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SUMMARY
Multiple sclerosis (MS) is an immune-mediated disease whose precise etiology is unknown. Several studies
found alterations in the microbiome of individuals with MS, but the mechanism by which it may affect MS is
poorly understood. Here we analyze the microbiome of 129 individuals with MS and find that they harbor
distinct microbial patterns compared with controls. To study the functional consequences of these differ-
ences, wemeasure levels of 1,251 serummetabolites in a subgroup of subjects and unravel a distinct metab-
olite signature that separates affected individuals from controls nearly perfectly (AUC = 0.97). Individuals with
MS are found to be depleted in butyrate-producing bacteria and in bacteria that produce indolelactate, an
intermediate in generation of the potent neuroprotective antioxidant indolepropionate, which we found to
be lower in their serum. We identify microbial and metabolite candidates that may contribute to MS and
should be explored further for their causal role and therapeutic potential.
INTRODUCTION

Multiple sclerosis (MS) is a CNS disease affecting young adults

with a world-wide prevalence of 60–120 per 100,000. MS etiol-

ogy involves genetic and environmental factors as well as im-

mune-mediated mechanisms.1–3 The gut microbiota, defined

as the set of microorganisms that reside in the mucous mem-

branes of the human intestine, has been suggested to play a

role in the pathogenesis of neurological diseases, including

MS. It has been shown that the gut microbiota can interact

with the brain and cause neurochemical changes, regulates

different behaviors, and modulates brain development, suggest-

ing a role of the gut microbiota in MS pathogenesis.4–8 The gut

microbiota can interact with the brain by immune activation; by

endocrine and neural pathways, including vagal afferents; and

bymicrobial metabolites acting directly or indirectly on the brain,

in some cases passing the blood-brain-barrier.9–11 The effects of

the microbiota on the brain can also be mediated by diet.12,13 Al-

terations in the gut microbiota and damaged intestinal barrier,

also known as leaky gut syndrome, can cause dysfunction in

the cerebellum and hippocampus.14,15 Conversely, changes in
This is an open access article under the CC BY-N
the gut can also positively affect the clinical course and symp-

toms of CNS disorders,16 and it has been shown in studies using

experimental autoimmune encephalomyelitis (EAE), the most

widely used animal model of MS, that treatment with probiotics

suppressed development of EAE and reduced the severity of

clinical symptoms.17–19

Several recent case-control studies found alterations in the

gut microbiota of individuals with MS and suggested immuno-

logical links between dysbiosis and MS pathogenesis. Their

main findings are shown in Table S1.20–29 These studies vary in

the number of individuals with MS who were followed from 722

to 60.27 Other studies used targeted or untargeted serummetab-

olomics to identify metabolites that are altered in individuals with

MS compared with healthy controls (their main findings are

shown in Table S130–38) or to distinguish MS from other neuro-

logical diseases.39–41

Here we performed a coupled analysis of gut microbiotas, un-

targeted metabolomics, peripheral blood gene expression, and

clinical neurological data in a large cohort of individuals with

MS with various disease types and different clinical stages of

the disease. We used a machine-learning algorithm that
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accurately classified individuals withMS from controls using only

microbiome data and found that butyrate-producing bacteria

had the highest influence on the predictive models. Consistent

with this result, we found that individuals with MS have signifi-

cant depletion of butyrate-producing species and bacterial

genes, even when aggregating all butyrate-producing bacte-

ria.42 Similarly, a logistic regression model we developed using

only serum metabolite data classified affected individuals from

controls with nearly perfect accuracy and uncovered specific

metabolites that were associated with the microbiome, some

of which have been described previously as having a role in in-

flammatory processes. Differences in these metabolites, such

as indolelactate, were also reflected in bacterial species that

produce these metabolites, suggesting a role of microbiota-

derived metabolites in MS. We further searched for associations

between changes in bacterial species abundance and host gene

expression levels and found associations that may be related to

inflammation pathways.

Our coupled analysis allowed us to find altered bacteria and

associations between the microbiota and metabolite products

that may affect MS pathogenesis and provide a comprehensive

source for potential therapeutic candidates.

RESULTS

Cohort description and study design
To study the role of the gutmicrobiome and serummetabolites in

MS, we recruited 187 individuals aged 18–75, comprising 129 in-

dividuals with MS followed at the Multiple Sclerosis Center,

Sheba Medical Center, with different types of the disease and

with different clinical manifestations, and 58 healthy controls

(Figure 1A; Table S2). We performed metagenomic sequencing

of rectal stool samples from the 187 participants and randomly

sampled 5million reads from eachmetagenomic sample to allow

fair comparison across subjects (Table S3). The age and gender

distributions differed between individuals with MS and controls

(mean ± SD of 38.3 ± 11.8 versus 45.8 ± 12.5 for age of individ-

uals withMS versus controls, respectively [Kolmogorov-Smirnov

test, p < 0.004] and 27.9% versus 50% for percentages of males

with MS versus controls, respectively [chi-square test, p <

0.004]). We accounted for these differences throughout our

analyses.

For a partial subgroup of 90 individuals with MS (Table S2), we

used untargeted mass spectrometry to profile 1,251 metabolites

from their serum samples (Tables S4 and S5), covering a wide

range of biochemicals, including lipids, amino acids, xenobi-

otics, carbohydrates, peptides, nucleotides, and �30% un-

known compounds. We compared it with the metabolite profile

of 90 age-, gender-, and BMI-matched healthy controls from

another study43 by using a quantile normalization process for

which we used 35 healthy controls from our study (STAR

Methods).

For a subgroup of 49 participants (36 individuals with MS and

13 controls), we also used mRNA sequencing (mRNA-seq) to

measure the expression of 22,929 human genes (Table S6).

Furthermore, 44 of the individuals with MS recorded their entire

nutritional intake for at least 3 days and in real time using a

specialized app provided to them (Table S7; STAR Methods).
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Together, they logged 4,806 different food items. We also

collected a comprehensive profile from all participants, including

food frequency, lifestyle, and medical background question-

naires (STAR Methods).

The gut microbiota of individuals with MS differs from
that of healthy controls
To test for differences between the microbiome of individuals

with MS and healthy controls, we computed the relative abun-

dances of species (Table S3) using a much-expanded set of ge-

nomes published recently44 and performed a Mann-Whitney U

test. Of 686 species tested, we found 23 species that differed

significantly between the two groups (p < 0.05 after 5% false dis-

covery rate [FDR] correction; Figures 1B and 1C; Table S3).

