · · , I+

j (T − 1) = I+
j (T − 2)

∆Uj(T )

∆Uj(T−1)
.

In addition, we also haveRu
j (t) = Ru

j (t−1)+Y5,j(t−1), where Y5,j(t−1) ∼ Poisson
(
βI+

j (t−

1)
)
. Therefore,

E
(
∆Ru

j (t− 1)
)

= E
(
βI+

j (t− 1)
)

(11)

We have Rj(t) = Rj(t− 1) + Y3,j(t− 1), where Y3,j(t− 1) ∼ Poisson
(
βAj(t− 1)

)
,∀t =

1, · · · , T . Therefore the median value of the sequence {Rj(t)−Rj(t−1)

Aj(t−1)
}t=1,··· ,T can be used to

approximate β. We denote this median value as β̂.

The fact Ru
j (t) = Ru

j (0) +
t−1∑
i=1

∆Ru
j (i) and (11) tells us that the average value of Ru(t) at
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country j can be reconstructed as

E
(
Ru
j (t)
)

= E
(
Ru
j (0)

)
+

t−1∑
i=1

E(∆Ru
j (i))

= E
(
Ru
j (0)

)
+

t−1∑
i=1

βE
(
I+
j (i)

)
, (12)

where the sequence {E
(
I+
j (i)

)
}j=1,··· ,T−1 and β are estimated as above.

So the average realization of the pandemic at country j which adopts {(Aj(t), Rj(t), Dj(t)}t=1,··· ,T

as its active confirmed, recover confirmed and death confirmed can be reconstructed up to

time T − 1 as {S+
j (t), I+

j (t), A(t), R(t), D(t), Ru(t)}t=1,··· ,T−1 = {Pj(t) − Uj(t) − I+
j (t) −

Ru
j (t), I+

j (t), A(t), R(t), D(t), Ru
j (t)}t=1,··· ,T−1.

This procedure of estimating the average realization of a given country j based on the avail-

able data {(Aj(t), Rj(t), Dj(t))}t=1,··· ,T is completed. As a result, this gives us the estimation

of Sout
jm(t) and Iout

jm(t). This means we can estimate Sinm (t), and I inm (t). Therefore, the underlying

true parameter θm in a given country m can be approximated marginally by using the above

estimating procedure.

We now discuss the proposed distance when estimating θm in a given country m by

ABC marginally. Following the same argument as in Section 1.4, instead of using the com-

monly used Euclidean distance to estimate θm we first need to standardize each sequence,

then we try to learn each parameter under our model assumptions. From the available data

{(Am(t), Rm(t), Dm(t))}t=1,··· ,T of country m, follow the same argument as in Section 1.4, we

can add the term

|median{Rm(t)−Rm(t−1)
Am(t−1)

}t=1,··· ,T−median{R
(i)
m (t)−R(i)

m (t−1)

A
(i)
m (t−1)

}t=1,··· ,T | to improve the estimation

for the recover rate βm, and adding the term

|median{Dm(t)−Dm(t−1)
Am(t−1)

}t=1,··· ,T−median{D
(i)
m (t)−D(i)

m (t−1)

A
(i)
m (t−1)

}t=1,··· ,T | to improve the estimation

for the death rate δm. We discuss the transmission rate αm, at a time step t + 1, we have:
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Sm(t+ 1) = S+
m(t)− Y1,m(t), where Y1,m(Xm(t)) ∼ Poisson

(
αm

S+
m(t)I+m(t)
Pm(t)

)
. Therefore, αm =

Pm(t)E(S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

)
. Notice that Sm(t + 1) = S+

m(t + 1) − S in
m(t + 1) + Sout

m (t + 1). The

hidden states S+
m(t) and I+

m(t) can be reconstructed as above or by using the testing argument as

above. We discuss the approach by using the testing argument.

From (8) we have: E(I+
m(t − 1)) = E

(
∆Um(t)
γm

)
. Therefore the average realization of

{I+
m(t)}t=1,··· ,T can be reconstructed as {∆Um(t)

γm
}t=1,··· ,T . Using (12), we have E

(
Ru
m(t)

)
=

E
(
Ru
m(0)

)
+

t−1∑
i=1

βmE
(
I+
m(i)

)
. Therefore the average realization of {Ru

m(t)}t=1,··· ,T can be

reconstructed as {Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

}t=1,··· ,T

The average realization of the pandemic at countrymwhich adopts {(Am(t), Rm(t), Dm(t)}t=1,··· ,T

as its active confirmed, recover confirmed and death confirmed can be reconstructed up to time

T − 1 as {S+
m(t), I+

m(t), Am(t), Rm(t), Dm(t), Ru
m(t)}t=1,··· ,T−1 = {Pm(t)−Um(t)− ∆Um(t)

γm
−

(Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

), ∆Um(t)
γm

, Am(t), Rm(t), Dm(t), Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

}t=1,··· ,T−1.