These differences are unlikely to occur as a result of the different

age, gender, and BMI distributions between the two groups

because 19 of these 23 species do not correlate significantly

with these parameters across a 1,361-healthy person cohort,43

and the remaining 4 species have a low correlation (Pearson

R2 < 0.02; Table S3).

Next we wanted to find out whether a machine-learning algo-

rithm based only on microbiome data can distinguish individuals

with MS from healthy controls. We used gradient boosting deci-

sion trees45 because it is a powerful model that can capture

nonlinear interactions between bacteria. As microbiome fea-

tures, we used species, genus, and family level relative abun-

dances computed from the metagenomics data. Performance

was evaluated using a standard 10-fold cross-validation scheme

where the labels (MS/control) of subjects in each fold were

predicted using a model trained on the microbial data of the par-

ticipants from all other folds. We obtained significant predictive

power (ROC [receiver operating characteristics] AUC [area under

the curve] = 0.7, AUPR [area under the precision-recall curve] =

0.74, using species- and family-level relative abundances as fea-

tures; permutation test, p < 0.002 for ROC AUC and AUPR for

1,000 label permutations), suggesting differences between the

microbiomes of individuals with MS and controls. To verify that

our model’s predictive power was not reliant solely on age,

gender, and BMI differences between the cohorts, we compared

a model based only on age, gender, and BMI with a model that

combines both of these features and microbiome-based fea-

tures and indeed found the latter to perform better (ROC AUC

of 0.58 versus 0.83, respectively; Mann-Whitney U test, p <

10�34; Figures 1E and 1F).

Individuals with MS have lower levels of species and
genes involved in butyrate production
To interpret our machine-learning models and find the features

that were important for driving its predictions, we used Shapley

additive explanations (SHAP), a feature attribution analysis tool

that assigns each feature an importance value (SHAP value) for

a particular prediction (STAR Methods). Notably, bacteria that

produce butyrate, a short-chain fatty acid (SCFA) suggested to

have a role in MS pathogenesis,46 had the highest influence on

the model predictions. The two bacteria with the highest SHAP

values were Coprococcus catus (s4669) and an unknown spe-

cies whose closest other species is Roseburia inulinivorans

(s4939). Both bacteria have been shown previously to produce



Figure 1. The gut microbiota of individuals

with MS differs from that of healthy controls

(A) Illustration of our experimental design.

(B) Phylogenetic tree of analyzed bacteria, from

phylum level (inner layer) to family, genus, and

species (outer layer). Orange and green dots

represent significant enrichment in individuals with

MS and control participants, respectively. Back-

ground colors represent different phyla.

(C) Volcano plot of bacterial species that appear in

at least 5% of the participants. The data are

plotted as log (base 2) fold change versus the

negative log (base 10) of the adjusted p value

(computed with Mann-Whitney U test). Each dot

represents one species. Orange dots represent

species enriched in individuals with MS, and green

dots represent species enriched in control partic-

ipants. The dashed horizontal blue line indicates

the threshold for statistical significance (p % 0.05

after 5% FDR correction).

(D) SHAP summary plot showing the distribution of

the effect of each feature on the model output for a

prediction of each group (MS versus control). The y

axis indicates the feature name in order of impor-

tance (defined by the sum of SHAP value magni-

tudes over all samples) from top to bottom. Shown

on the x axis is the SHAP value, indicating whether

the effect of that feature is associated with MS

(higher values) or a control prediction (lower

values). Each point represents one subject. The

color represents the feature value (red, high; blue

low). Low levels ofCoprococcus catus (s4669) and

another unknown species (which is close to

Roseburia inulinivorans, s4939), increase the

probability of MS group prediction by the model.

(E and F) Receiver operating characteristic curve

(E) and precision recall curve (F) for distinguishing

individuals with MS from control participants using

gradient boosting decision trees; average of 100

models. Light lines represent results of individual

models, and dark lines represent the mean of 100

models. The gray curve represents baseline pre-

dictions using only age, gender, and BMI as fea-

tures. Area under curve = 0.58 (95% CI = [0.573,

0.582]), average precision = 0.74 (95%CI = [0.741,

0.746]). The Blue line represents prediction results

using microbial features. Area under curve = 0.70

(95%CI = [0.695, 0.705]), average precision = 0.82

(95% CI = [0.81, 0.82]). The pink line represents prediction results using bacterial abundance and age, gender, and BMI features. Area under curve = 0.83 (95%

CI = [0.825, 0.835]), average precision = 0.92 (95% CI = [0.919, 0.928]). C. catus, Coprococcus catus (4669); R. inulinivorans*, unknown species closest to

Roseburia inulinivorans (4939);C. sp.CAG,Clostridium species CAG 264 (5121); R. sp, Ruminococcus species (4552);G. pamelaeae,Gordonibacter pamelaeae

(14824).
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butyrate.42 Low levels of both species result in higher predictions

of the model for the MS group (Figure 1D). More broadly,

checking for a difference in the sum of the abundances of all

butyrate-producing bacteria, we found lower levels of butyrate-

producing bacteria in individuals with MS (mean relative abun-

dance of 0.056 versus 0.083 for individuals with MS versus con-

trols, respectively; Mann-Whitney U test, p < 0.004; Figure 2A).

Six butyrate-producing species were depleted significantly in

comparison with the control group (Mann-Whitney U test, p <

0.05 after 5% FDR correction). Here, too, we validated that these

results are not due to age, gender, and BMI differences between

affected individuals and controls (STAR Methods). Among indi-
viduals with MS, no correlation was found between levels of

butyrate-producing bacteria and being treated with disease-

modifying drugs (DMDs) or treatment duration (STAR Methods).

To gain furthermechanistic insight into the butyrate association,

we next searched for differences at the level of butyrate-produc-

ing bacterial genes.Weused theDIAMONDalgorithm47 applied to

the Kyoto Encyclopedia of Genes and Genomes (KEGG) data-

base48 to infer the functions of the microbial communities of the

MS and control groups (STAR Methods; Table S3). We first

compared the abundances of two known bacterial gene bio-

markers for butyrate-producing communities, butyryl-CoA:ace-

tate CoA transferase (K01034) and butyrate kinase (K00929).49
Cell Reports Medicine 2, 100246, April 20, 2021 3



Figure 2. Individuals with MS have lower

levels of butyrate-producing bacteria and

genes involved in butyrate production

(A) Boxplots (center, median; box, interquartile

range [IQR]; whiskers, 1.5 3 IQR) showing bacte-

rial relative abundance for 129 individuals with MS

and 58 controls for butyrate-producing species.

The sum of the abundance of all butyrate-pro-

ducing species is shown on the left. Other species

are sorted from left to right by their significance

level, which is shown at the top of the boxplot

(Mann-Whitney U test, *p < 0.05, **p < 0.01, ***p <

0.001; n.s., not significant).

(B) Boxplots (center, median; box, IQR; whiskers,

1.5 3 IQR) showing relative abundance for 129

individuals with MS and 58 controls for butyrate-

producing genes, sorted from left to right by their

significant level, which is shown at the top of the

boxplot (same significant markings as in A).

(C) The metabolic pathways that convert proteins

and carbohydrates into butyrate. The bacterial

genes (with their KO [KEGG orthology] identifiers)

in the green boxes were enriched in controls

(Mann-Whitney U test, p < 0.05). The bacterial

genes (with their KO identifiers) in the orange

boxes were enriched in individuals with MS

(Mann-Whitney U test, p < 0.05). The bacterial

genes in the striped boxes were not enriched in

any of the groups.

K00656, formate C-acetyltransferase; K00244,

fumarate reductase flavoprotein subunit; K00626,

acetyl-CoA C-acetyltransferase; K18119, succi-

nate-semialdehyde dehydrogenase; K00074, 3-

hydroxybutyryl-CoA dehydrogenase; K00043, 4-

hydroxybutyrate dehydrogenase; K01715, enoyl-

CoA hydratase; K18122, 4-hydroxybutyrate CoA-

transferase; K00209, enoyl-[acyl-carrier protein]

reductase/trans-2-enoyl-CoA reductase; K14534,

4-hydroxybutyryl-CoA dehydratase/vinylacetyl-

CoA-Delta-isomerase; K01034, butyryl-CoA:ace-

tate CoA transferase; K00929, butyrate kinase;

B. crossotus, Butyrivibrio crossotus; F. prausnitzii,

Faecalibacterium prausnitzii; R. sp CAG 18,

Roseburia sp. CAG 18; R. inulinivorans CAG 15,

Roseburia inulinivorans CAG 15; E. rectale CAG

36, Eubacterium rectale CAG 36; E. hallili CAG 12,

Eubacterium hallili CAG 12; E. ventriosum, Eu-

bacterium ventriosum; A. hadrus, Anaerostipes

hadrus; R. intestinalis CAG 13, Roseburia intestinalis CAG 13; L. bacterium CAG 25, Lachnospiraceae bacterium CAG 25; E. sp CAG 146, Eubacterium sp. CAG

146; C. sp CAG 146, Coprococcus sp. CAG 131; F. sp, Faecalibacterium sp.; O. sp CAG 241, Oscillibacter sp. CAG 241.
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Consistent with our results, we found lower levels of the sum of

these two gene groups in individuals withMS comparedwith con-

trols (Mann-Whitney U test, p < 0.021; Figures 2B and 2C).

Notably, lower relative abundance in individuals with MS was

not reflected in serum levels of butyrate, which were similar be-

tween individuals with MS and controls (Mann-Whitney U test, p

> 0.1). We further sought to test whether diet is correlated with

the sum of the abundances of all butyrate-producing bacteria.

Of the 129 individuals with MS, 44 recorded their nutritional

intake (Table S7; STAR Methods). Although high-fiber diets

may increase butyrate levels,50 no correlation was found be-

tween fiber consumption per day or per calorie and the sum of

the abundances of all butyrate-producing bacteria (Spearman
4 Cell Reports Medicine 2, 100246, April 20, 2021
R = 0.003, p > 0.97; Spearman R =�0.1, p > 0.53). No significant

difference was found in the sum of the abundances of all buty-

rate-producing bacteria between individuals with a high-fiber

diet (at least 25 g of fiber per day51 compared with other affected

individuals; Mann-WhitneyU test, p > 0.1). We also found no cor-

relation between caloric consumption from specific food cate-

gories that are high in fiber (vegetables and their products,

nuts, and seeds and their products) and the sum of the abun-

dances of all butyrate-producing bacteria (Spearman P > 0.05).

In a much larger cohort of 23,191 individuals from Israel and

the United States who sent their samples to a consumer micro-

biome company and signed an appropriate consent form,52 we

also did not find any correlation between the sum of the



Figure 3. Global differences between serum

metabolites of individuals with MS and

healthy controls

(A) Volcano plot of serummetabolites. The data are

plotted as log (base 2) fold change versus the�log

(base 10) of the adjusted p value (computed with

Mann-WhitneyU test). The threshold for significant

adjusted p values is shown as a dashed blue line (p

% 0.05 after 5% FDR correction). Orange and

green dots represent different metabolites that are

significantly higher in individuals with MS or con-

trols, respectively.

(B) Pie chart of pathways of the significantly

different metabolites. The outer layer represents

biochemical groups, and the inner layer represents

sub-pathways (Table S6). Significantly different

metabolites belong to 6 biochemical groups.

(C) Heatmap showing the explained variance of

metabolite levels (R2) by different features. The 12

shown metabolites were significantly different be-

tween individuals with MS and healthy controls

and highly correlated with one of the feature

groups (e.g., age, gender, long-term dietary habits

[diet], and microbiome). Feature groups are or-

dered from left to right, from the feature with the

highest number of associatedmetabolites (gender)

to the feature with the lowest number of associated

metabolites (cardiometabolic).

(D and E) Receiver operating characteristic curve

(D) and precision recall curve (E) for prediction of

each group (MS versus control) using a logistic

regression model; average of 100 models. Light

lines represent results of individual models, and

dark lines represent the mean of 100 models. The

gray curve represents baseline prediction with

covariates (age, gender, and BMI) as features.

Area under the curve = 0.488 (95% CI = [0.486,

0.489]), average precision = 0.513 (95% CI =

[0.511, 0.515]). The blue curve represents predic-

tion results using serum metabolites as features.

Area under curve = 0.965 (95%CI = [0.963, 0.966]),

average precision = 0.97 (95% CI = [0.969, 0.971]).

The pink curve represents prediction results using

age, gender, and BMI together with microbial

features. Area under the curve = 0.965 (95% CI =

[0.964, 0.966]), average precision = 0.97 (95% CI =

[0.969, 0.971]). M, metabolites.

See also Figure S1.
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abundances of all butyrate-producing bacteria and fiber con-

sumption per day (Spearman R = �0.02, p > 0.015). Finally, no

correlation was found between the sum of the abundances of

all butyrate-producing bacteria and any other major diet compo-

nents (Spearman p > 0.05 for both cohorts).