Similarly as above, in step 1 of the ABC algorithm, the parameter θ(i)
m =

(
α

(i)
m , β

(i)
m , δ

(i)
m , γ

(i)
m )

is generated and available to us. If γ(i)
m , β

(i)
m are correctly specified as γm, βm of the underlying

true parameter θm =
(
αm, βm, δm, γm

)
, we would expect the distance

|median{Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1−median{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 to be close

to 0. Where values of the sequence {Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1 are constructed based on

γ
(i)
m , β

(i)
m and the available data {(Am(t), Rm(t), Dm(t)}t=1,··· ,T , and values of the sequence

{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 are constructed based on γ
(i)
m , β

(i)
m and the simulated data

{(A(i)
m (t), R

(i)
m (t), D

(i)
m (t)}t=1,··· ,T . So adding the term:

|median{Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1−median{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 would help

to improve the estimation for αm. Finally, the proposed global distance in the calibrating step of

the ABC algorithm is designed as follow:√
1
T

∑T
t=1[
(A(i)

m (t)−Am(t)
sd(Am(t))

)2
+
(R(i)

m (t)−Rm(t)
sd(Rm(t))

)2
+
(D(i)

m (t)−Dm(t)
sd(Dm(t))

)2
] +
√
dm,
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where

dm = |median{Rm(t)−Rm(t− 1)

Am(t− 1)
}t=1,··· ,T −median{R

(i)
m (t)−R(i)

m (t− 1)

A
(i)
m (t− 1)

}t=1,··· ,T |

+ |median{Dm(t)−Dm(t− 1)

Am(t− 1)
}t=1,··· ,T −median{D

(i)
m (t)−D(i)

m (t− 1)

A
(i)
m (t− 1)

}t=1,··· ,T |

+ |median{Pm(t)
S+
m(t)− Sm(t+ 1))

S+
m(t)I+

m(t)
}1,··· ,T−1 −median{P (i)

m (t)
S

(i)+
m (t)− S(i)

m (t+ 1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1|.

2 Simulation studies

2.1 Simulation 1: Performance of different RABC distance metrics

For our first simulation study, we limit our model to the analysis of only one country, i.e., we

only use the internal model. We here demonstrate the impact of the choice of the distance in

ABC algorithms and which one to choose in our epidemiological framework.

We simulate N = 200 sets of parameters and data, in an ABC fashion, by first simulating

a parameter value from the prior and using it to generate data according to the model. We

treat these N simulations as our test data set to assess how accurately the true parameters are

recovered by ABC using various distance functions. The simulation proceeds as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate

the parameter θ(i) = (α(i), β(i), δ(i), γ(i)) from uniform priors α(i) ∼ U(0, 2), β(i) ∼ U(0, 1),

δ(i) ∼ U(0, 1), and γ(i) ∼ U(0, 1). Based on the parameters and the stochastic model, we

generate a data set Data(i) corresponding to θ(i). If the generated data set Data(i) satisfies

certain conditions making it sufficiently real-world like, such as having the number of confirmed

accumulated deaths greater than 1% and lower than 30% of total confirmed cases and having the

number of accumulated recovered cases at least twice the number of accumulated deaths, then we

keep θ(i) as a true parameter value to be estimates and treat the generated data {A(i)
t , R

(i)
t , D

(i)
t } as
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real observed data. We repeat the process until we obtain 200 underlying true parameter values θ(i)

and the corresponding 200 datasets {A(i)
t , R

(i)
t , D

(i)
t }. For simplicity, we fix the initial condition

of the six compartments in the model as X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] =

(9999972, 15, 13, 0, 0, 0) and set the simulation time period T = 84 days for all i.

Step 2. Estimating parameters: For each iteration i, i ∈ {1, · · · , 200}, based on the sequence

of {A(i)
t , R

(i)
t , D

(i)
t }, we use RABC with different distance metrics to estimate the underlying

true parameter value θ(i). In this estimation step, we choose the acceptance rate 0.01 and sample

1000 particles to form the posterior. From the posterior distribution for each i, we calculate the

median values of each parameter: α̂(i), β̂(i), δ̂(i), γ̂(i). Then θ̂(i) = (α̂(i), β̂(i), δ̂(i), γ̂(i)) is used as

the best candidate for estimating the underlying true θ(i).

Step 3. Evaluating parameter estimates: For each iteration i, i ∈ {1, · · · , 200}, we evaluate

estimation accuracy in terms of the absolute bias, absolute relative bias, interquartile range, and

coverage rate of the interquartile for each parameter α(i), β(i), δ(i), γ(i) and its average. These

accuracy measurements are defined as follows. For a given parameter α(i) the absolute bias is

defined as |α̂(i) − α(i)|, and the absolute relative bias is defined as | α̂(i)−α(i)

α(i) |. Similarly for β(i),

γ(i), and δ(i). Average absolute bias for all parameters is defined as (|α̂(i)−α(i)|+ |β̂(i) − β(i)|+

|δ̂(i) − δ(i)|+ |γ̂(i) − γ(i)|)/4 and average absolute relative bias for all parameters is defined as

(| α̂(i)−α(i)

α(i) | + | β̂
(i)−β(i)

β(i) | + | δ̂
(i)−δ(i)
δ(i)

| + | γ̂(i)−γ(i)
γ(i)

|)/4. For each parameter, we also calculate the

interquartile range (IQR) of the posterior, denoted IQR(i), which is the difference between the

third and the first quartile of the resulting ABC posterior distribution. Furthermore, we check

whether the IQR of the posterior covers the underlying true parameter value, which we use

to calculate the coverage rate CR(i). Then the average of the IQR for all four parameters and

the average of the coverage rate is calculated to characterize the overall performance of the

two distance metrics. Finally, the average over the 200 iterations of these accuracy metrics is

calculated, which we use as our overall accuracy metrics for comparing the performance of the

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255465doi: medRxiv preprint 



two RABC distance metrics.