Serum metabolites of individuals with MS differ from
those of healthy controls
We next examined the metabolomics data we collected (Tables

S4 and S5). Following quantile normalization and its conservative

cutoffs (STAR Methods), we were left with 517 metabolites of

1,251 metabolites and found that levels of 42 metabolites

differed significantly between individuals with MS and controls
(Mann-Whitney U test, p < 0.05 after 5% FDR correction; Fig-

ure 3A). These metabolites mostly comprise lipids and amino

acids but also include xenobiotics, carbohydrates, peptides, nu-

cleotides, and unknown compounds (Figure 3B). Notably, the

most significantly different metabolites were not reported in pre-

vious studies. For example, the most significantly differing

metabolite, b-hydroxyasparagine (Figure S1; Mann-Whitney U

test, p < 0.004 after 5% FDR correction), a modified asparagine

amino acid, has so far not been associated directly with MS, to

the best of our knowledge. Sphingosine 1-phosphate (S1P),

known to be involved in immunological and neurological pro-

cesses through interaction with the S1P receptor (S1PR),53

was significantly lower in individuals with MS (Mann-Whitney U
Cell Reports Medicine 2, 100246, April 20, 2021 5
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test, p < 0.007 after 5%FDR correction); fingolimod, whichmod-

ifies this signaling pathway by S1PR internalization, is an

approved treatment for MS. The difference in SP1 could not be

associated with treatment in our cohort because only one indi-

vidual with MS received the medication. Some of the differing

metabolites agree with previous studies. For example, carnitine,

which has anti-inflammatory and antioxidative properties,

showed significantly lower levels in individuals with MS (Fig-

ure S1; Mann-Whitney U test, p < 0.007 after 5% FDR correc-

tion), as shown previously by Kasakin et al.36

We next searched for feature groups (e.g., long-term dietary

habits [‘‘diet’’], microbiome composition, lifestyle, age, gender,

and time of day) associated with the differential metabolites to

understand which of the feature groups could explain a large

fraction of the variance of the altered metabolites and highlight

the potential of specific feature groups as long-term dietary

habits and microbiome as their key determinants. The associa-

tions were calculated based on a large cohort of 521 serum sam-

ples from 491 healthy individuals, for whom data regarding host

genetics, the gut microbiome, cardiometabolic parameters,

long-term dietary habits, lifestyle, anthropometrics measure-

ments, and medications were collected54 (STAR Methods). Of

the 42 significantly altered metabolites (Figure 3A), 12 were

associated with one of the feature groups (based on the ability

of a gradient boosting model to significantly predict the metabo-

lite levels using only data from the relevant feature group, with R2

> 0.1;54 Table S5). Notably, indolepropionate is associated with

the microbiome, which explains 15% of its variance (R2 = 0.15;

Figure 3C), and four metabolites are associated with long-term

dietary habits (stachydrine, R2 = 0.22; 1-stearoyl-2-docosahex-

aenoyl-GPC, R2 = 0.12; 3-hydroxyhippurate, R2 = 0.11; arabon-

ate/xylonate, R2 = 0.1).

Finally, we tested the ability of a cross-validation logistic

regression model based only on metabolomics data to distin-

guish individuals with MS from healthy controls and found nearly

perfect separation (AUC ROC = 0.965, 95% confidence interval

[CI] = [0.963, 0.966]; Figures 3D and 3E). Overall, these results

suggest that metabolite profiles are highly different between in-

dividuals with MS and controls.

Influence of the gut microbiome via serum metabolites
To further understand how metabolites produced by the gut mi-

crobiota may exert an effect, we focused on metabolites that we

found previously to be associated with themicrobiome based on

the ability of a gradient boosting model to significantly predict

the metabolite using only microbiome data.54 A total of 26 me-

tabolites of our 517 are associated with the microbiome by this

analysis (R2 > 0.1, p < 10�25). To test for differences between

each of the 26 metabolite levels of individuals with MS and

healthy controls, we performed a Mann-Whitney U test and

applied FDR correction for multiple-hypothesis correction. We

found that indolepropionate, a potent neuroprotective antioxi-

dant,55 which is significantly predicted by the microbiome

(R2 = 0.15, p < 10�49), was significantly lower in the serum of in-

dividuals with MS (Figures 4A and 4B; Mann-Whitney U test, p <

0.03 after 5% FDR correction). Indolelactate, an intermediate in

the process of degrading tryptophan to indolepropionate,56 was

also significantly lower in individuals withMS (Figures 4A and 4B;
6 Cell Reports Medicine 2, 100246, April 20, 2021
Mann-Whitney U test, p < 0.03 after 5% FDR correction). Sum-

mation of the relative abundance of the nine bacterial species

that produce indolepropionate56 did not show any difference be-

tween individuals with MS and controls (Mann-Whitney U test, p

> 0.45), but the total relative abundance of the 24 species that

produce indolelactate56 was significantly lower in individuals

with MS (mean relative abundance of 0.073 versus 0.094 for in-

dividuals withMS versus controls, respectively; Mann-WhitneyU

test, p < 0.01; Figure 4C). This result suggests that the lower

abundance of indolelactate-producing species in individuals

with MS may result in lower serum levels of indolelactate and in-

dolepropionate because lower serum levels of thesemetabolites

may contribute to the ongoing inflammatory processes in indi-

viduals with MS. We further evaluated whether a high-protein

diet correlates with the total abundance of all bacteria that pro-

duce indolelactate or indolepropionate but did not find signifi-

cant correlations (Spearman p > 0.2 for both).

We also found that p-cresol sulfate, the major component of

urinary myelin basic protein (MBP)-like material (MBPLM), which

is the immunochemically homolog to MBP peptide57 and is also

associated with EAE,58 was characterized by high microbiome

association (R2 = 0.38, p < 10�208) and had higher levels in indi-

viduals with MS (Mann-Whitney U test, p < 0.12 after 5% FDR

correction). We did not find significant differences between indi-

viduals with MS and controls in the relative abundances of bac-

terial species associated with p-cresol (STAR Methods). There

was also no significant correlation between the relative abun-

dances of bacterial species associated with p-cresol and con-

sumption of a vegetarian diet (Spearman p > 0.2).

To further test for associations betweenmicrobiome composi-

tion and the metabolite profile, we searched for abundances of

bacterial species that correlate with metabolite levels in individ-

uals with MS.We did not find significant differences (Pearson p >

0.1 for all correlations).

Associations between gut microbiota and expression of
human genes
Next we examined peripheral blood gene expression data (Table

S6) in search for genes that correlate with bacterial species we

found to significantly differ between individuals with MS and

controls (p < 0.05 after 5% FDR correction; Figures 1B and

1C). Following the normalization process and conservative cut-

offs, we remained with 16,837 genes (STAR Methods). After

correction for multiple hypothesis, we found that BTF3L4, a ho-

molog of the basic transcription factor 3 (BTF3), significantly

correlated with Lawsonella (s3665) which we found to have

higher levels in individuals with MS (p < 0.03 after 5% FDR

correction); Spearman R2 > 0.47, p < 0.02 after 5% FDR correc-

tion; Figure 5).

No gut microbiota differences between MS disease
subtypes and stages
Because individuals with MS are heterogeneous in terms of clin-

ical outcomes and disease progression, we searched for differ-

ences in the gut microbiota of individuals with a specific disease

type or stage. We first searched for differences along disease

progression by comparing (1) early-stage individuals defined

as having radiologically isolated syndrome (RIS), who are people



Figure 4. Individuals with MS have lower

levels of bacterial species that produce in-

dolelactate

(A) Tryptophan degradation pathway.56 Gray,

similar levels in individuals with MS and controls;

green, significantly higher levels in controls; white,

notmeasured. Indolelactate and indolepropionate

serum levels were higher in controls compared

with individuals with MS. Bacterial species that

produce indolelactate are lower in abundance in

individuals with MS.

(B) Boxplots (center, median; box, IQR; whiskers,

1.53 IQR) showing indolepropionate serum levels

for 90 individuals with MS and 90 controls.

(C) Boxplots (center, median; box, IQR; whiskers,

1.5 3 IQR) showing bacterial relative abundance

for 129 individuals with MS patients and 58 con-

trols for bacterial species that produce in-

dolelactate.56 The sum of the relative abundance

of all the species is shown on the left. Other spe-

cies are sorted from left to right by their signifi-

cance level, which is shown at the top of the

boxplot (Mann-Whitney U test, *p < 0.05, **p <

0.01, ***p < 0.001). ILA, indolelactate.
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with brain and/or spinal cord MRI findings suggestive of MS but

without clinical symptoms and with normal neurological find-

ings;59 (2) individuals defined as having clinically isolated syn-

drome (CIS), who present with the first clinical neurological

episode suggestive of MS;60,61 (3) individuals with relapsing

remitting MS (RRMS), characterized by relapses and remis-

sions;62 and (4) individuals with a progressive disease course,

characterized by steadily increasing neurological disability inde-

pendent of relapses. We examined whether pairs of individuals

from the same group are more similar, in terms of their micro-

biome composition, than pairs of individuals where each person

is from a different group but found no significant differences

(Mann-Whitney U test, p > 0.05 for all possible comparisons).

Second, each individual received a predictive score from the

MS-control microbiome-based-predictor we described earlier,

and we examined whether there was a difference in peoples’
Cell Rep
scores between the various disease

types groups. Here, too, we did not find

any significant differences between the

different groups, suggesting that no MS

group was significantly more distinct

than the control group compared with

any other MS group (Mann-Whitney U

test, p > 0.1 after 5% FDR correction for

all possible comparisons). We also

compared the microbiome of a group of

individuals during an acute relapse with

the other groups and repeated the anal-

ysis but found no significant differences.

Next we wanted to find out whether

deterioration across time in clinical status

is related to gut microbiome measure-

ments taken at baseline. We defined

deterioration as a relapse during the 1-
year follow-up (defined as a monophasic clinical episode with

symptoms reported by the affected individual and objective

neurological findings typical of MS;62 n = 22), an increase in

neurological disability 1 year after the microbiome sample was

taken, as measured by expanded disability status scale

(EDSS);63 n = 26), or both (n = 10). We defined individuals as be-

ing without deterioration when they had no relapses and were

neurologically stable 1 year after their microbiome sample was

taken (n = 55). We did not find any difference between the two

groups (ROC AUC < 0.52).

Finally, because immunomodulatory treatment can influence

the microbiome profile and the metabolite levels,22,64,65 we

tested whether the observed differences in microbiome compo-

sition and the metabolite profiles between individuals with MS

and healthy controls were unrelated toMS treatment. Our results

suggest that the effect of immunomodulatory treatment on the
orts Medicine 2, 100246, April 20, 2021 7



Figure 5. Significant correlation between Lawsonella (s3665) rela-

tive abundance and BTF3L4 gene expression levels (Spearman R =

0.68, p < 0.02 after 5% FDR correction)

Shown on the x axis is the expression level of the BTF3L4 gene. Shown on the y

axis is the relative abundance of Lawsonella (s3665). Each point represents

one subject, 49 in total.
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altered microbiota and on the significantly different metabolites

we found in individuals with MS is negligible (STAR Methods;

Figures S2 and S3).

DISCUSSION

In the current study, we profiled the microbiome, the serum me-

tabolome, and peripheral blood gene expression together with

clinical and demographic variables of individuals with MS with

diverse disease stages and types and found significant differ-

ences across all of these profiles compared with healthy partic-

ipants. We used machine-learning algorithms that accurately

distinguish MS patients from controls using microbiome data

alone or using only metabolomics data. We uncovered signifi-

cantly different bacterial species and metabolites, and one cor-

relation between human gene expression levels and bacteria

was altered in individuals withMS. Our findings suggest potential

immunopathogenic mechanisms by which the gut microbiota

may affect MS.

Key findings: Indolelactate and butyrate differences
One of the key differences we found was that indolepropionate

and indolelactate, an intermediate in the process of degrading

tryptophan to indolepropionate, were lower in the serum of indi-

viduals with MS. Indolepropionate protects neurons against

oxidative damage and death55 and has a negative association

with inflammation markers.66 It is a product of tryptophan degra-

dation by the gut microbiome.56 The tryptophan metabolism

pathway influences inflammatory and neurodegenerative pro-

cesses and has been suggested to play a role in MS, although

the focus has been on the kynurenine pathway of tryptophan

degradation.67 Tryptophan catabolites have been reported to

suppress CNS inflammation in EAE via aryl hydrocarbon recep-

tor (AHR), which is expressed widely by immune cells and
8 Cell Reports Medicine 2, 100246, April 20, 2021
causes naive T cells to differentiate to regulatory T (Treg) cells

or TH17 cells.68 Activation of AHR by tryptophan metabolites

induces expression of the interleukin-10 (IL-10) receptor on in-

testinal epithelial cells, suggesting an anti-inflammatory pheno-

type.69 Reduced serum levels of indolelactate in pediatric

individuals with MS compared with controls have been re-

ported,30 but here we found that indolelactate was also signifi-

cantly lower in adults with MS, as were bacteria that produce

indolelactate. This provides independent support for the validity

of this finding from the serum metabolite and gut microbiota

aspects.