Table S1 summarizes the different prediction accuracy measures for the two distances. This

table shows that the distance we proposed increases the estimation accuracy in terms of relative

bias. The two types of bias are much smaller compared to using Euclidean distance. We also

observe that the IQR for the proposed distance is higher than the IQR for the Euclidean distance,

but the proposed distance also yields more narrow IQR. This means that our proposed distance

metric more frequently correctly bounds the true parameter values. The IQR is about 2.5 times

smaller when using the proposed distance metric instead of Euclidean distance. Figure S1 shows

boxplots of the IQR for the two distance metrics.

Table S1: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the local model.

Accuracy Distances Average alpha beta delta gamma
Absolute bias Euclidean 0.071 0.125 0.046 0.012 0.101

Proposed 0.028 0.054 0.004 0.002 0.052
Absolute relative bias Euclidean 0.148 0.107 0.089 0.093 0.303

Proposed 0.077 0.039 0.007 0.022 0.241
IQR Euclidean 0.153 0.264 0.094 0.031 0.222

Proposed 0.060 0.107 0.014 0.012 0.109
IQ coverage Euclidean 0.677 0.620 0.675 0.770 0.645

Proposed 0.777 0.635 0.880 0.960 0.635

26

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255465doi: medRxiv preprint 



0.0

0.1

0.2

0.3

0.4

0.5

alpha beta delta gamma
Euclidean distance

alpha beta delta gamma
Proposed distance

Parameter

alpha

beta

delta

gamma

Figure S1: Interquartile range of the posterior for parameters estimation of the proposed distance
and the Euclidean distance for the local model of one country.
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2.2 Simulation 2: Performance of local and global estimation

In this simulation study, we investigate the accuracy of three different estimation procedures

for the global travel model consisting of three countries. (We limit this investigation to three

countries for simplicity.) The first procedure uses a local approach with the Euclidean distance to

estimate each country’s parameters independently and ignores the travel between the countries.

We call this estimation procedure Euclidean local, and we use it as a benchmark to be compared

with the other two approaches. Then we consider a global estimation procedure as discussed in

Section 1.5 to estimate each country’s parameters. Here we use two distance metrics, Euclidean

distance and the distance proposed in Section 1.5. We call these estimation procedures Euclidean

global and Proposed global, respectively. The simulation is set up as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate the

parameter θ(i) = (θ
(i)
1 , θ

(i)
2 , θ

(i)
3 ), where for each j in 1, 2, 3, θ(i)

j = (α
(i)
j , β

(i)
j , δ

(i)
j , γ

(i)
j ) from

uniform priors as α(i)
j ∼ U(0, 2), β(i)

j ∼ U(0, 1), δ(i)
j ∼ U(0, 1), and γ(i)

j ∼ U(0, 1). Based

on the parameters and the stochastic model, we generate a data set Data(i) corresponding to

θ(i). If the generated data set Data(i) satisfies the conditions described above for Simulation

1, we retain θ(i) and treat it as the underlying true parameter value; we also retain the data

{A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}, for j = 1, 2, 3, and treat them as the observed data from these three

countries. We repeat the procedure until we have 500 parameter values and their corresponding

data sets {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3.

For simplicity, we fix the initial condition of the six compartments in the model as

X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] = (9999720, 150, 130, 0, 0, 0),

X2(0) = [S2(0), I2(0), A2(0), R2(0), D2(0), Ru
2(0)] = (2999970, 20, 10, 0, 0, 0),

X3(0) = [S3(0), I3(0), A3(0), R3(0), D3(0), Ru
3(0)] = (1999970, 15, 15, 0, 0, 0),
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and set the simulation period T = 84 days for all i. Each day, the number of outbound travelers

from country j, j = 1, 2, 3, is drawn from a normal distribution with mean µj = Pj ∗ 0.0003

and standard deviation sdj = 0.05 ∗ µj , where Pj is the size of the population of country j.

Those outbound travelers will enter one of the neighboring countries with proportions that are

proportional to the sizes (populations) of the target countries. For example, if there are n1 people

leaving country 1, the number of them entering country 2 is n1P2

P2+P3
and the number of them

entering country 3 is n1P3

P2+P3
.

Step 2. Estimating parameters: For each iteration i, i ∈ {1, · · · , 500}, based on the sequence

of {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3, we first naively use RABC with the local estimation approach and

Euclidean distance to estimate θ(i). Then we use RABC with the global estimation approach

with the two distance metrics to estimate the underlying true parameters θ(i). Then θ̂
(i)
j =

(α̂
(i)
j , β̂

(i)
j , δ̂

(i)
j , γ̂

(i)
j ) is obtained as the median of the RABC posterior samples and is used to

estimate the underlying true θ(i)
j , for j = 1, 2, 3.

Step 3. Evaluating parameter estimates: For each iteration i, i ∈ {1, · · · , 500}, for each

country, we evaluate the accuracy of our parameter estimates based on the absolute bias, ab-

solute relative bias, interquartile range (IQR), and coverage rate of IQR for each parameter

α(i), β(i), δ(i), γ(i) and its average as in simulation 1. The final accuracy measurements are cal-

culated by averaging the accuracy measurements across all three countries. When averaging

accuracy measures over multiple countries, we consider two weighted averages, one having

equal weights for all countries regardless of their population sizes and the other weighted based

on relative population sizes. In the latter, the weights are P1

P1+P2+P3
for country 1, P2

P1+P2+P3
for

country 2, and P3

P1+P2+P3
for country 3.

Tables S2 and S3 show the overall accuracy of different estimation procedures using equal

weights for each country (Table S2) and using population-based weights for each country (Table

S3). The two tables convey the same message: using a local approach to estimate the parameters
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Table S2: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the global model. For simplicity, we consider a small world of
just three countries with different population sizes; here each country has the same weight when
computing the overall accuracy.

Accuracy Estimation procedure Average alpha beta delta gamma
Absolute bias Euclidean local 0.496 1.328 0.108 0.058 0.490

Euclidean global 0.236 0.448 0.070 0.030 0.397
Proposed global 0.205 0.497 0.023 0.054 0.248

Absolute relative bias Euclidean local 0.928 1.611 0.176 0.591 1.332
Euclidean global 0.502 0.534 0.109 0.280 1.085
Proposed global 0.494 0.629 0.034 0.545 0.769

IQR range Euclidean local 0.171 0.263 0.179 0.060 0.180
Euclidean global 0.149 0.218 0.129 0.040 0.210
Proposed global 0.091 0.135 0.041 0.038 0.151

IQ coverage Euclidean local 0.528 0.463 0.577 0.690 0.381
Euclidean global 0.610 0.539 0.649 0.714 0.540
Proposed global 0.631 0.543 0.647 0.761 0.574

95% range Euclidean local 0.410 0.646 0.406 0.157 0.430
Euclidean global 0.361 0.542 0.309 0.107 0.486
Proposed global 0.247 0.378 0.116 0.115 0.380

95% coverage Euclidean local 0.866 0.819 0.956 0.978 0.712
Euclidean global 0.935 0.893 0.957 0.980 0.911
Proposed global 0.958 0.923 0.972 0.989 0.949
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Table S3: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the global model. For simplicity, we consider a small world
of just three countries with different population sizes; here each country’s contribution to the
overall accuracy is weighted based on the size of its population.

Accuracy Estimation procedure Average alpha beta delta gamma
Absolute bias Euclidean local 0.380 0.939 0.095 0.048 0.438

Euclidean global 0.194 0.338 0.064 0.025 0.351
Proposed global 0.155 0.372 0.019 0.043 0.186

Absolute relative bias Euclidean local 0.862 1.277 0.162 0.636 1.371
Euclidean global 0.512 0.459 0.101 0.304 1.185
Proposed global 0.414 0.583 0.028 0.564 0.480

IQR range Euclidean local 0.147 0.228 0.156 0.048 0.154
Euclidean global 0.131 0.191 0.118 0.035 0.182
Proposed global 0.073 0.111 0.033 0.030 0.120

IQR coverage Euclidean local 0.526 0.468 0.575 0.661 0.400
Euclidean global 0.610 0.548 0.641 0.701 0.550
Proposed global 0.613 0.536 0.595 0.733 0.586

95% range Euclidean local 0.360 0.571 0.361 0.128 0.380
Euclidean global 0.325 0.488 0.284 0.094 0.433
Proposed global 0.201 0.310 0.094 0.090 0.309

95% coverage Euclidean local 0.860 0.812 0.950 0.973 0.704
Euclidean global 0.928 0.887 0.954 0.976 0.898
Proposed global 0.948 0.905 0.962 0.985 0.941
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in the travel model is not appropriate. As shown in these tables, the Euclidean local estimation

procedure yields the highest bias, largest interquartile range, largest 95 % percentile range, and

lowest coverage. The performance is better for the Euclidean global procedure. As expected, the

proposed distance, which takes into account the travel model, performs best of the three.