Another key difference we found was depletion of the levels of

butyrate producing bacteria. Butyrate enhances intestinal barrier

function70,71 and has anti-inflammatory properties that are real-

ized through promotion of peripheral Treg cell generation,72–75

and inhibition of activation of nuclear factor kB (NF-kB), the

transcription factor that regulates production of proinflammatory

enzymes and cytokines,76,77 induces secretion of the anti-in-

flammatory cytokine IL-10 in dendritic cells and macrophages.

Butyrate-induced Treg cell differentiation was driven by

augmented histone H3 acetylation at the FoxP3 promoter,74,75

a transcription factor that induces differentiation of CD4+

T cells toward Treg cells. In a mouse model of MS, treatment

with butyrate suppressed demyelination and enhanced remyeli-

nation,78 implying that butyrate-producing bacteria may have

beneficial effects in treatment or prevention of MS. These results

agree with several studies that found depletion in several buty-

rate producing bacteria in individuals with MS22,24,27,29,79 as

well as in other autoimmune and inflammatory diseases.80,81–83

We further empowered these findings by showing that this

alteration holds when summing the abundance of all butyrate-

producing bacteria as well as when considering only butyrate-

producing genes and by showing that two butyrate-producing

bacteria also had the highest SHAP value and were thus the

main drivers in the machine-learning algorithm we used for dis-

tinguishing individuals with MS from controls. The fact that there

were no significant differences in serum levels of butyrate be-

tween individuals with MS and controls might be related to buty-

rate utilization by endothelial cells in the colon.84 One possible

way to further explore the differences in butyrate producers is

to perform targeted liquid chromatography-mass spectrometry

(LC-MS) on fecal samples that show enriched or depleted buty-

rate producers to see whether there is an associated change in

colonic butyrate levels.

Notably, secretion of these metabolites may be impaired by

excess consumption of dietary components. Indolepropionate

is a product of gut microbiota degradation of the essential amino

acid tryptophan. Although most of our dietary protein intake is

absorbed in the small intestine, some of it reaches the colon,

where it can be degraded by the microbiome.85 If the diet con-

tains low levels of tryptophan, then not enough tryptophan will

reach the colon, low levels of tryptophan catabolites will be pro-

duced, and the anti-inflammatory advantages of these com-

pounds will be minimal. As for butyrate, a high-fiber diet has

been suggested to be related to higher levels of butyrate-pro-

ducing-species50 and to increase fecal butyrate levels.86 Despite

the plausible role of diet in determining the levels of thesemetab-

olites, we did not find correlations between their levels and diet,
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which may also reflect the lower number of participants who re-

corded their nutritional intake for at least 3 days (n = 44) or

inherent difficulties and noise with the collection of accurate di-

etary information.

Because tryptophan metabolites may induce anti-inflamma-

tory processes and suppress inflammatory responses, our re-

sults suggest that increasing the levels of butyrate-producing

species or tryptophan metabolites in individuals with MS may

have potential benefits. Alternatively, prebiotics such as fiber

could be used to enrich strains that are deficient in the host.

Other differentially abundant metabolites as possible
attractive therapeutic options
Someof themetabolites we found to be significantly different be-

tween individuals with MS and healthy controls have so far not

been associated with MS. For example, b-hydroxyasparagine,

which was lower in serum of individuals with MS, is a modified

asparagine amino acid that appears in posttranslational modifi-

cation of calcium-binding EGF-like domains. The modified

amino acid residue is found in fibrillin-1,87 which is themajor con-

stituent of microfibrils affecting an autoimmune response.88

We found choline phosphate to be significantly lower in indi-

viduals with MS. Ottenlinger et al.89 have shown that conjugation

of a choline phosphate group to ceramide leads to formation of

sphingomyelin, which may play an important role in MS.

p-Cresol sulfate, the major component of urinary MBPLM,

which is immunochemically homologous to MBP peptide,57 is

higher in serum of individuals with MS, and we have reported

previously that its levels may be partly determined by the gut mi-

crobiota.54 Elevated levels of MBPLM have been observed in in-

dividuals with primary progressive MS and secondary progres-

sive MS.90–92 p-Cresol sulfate can also cause release of

endothelial microparticles (EMPs), which, in turn, activate

several inflammatory and oxidative stress pathways and can

lead to cellular dysfunction.93 Although p-cresol forms from the

non-essential amino acids phenylalanine and tyrosine, it can

represent the importance of diet because it is generated by gut

bacteria acting on food components that are not absorbed in

the small intestine. A study that examined p-cresol sulfate levels

in omnivores compared with vegetarians found that this metab-

olite is significantly lower in vegetarians. In an intervention study

of individuals with chronic kidney disease, fiber supplementation

was found to decrease p-cresol sulfate levels in plasma.94

Because the number of vegetarians in our cohort was very small

(n = 2), dietary effects on p-cresol levels should be explored

further.

Some of the metabolites we detected here to be significantly

different in individuals with MS replicated previous results, sup-

porting the validity of our results. These include carnitine, which

we found to be lower in individuals with MS36 and which is an

essential component in mitochondrial energy production and

involved in transporting lipids into mitochondria for b-oxidation.

People with a mutation in carnitine palmitoyl transferase 1A

(CPT1A) are at lower risk of developing MS, possibly because

of downregulation of lipid metabolism.95 Accordingly, a high-

fat diet is associated with an increased risk of MS, and inhibition

of lipid metabolism has been found to ameliorate MS in an EAE

model.96 With respect to treatment, several drugs for MS inter-
fere with the carnitine network.97,98 Moreover, this metabolite

was investigated as a potential therapeutic agent for fatigue in

MS, although there was no clear evidence of its efficacy.99

S1P, which we found to be lower in individuals with MS, is a lipid

mediator that regulates many cellular processes. It is formed

from sphingomyelin or glycosphingolipids, which are part of

the cell membrane. Fingolimod, an approved treatment for MS,

modifies this signaling pathway by leading to S1PR internaliza-

tion. This internalization eliminates the ability of immune cells in

the lymph nodes to respond to S1P and leads to their sequestra-

tion, and the final outcome is a reduction in infiltration of inflam-

matory cells into the CNS.100

Some of the significantly different metabolites we found or the

bacterial species that produce them may be partly determined

by diet. Long-term dietary habits explain 10% or more of the

variance in the levels of 4 metabolites (stachydrine, 1-stearoyl-

2-docosahexaenoyl-GPC, 1-stearoyl-2-docosahexaenoyl-GPC

3-hydroxyhippurate, and arabonate/xylonate) and there is po-

tential to affect their levels by changing dietary habits; a further

investigation is required here.