2.3 Simulation 3: Effectiveness of travel regulation

In this simulation study, we study the effectiveness of different travel regulation policies. We

compare the percentages of people allowed to travel under each policy and the pandemic situation

in the country adopting the policy. The simulation is set up as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate the

parameter θ(i) = (θ
(i)
1 , θ

(i)
2 , θ

(i)
3 , θ

(i)
4 ), where for each j in 1, 2, 3, 4 θ(i)

j = (α
(i)
j , β

(i)
j , δ

(i)
j , γ

(i)
j ),

from uniform priors as α(i)
j ∼ U(ε, 1 − ε), β(i)

j ∼ U(ε, 0.25 − ε), δ(i)
j ∼ U(ε, 0.25 − ε),

and γ
(i)
j ∼ U(ε, 1 − ε). We chose ε = 0.001 to make sure that the generated parameters

do not fall at the boundaries of the priors and cause the generation of atypical data. We

also added some constraints to ensure the parameter values are reasonable by only keeping

parameters with R0 =
α
(i)
j

β
(i)
j +γ

(i)
j

between 0.47 and 6.47 as reported for different regions around

the world (11). To investigate the effectiveness of travel regulations, we use one more constraint

to set the reproduction number R0 in these 4 countries in 4 different zones, where country

1 has R0 between 0.47 and 0.9 , country 2 has R0 between 0.9 and 1, country 3 has R0

between 1 and 1.1, and country 4 has R0 between 1.1 and 6.47. The initial conditions of

each country are generated randomly as (S
(i)
j (0), I

(i)
j (0), A

(i)
j (0), R

(i)
j (0), D

(i)
j (0), R

u(i)
j (0)) =

(Pj − (I
(i)
j (0) + I

(i)
j (0)), I

(i)
j (0), A

(i)
j (0), 0, 0, 0), where Pi ∼ U(50 ∗ 104, 100 ∗ 106)), I

(i)
j (0) ∼

U(0, 200), A
(i)
j (0) ∼ U(0, 10). Based on the parameters and the stochastic model, we generate

a data set Data(i) corresponding to θ(i). If the generated data set Data(i) satisfies the conditions

described for Simulation 1 above, we keep θ(i) and treat it as the underlying true value of the
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parameter; we also retain the data {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)} for j = 1, 2, 3, 4, which we treat as the

observed data collected from each country. We keep generating data till we get 200 underlying

true parameters θ(i) and the corresponding 200 data sets {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3,4. We fix

the duration of the simulation to T = 42 days for all i. Each day, the total number of of

outbound travelers from country j, j = 1, 2, 3, is drawn from a normal distribution with mean

µ
(i)
j = P

(i)
j ∗ 0.0003 and standard deviation sd(i)

j = 0.05 ∗ µ(i)
j , where P (i)

j is the size of the

population of country j. The outbound travelers enter other countries in proportion to sizes of

their populations.

Step 2. Estimation step: For each iteration i, i ∈ {1, · · · , 200}, based on the sequence of

{A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3,4, we use the proposed global approach to estimate the underlying

true θ(i). Then θ̂
(i)
j = (α̂

(i)
j , β̂

(i)
j , δ̂

(i)
j , γ̂

(i)
j ) are obtained as the median values of the RABC

posterior samples and are used to estimate the underlying true θ(i)
j , for j = 1, 2, 3, 4.

Step 3. Prediction step: For each iteration i, i ∈ {1, · · · , 200}, based on the estimated pa-

rameter θ̂(i), we simulate data for the following two weeks under eight different travel regulation

policies. The first two are the most extreme, where all countries are either fully open or fully

closed. The third and the fourth are currently used policies, where a 14-days quarantine is

required for all arrivals or a 14-day quarantine is required required for arrivals from high-risk

countries only. The last 4 policies are our proposed travel regulation policies. We describe each

policy in detail below.

P-1 All countries are fully open and allow all airline travel as usual.

P-2 All countries are fully closed and no airline travel is allowed across their borders.

P-3 The country requires a 14-day quarantine for all arrivals. This policy is currently used in

many countries such as Korea or India. The other countries are fully open.
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P-4 The country requires a 14-day quarantine for travelers from high-risk countries only, i.e.,

countries with the average number of active confirmed daily cases greater than 20 in

100000 people during the last 2 weeks, and no quarantine for arrivals from other countries.

P-4 is a more flexible policy that is currently used by the UK. The other countries are fully

open.

P-5 The country adopts a simplified version of the proposed average control policy: we regulate

travel such that the average number of daily undetected infected cases is at most 10%

higher than the maximum number of daily cases under P-2. The other countries are fully

open.

P-6 The country adopts the proposed probability control policy: we regulate travel such that

the average number of daily undetected infected cases is at most 10% higher than the

maximum number of daily cases under P-2 with probability at least 90%. The other

countries are fully open.

P-7 Policy 7 is similar to P-5 but we use the full version of the proposed average control policy

as in Example 1 of Section 1.3. The other countries are fully open.

P-8 Policy 8 is similar to P-6 but we use the full version of the proposed probability control

policy as in Example 1 of Section 1.3. The other countries are fully open.

Policy effectiveness is evaluated based on two factors: the percentage of people allowed to

travel and the pandemic situation in the country once the policy is adopted.

1. The percentage of people allowed to enter the country under each policy is denoted Tc.

This number is calculated using the number of people allowed to travel inbound to the

country divided by the total number of people willing to enter the country.
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2. The percentage of people that will travel due to each policy is denoted Te. This number is an

adjusted version Tc. If a 14-day quarantine is applied to a country, we assume that only 5%

of the normal number of travelers from this country are willing to travel under this policy.