BTF3L4 gene-Lawsonella correlation
Interestingly, the BTF3L4 gene, which we found to be correlated

with Lawsonella (s3665), is a homolog of BTF3, and overexpres-

sion of BTF3 has been associated with a variety of malignancies,

including different types of cancer.101–104 Lawsonella (s3665),

whose closest known species is Lawsonella clevelandensis,

has been found to be significantly higher in CNS tissue of individ-

uals with amyotrophic lateral sclerosis (ALS).105 Further investi-

gation is required to understand the potentials of the correlation

we found.

Limitations of study
Our study has a few potential shortcomings. First, MS and con-

trol groups differed in age, gender, and BMI. To overcome such

confounders, we used several measures to ensure that our re-

sults are not due to age, gender, and BMI differences between

affected individuals and controls but due to associations with

disease status (STAR Methods). Second, although this is the

largest integrated metabolomics-metagenomic study of MS,

the sample size remains rather limited especially because of

the only partially overlapping groups that underwent metabolo-

mics and metagenomics (36 of the 90 participants with MS

from the metabolomics group [40%] were also participants in

the microbiome group; Table S2). Third, a consequence of the

choice to include participants with different subtypes and stages

is the small size of the studied subgroups, which can explain the

lack of significant differences between them. Although the differ-

ences in butyrate abundance in MS using metagenomics ana-

lyses are solid, the results are not supported by the serum

metabolomics analysis.

Another possible drawback is that our microbiome analyses

were performed from rectal swab samples and not from stool

samples, as typically done inmicrobiome studies. However, pre-

vious studies have shown that rectal swabs are a reliable proxy

for fecal samples.106–108 Finally, because of our study is obser-

vational, we cannot attribute causality to the alterations we

describe in the gut microbiome and metabolomics. The altered
Cell Reports Medicine 2, 100246, April 20, 2021 9
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microbes and metabolites may play a role in disease-related

immunological changes or vice versa.

Our results unravel a comprehensive list of potential microbial

and metabolite therapeutic candidates. Although some of

the candidates we detected here replicate previous results,

supporting the validity of our results, many others require further

investigation.
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19. Ochoa-Repáraz, J., Mielcarz, D.W., Ditrio, L.E., Burroughs, A.R., Four-

eau, D.M., Haque-Begum, S., and Kasper, L.H. (2009). Role of gut

commensal microflora in the development of experimental autoimmune

encephalomyelitis. J. Immunol. 183, 6041–6050.

20. Ventura, R.E., Iizumi, T., Battaglia, T., Liu, M., Perez-Perez, G.I., Herbert,

J., and Blaser, M.J. (2019). Gut microbiome of treatment-naı̈ve MS pa-

tients of different ethnicities early in disease course. Sci. Rep. 9, 16396.

21. Kozhieva, M., Naumova, N., Alikina, T., Boyko, A., Vlassov, V., and Kabi-

lov, M.R. (2019). Primary progressive multiple sclerosis in a Russian

cohort: relationship with gut bacterial diversity. BMC Microbiol. 19, 309.

22. Cantarel, B.L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T.Z.,

Warrington, J., Venkatesan, A., Fraser, C.M., and Mowry, E.M. (2015).

Gut microbiota in multiple sclerosis: possible influence of immunomodu-

lators. J. Investig. Med. 63, 729–734.

23. Cosorich, I., Dalla-Costa, G., Sorini, C., Ferrarese, R., Messina, M.J., Dol-

pady, J., Radice, E., Mariani, A., Testoni, P.A., Canducci, F., et al. (2017).

High frequency of intestinal TH17 cells correlates with microbiota alter-

ations and disease activity in multiple sclerosis. Sci. Adv. 3, e1700492.

24. Tremlett, H., Fadrosh, D.W., Faruqi, A.A., Hart, J., Roalstad, S., Graves,

J., Lynch, S., and Waubant, E.; US Network of Pediatric MS Centers

(2016). Gut microbiota composition and relapse risk in pediatricMS: A pi-

lot study. J. Neurol. Sci. 363, 153–157.

25. Tremlett, H., Fadrosh, D.W., Faruqi, A.A., Hart, J., Roalstad, S., Graves,

J., Spencer, C.M., Lynch, S.V., Zamvil, S.S., Waubant, E., et al. (2016).

Associations between gut microbiota and immune markers in pediatric

multiple sclerosis and controls. BMC Neurol. 16, 182.

26. Tremlett, H., Fadrosh, D.W., Faruqi, A.A., Zhu, F., Hart, J., Roalstad, S.,

Graves, J., Lynch, S., andWaubant, E.; USNetwork of PediatricMSCen-

ters (2016). Gut microbiota in early pediatric multiple sclerosis: a case-

control study. Eur. J. Neurol. 23, 1308–1321.

27. Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., Patel, B.,

Mazzola, M.A., Liu, S., Glanz, B.L., et al. (2016). Alterations of the human

gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015.

28. Chen, J., Chia, N., Kalari, K.R., Yao, J.Z., Novotna, M., Paz Soldan, M.M.,

Luckey, D.H., Marietta, E.V., Jeraldo, P.R., Chen, X., et al. (2016). Multiple

sclerosis patients have a distinct gut microbiota compared to healthy

controls. Sci. Rep. 6, 28484.

29. Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T.,

Chihara, N., Tomita, A., Sato, W., Kim, S.W., et al. (2015). Dysbiosis in the

Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Deple-

tion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE

10, e0137429.

30. Nourbakhsh, B., Bhargava, P., Tremlett, H., Hart, J., Graves, J., and

Waubant, E. (2018). Altered tryptophan metabolism is associated with

pediatric multiple sclerosis risk and course. Ann. Clin. Transl. Neurol. 5,

1211–1221.

31. Del Boccio, P., Pieragostino, D., Di Ioia, M., Petrucci, F., Lugaresi, A., De

Luca, G., Gambi, D., Onofrj, M., Di Ilio, C., Sacchetta, P., and Urbani, A.
(2011). Lipidomic investigations for the characterization of circulating

serum lipids in multiple sclerosis. J. Proteomics 74, 2826–2836.

32. Lim, C.K., Bilgin, A., Lovejoy, D.B., Tan, V., Bustamante, S., Taylor, B.V.,

Bessede, A., Brew, B.J., and Guillemin, G.J. (2017). Kynurenine pathway

metabolomics predicts and provides mechanistic insight into multiple

sclerosis progression. Sci. Rep. 7, 41473.