The choice of 5% is based on the data provided by Korea Tourism Organization. (Korea is

one of the countries that require a 14-day quarantine for all arrivals.) This adjustment gives

us more insights concerning the effect of the 14-day quarantine requirement. After this

adjustment, the percentage of expected inbound travelers is obtained by using the number

of expected inbound travelers divided by the normal number of inbound travelers.

The effectiveness of policies on the epidemic in the considered country is evaluated based on

7 factors.

1. Percentage of active confirmed imported cases that enter the country due to each policy.

This number is calculated using the total number of inbound traveling active confirmed

cases that eventually become active confirmed cases, divided by the total number of

inbound travelers during the regulation period. We denote this category as IA.

2. Percentage of undetected infected imported cases entering the country due to each policy.

This number is obtained using the total number of undetected infected cases traveling

inbound divided by the total number of inbound travelers during the regulation period. We

denote this category as II.

3. Percentage of undetected infected imported cases when quarantining after entering the

country. A policy that does not require quarantine is equivalent to a 0 -day quarantine. This

number is obtained by taking the total number of undetected infected inbound travelers

after quarantine divided by the total number of inbound travelers during the regulation

period. We denote this category as IIQ.
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4. Relative change in total new cases (detected and undetected), denoted as RU. This number

is calculated as the difference in the total number of cases at the end of the regulation

period and the beginning of the regulation period, divided by the total number of cases at

the beginning of the regulation period.

5. Relative change in total new active confirmed cases, denoted as RA. This number is

calculated similarly to RU above but instead of using the number of cases, all counts are

based on the number of active confirmed cases.

6. Percent change in total new cases, denoted as PU. This number is calculated as the

difference in the total number of cases at the end of the regulation period and the beginning

of the regulation period, divided by the population of the country.

7. Percent change in total confirmed cases, denoted as PA. This number is calculated as the

difference in the total number of confirmed cases at the end of the regulation period and

the beginning of the regulation period, divided by the population of the country.

We generate 1000 stochastic realizations conditional on the estimated parameters and the

estimated initial conditions at the beginning of the regulation period. For each realization, we

calculate the above metrics, and we report the 0.025 and 0.975 percentile values of each based

on the 1000 realizations. To give a fair judgment on the effectiveness of travel regulation on the

pandemic, we stratify the metrics by dividing countries to three different groups, where Group 1

corresponds to countries with an effective reproduction number R(t) lower than 0.9, group 2

corresponds to countries with R(t) between 0.9 and 1.1, and Group 3 for countries with an R0

greater than 1.1. Notice that for our model, following Diekmann et al. (2009) (12), we can show

that the effective reproduction number Ri(t) of a given country i is Ri(t) =
S
(t)+
i αi

Pi(t)(βi+γi)
. The

overall average across these 200 iterations of the above metrics for each group of countries is

calculated and used as the final measurement to compare the effectiveness of different policies.
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In Table S5, we see that under P-4 the number of expected inbound travelers, Te, is higher

than P-5, the simplified version of our proposed average control policy. However, under P-4,

the percent of undetected infected after done with quarantine, IIQ enter countries of Group 1 is

about (0.03%, 0.03%) and Group 2 is about (0.03%, 0.04%). These values quite high compare

to (0.00%, 0.00%) for both groups as in P-5. This is because the average of increased cases

each day in the last 14 days was used to decide which countries belong to a green zone or red

zone. However, the number of undetected infectious cases may grow very fast in the green

zone countries, and in the absence of quarantine, undetected infectious cases from green zone

countries may spread the disease fast in the arrival country.

2.4 Simulation 4. Effectiveness of policy coordination

In this simulation study, we study the effectiveness of a global response on the pandemic in

terms of the percentage of people allowed to travel and the overall worldwide pandemic situation

under a coordinated policy. Simulations are set up similarly to those in Section 2.3 but here we

consider a world of 8 countries, where countries 1 and 2 with R(0) greater between 1.1 and 6.47,

countries 3 and 4 with R(0) between 1 and 1.1, countries 5 and 6 with R(0) between 0.9 and 1,

and countries 7 and 8 with R(0) from 0.47 to 0.9.

We consider 8 different policy coordination scenarios:

S-1 All countries are fully open and allow all travel.

S-2 All countries are fully closed and do not allow any airline travel .

S-3 All countries require a 14-day quarantine for all arrivals.

S-4 All countries use the simplified version of the proposed average control policy.
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S-5 Countries 1, 3, 5, 7 require a 14-day quarantine for all arrivals, and countries 2, 4, 6, 8

allow no inbound travel.

S-6 Countries 1, 3, 5, 7 use the simplified version of the proposed average control policy, and

countries 2, 4, 6, 8 allow no inbound travel.

S-7 Countries 1, 3, 5, 7 require a 14-day quarantine for all arrivals, and countries 2, 4, 6, 8 are

fully open.

S-8 Countries 1, 3, 5, 7 use the simplified version of the proposed average control policy, and

countries 2, 4, 6, 8 are fully open.

The coordination effectiveness is evaluated based on the overall change in the global pandemic

and for each group of countries as in the simulation studies of Section 2.3.
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Table S4: We show (0.025, 0.975) percentiles of pandemic changes for different scenarios. For a
given policy, the upper value and lower value of each measurement are the 0.025 percentile value
and the 0.975 percentile value, respectively. G1, G2, G3 denotes countries in Group 1, 2, and 3,
respectively. RU is the relative change in number of cases (including detected and undetected),
RA is the relative change in number of cases that were confirmed, PU is the percent change in
total new cases, and PA is the percent change in total new confirmed cases.

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
G1 RU 2.53 0.06 0.64 0.88 0.06 0.06 0.11 0.06

3.20 0.27 0.92 1.26 0.27 0.26 0.35 0.26
RA 1.58 0.08 0.86 0.99 0.08 0.08 0.12 0.08

2.14 0.27 1.15 1.36 0.27 0.27 0.34 0.27
PU (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PA (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G2 RU 1.50 0.45 0.63 0.86 0.46 0.45 0.48 0.45

2.05 0.84 1.02 1.32 0.84 0.84 0.88 0.84
RA 0.99 0.36 0.60 0.71 0.37 0.36 0.39 0.36

1.37 0.64 0.90 1.04 0.64 0.64 0.67 0.64
PU (%) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
PA (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
G3 RU 6.28 6.30 6.28 6.28 6.28 6.28 6.28 6.28

6.65 6.67 6.65 6.65 6.65 6.65 6.65 6.65
RA 5.32 5.33 5.32 5.32 5.32 5.32 5.32 5.32

5.56 5.57 5.56 5.56 5.56 5.56 5.56 5.56
PU (%) 5.39 5.40 5.38 5.39 5.38 5.38 5.38 5.38

5.50 5.52 5.50 5.50 5.50 5.50 5.50 5.50
PA (%) 2.39 2.40 2.39 2.39 2.39 2.39 2.39 2.39

2.45 2.46 2.45 2.45 2.45 2.45 2.45 2.45
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Table S5: We show (0.025, 0.975) percentiles of travel effects for different policies. For a given
policy, the upper value and lower value of each measurement are the 0.025 percentile value and
the 0.975 percentile value, respectively. IA is the percentage among the incoming travellers that
will eventually become active confirmed after arrival, II is the percentage among the incoming
travellers that are undetected infectious, IIQ is the percentage of the incoming travellers who are
undetected infectious after the quarantine if the destination country requires a 14-day quarantine,
Tc is the percentage of inbound travel capacity, and Te is the percentage of expected of inbound
travel.

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
G1 IA (%) 0.09 0.00 0.09 0.09 0.00 0.00 0.00 0.00

0.11 0.00 0.11 0.11 0.00 0.00 0.01 0.00
II (%) 0.17 0.00 0.17 0.17 0.00 0.00 0.00 0.00

0.19 0.00 0.19 0.19 0.00 0.00 0.01 0.00
IIQ (%) 0.17 0.00 0.00 0.03 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.03 0.00 0.00 0.01 0.00
Tc 100% 0% 100% 100% 34% 0% 37% 0%
Te 100% 0% 5% 89% 34% 0% 37% 0%

G2 IA (%) 0.09 0.00 0.09 0.09 0.00 0.00 0.00 0.00
0.11 0.00 0.11 0.11 0.00 0.00 0.01 0.00

II (%) 0.18 0.00 0.18 0.18 0.00 0.00 0.01 0.00
0.20 0.00 0.20 0.20 0.00 0.00 0.02 0.00

IIQ (%) 0.18 0.00 0.00 0.03 0.00 0.00 0.01 0.00
0.20 0.00 0.00 0.04 0.00 0.00 0.02 0.00

Tc 100% 0% 100% 100% 60% 0% 63% 0%
Te 100% 0% 5% 89% 60% 0% 63% 0%

G3 IA (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IIQ (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tc 100% 0% 100% 100% 34% 0% 34% 0%
Te 100% 0% 5% 100% 34% 0% 34% 0%
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Table S6: We show (0.025, 0.975) percentile of pandemic changes for different scenarios. For a
given scenario, the upper value and lower value of each measurement are the 0.025 percentile
value and the 0.975 percentile value, respectively. G denotes all countries. See Table S4 caption
for more information.

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
G RU 10.68 2.65 4.02 2.66 3.45 2.65 6.79 6.01

11.56 3.06 4.51 3.07 3.92 3.07 7.46 6.61
RA 8.13 2.77 4.92 2.77 4.08 2.77 6.34 5.04

8.89 3.13 5.43 3.14 4.55 3.13 6.97 5.56
PU (%) 8.35 8.31 8.28 8.31 8.29 8.31 8.31 8.33

8.39 8.35 8.32 8.35 8.33 8.35 8.35 8.37
PA (%) 4.40 4.38 4.37 4.38 4.37 4.38 4.38 4.39

4.42 4.40 4.39 4.40 4.39 4.40 4.41 4.41
G1 RU 11.16 0.59 3.17 0.60 1.84 0.59 7.24 6.01

12.23 0.93 3.61 0.94 2.21 0.93 7.99 6.70
RA 9.01 0.74 4.42 0.75 2.52 0.74 6.62 4.85

9.95 1.06 4.90 1.07 2.91 1.07 7.33 5.48
PU (%) 0.05 0.01 0.02 0.01 0.01 0.01 0.03 0.03

0.05 0.01 0.02 0.01 0.01 0.01 0.04 0.03
PA (%) 0.03 0.00 0.01 0.00 0.01 0.00 0.02 0.02

0.03 0.00 0.02 0.00 0.01 0.00 0.02 0.02
G2 RU 12.13 1.54 2.98 1.54 2.50 1.54 6.43 5.47

13.29 2.13 3.68 2.13 3.19 2.13 7.32 6.27
RA 8.14 1.62 4.08 1.62 3.33 1.62 5.79 4.08

9.14 2.13 4.81 2.13 4.04 2.13 6.64 4.74
PU (%) 0.11 0.04 0.05 0.04 0.05 0.04 0.08 0.08

0.13 0.05 0.06 0.05 0.06 0.05 0.10 0.09
PA (%) 0.07 0.03 0.04 0.03 0.03 0.03 0.05 0.05

0.08 0.04 0.05 0.04 0.04 0.04 0.06 0.06
G3 RU 7.31 6.94 6.94 6.94 6.94 6.94 7.07 7.07

7.45 7.08 7.07 7.08 7.08 7.08 7.21 7.21
RA 7.25 7.10 7.12 7.09 7.11 7.10 7.18 7.17

7.35 7.20 7.22 7.20 7.21 7.20 7.29 7.27
PU (%) 33.11 33.14 32.99 33.14 33.06 33.14 33.05 33.12

33.24 33.27 33.12 33.27 33.19 33.27 33.18 33.25
PA (%) 17.43 17.44 17.39 17.44 17.42 17.44 17.41 17.44

17.50 17.52 17.46 17.52 17.49 17.52 17.48 17.51
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Table S7: We show (0.025, 0.975) percentiles of travel effects for different scenarios. For a given
scenario, the upper value and lower value of each measurement are the 0.025 percentile value
and the 0.975 percentile value, respectively. See Table S5 caption for more information.

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
G IA (%) 1.57 0.00 1.57 0.00 0.80 0.00 1.57 0.78

1.67 0.00 1.68 0.00 0.85 0.00 1.68 0.83
II (%) 2.68 0.00 2.68 0.01 1.36 0.00 2.68 1.32

2.81 0.00 2.81 0.01 1.42 0.00 2.81 1.38
IIQ (%) 2.68 0.00 0.00 0.01 0.00 0.00 1.32 1.32

2.81 0.00 0.00 0.01 0.00 0.00 1.38 1.38
Tc 100% 0% 100% 50% 50% 25% 100% 75%
Te 100% 0% 5% 50% 3% 25% 52% 75%

G1 IA (%) 1.98 0.00 1.98 0.00 0.99 0.00 1.98 0.99
2.09 0.00 2.09 0.01 1.04 0.00 2.10 1.05

II (%) 3.10 0.00 3.10 0.01 1.57 0.00 3.10 1.54
3.24 0.00 3.24 0.01 1.63 0.00 3.24 1.61

IIQ (%) 3.10 0.00 0.00 0.01 0.00 0.00 1.53 1.54
3.24 0.00 0.00 0.01 0.00 0.00 1.60 1.61

Tc 100% 0% 100% 64% 50% 32% 100% 82%
Te 100% 0% 5% 64% 3% 32% 52% 82%

G2 IA (%) 1.77 0.00 1.77 0.00 0.89 0.00 1.77 0.89
1.89 0.00 1.89 0.01 0.95 0.00 1.90 0.95

II (%) 3.02 0.00 3.02 0.01 1.52 0.00 3.02 1.51
3.17 0.00 3.17 0.01 1.59 0.00 3.17 1.59

IIQ (%) 3.02 0.00 0.00 0.01 0.00 0.00 1.51 1.51
3.17 0.00 0.00 0.01 0.00 0.00 1.58 1.59

Tc 100% 0% 100% 64% 50% 32% 100% 82%
Te 100% 0% 5% 64% 3% 32% 52% 82%

G3 IA (%) 0.77 0.00 0.77 0.00 0.42 0.00 0.77 0.35
0.82 0.00 0.82 0.00 0.45 0.00 0.82 0.37

II (%) 1.57 0.00 1.57 0.01 0.85 0.00 1.57 0.72
1.64 0.00 1.64 0.01 0.88 0.00 1.64 0.76

IIQ (%) 1.57 0.00 0.00 0.01 0.00 0.00 0.72 0.72
1.64 0.00 0.00 0.01 0.00 0.00 0.76 0.76

Tc 100% 0% 100% 7% 50% 3% 100% 53%
Te 100% 0% 5% 7% 3% 3% 52% 53%
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