33. Andersen, S.L., Briggs, F.B.S., Winnike, J.H., Natanzon, Y., Maichle, S.,

Knagge, K.J., Newby, L.K., and Gregory, S.G. (2019). Metabolome-

based signature of disease pathology in MS. Mult. Scler. Relat. Disord.

31, 12–21.

34. Sylvestre, D.A., Slupsky, C.M., Aviv, R.I., Swardfager, W., and Taha, A.Y.

(2020). Untargeted metabolomic analysis of plasma from relapsing-

remittingmultiple sclerosis patients reveals changes inmetabolites asso-

ciated with structural changes in brain. Brain Res. 1732, 146589.

35. Villoslada, P., Alonso, C., Agirrezabal, I., Kotelnikova, E., Zubizarreta, I.,

Pulido-Valdeolivas, I., Saiz, A., Comabella, M., Montalban, X., Villar, L.,

et al. (2017). Metabolomic signatures associated with disease severity

in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 4, e321.

36. Kasakin, M.F., Rogachev, A.D., Predtechenskaya, E.V., Zaigraev, V.J.,

Koval, V.V., and Pokrovsky, A.G. (2019). Targeted metabolomics

approach for identification of relapsing-remitting multiple sclerosis

markers and evaluation of diagnostic models. MedChemComm 10,

1803–1809.

37. Poddighe, S., Murgia, F., Lorefice, L., Liggi, S., Cocco, E., Marrosu, M.G.,

and Atzori, L. (2017). Metabolomic analysis identifies altered metabolic

pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 93, 148–155.

38. Bhargava, P., Fitzgerald, K.C., Calabresi, P.A., and Mowry, E.M. (2017).

Metabolic alterations in multiple sclerosis and the impact of vitamin D

supplementation. JCI Insight 2, 95302.

39. Sinclair, A.J., Viant, M.R., Ball, A.K., Burdon, M.A., Walker, E.A., Stewart,

P.M., Rauz, S., and Young, S.P. (2010). NMR-based metabolomic anal-

ysis of cerebrospinal fluid and serum in neurological diseases–a diag-

nostic tool? NMR Biomed. 23, 123–132.

40. Moussallieh, F.M., Elbayed, K., Chanson, J.B., Rudolf, G., Piotto, M., De

Seze, J., and Namer, I.J. (2014). Serum analysis by 1H nuclear magnetic

resonance spectroscopy: a new tool for distinguishing neuromyelitis op-

tica from multiple sclerosis. Mult. Scler. 20, 558–565.

41. Dickens, A.M., Larkin, J.R., Griffin, J.L., Cavey, A., Matthews, L., Turner,

M.R.,Wilcock, G.K., Davis, B.G., Claridge, T.D., Palace, J., et al. (2014). A

type 2 biomarker separates relapsing-remitting from secondary progres-

sive multiple sclerosis. Neurology 83, 1492–1499.

42. Vital, M., Karch, A., and Pieper, D.H. (2017). Colonic Butyrate-Producing

Communities in Humans: an Overview Using Omics Data. mSystems 2,

e00130-17.

43. Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger,

A., Ben-Yacov, O., Lador, D., Avnit-Sagi, T., Lotan-Pompan, M., et al.

(2015). Personalized nutrition by prediction of glycemic responses. Cell

163, 1079–1094.

44. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F.,

Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive Unex-

plored Human Microbiome Diversity Revealed by Over 150,000 Ge-

nomes from Metagenomes Spanning Age, Geography, and Lifestyle.

Cell 176, 649–662.e20.

45. Chen, T., and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting

System. arXiv, arXiv:1603.02754. https://arxiv.org/abs/1603.02754.
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Other
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Untargeted mass spectrometry Metabolon, Inc., Durham, North Carolina,

USA
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Eran Segal (eran.

segal@weizmann.ac.il).

Materials availability
This study did not generate new unique reagents

Data and code availability
All data about participants, microbiome, metabolomics and human gene expression measurements, and nutritional values in the pa-

per are available in Tables S2, S3, S4, S6, and S7, accordingly.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All information about study participants can be found in Table S2. All MS patients followed at the Multiple Sclerosis Center, Sheba

Medical Center. Exclusion criteria included diseases such as HIV, jaundice or taking antibiotics within 3 months before the recruit-

ment. The study was approved by the Sheba Institutional Review Board. All participants signed written informed consent forms.

Notably, we performed metagenomic sequencing of rectal stool samples from 187 MS participants followed at the Multiple Scle-

rosis Center, Sheba Medical Center and 58 healthy controls. After collecting the data on participants until October 2017, we pro-

cessed themetabolomic samples on 125 of them (35 controls and 90MSpatients with different types of the disease andwith different

clinical manifestations) and then collected the rest of the participants. So, for a partially subgroup of 90 MS patients (Table S2), we

used untargeted mass spectrometry to profile 1,251 metabolites from their serum samples, covering a wide range of biochemicals

including lipids, amino acids, xenobiotics, carbohydrates, peptides, nucleotides and �30% unknown compounds (Tables S4 and

S5). We compared it with the metabolites profile of 90 age-, gender- and BMI-matched healthy controls from another study43, by

using a quantile normalization process, for which we used 35 healthy controls from our study (see more details about the quantile

normalization process under the Metabolomics profiling and preprocessing in the Method details).

For a subgroup of 49 participants (36 MS patients and 13 controls), we also used mRNA-Seq to measure the expression of 22,929

human genes (Table S6).

As some of the patients were only partially compliant to record all their nutritional intake for at least 3 days only a subgroup of 44MS

patients with complete data was selected for the diet analysis; These 44MS patients recorded all of their nutritional intake for at least
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3 days and in real-time using a specialized app provided to them, Together, they logged 4,806 different food items (Table S7; STAR

Methods; Nutritional data).

We also collected a comprehensive profile from all participants, including food frequency, lifestyle and medical background

questionnaires.

METHOD DETAILS

Microbiome preprocessing
Sample collection, DNA extraction, and sequencing of the samples was performed as described previously in Rothschild et al.114 and

Zeevi et al.43 with one difference to use rectal swabs for samples collection. We filtered metagenomic reads containing Illumina

adapters, low-quality reads and trimmed low-quality read edges. We detected host DNA by mapping with GEM109 to the human

genome (hg19) and removed human reads. We subsampled all samples to have 5 million reads. Bacterial relative abundance esti-

mation was performed by mapping bacterial reads to species-level genome bins (SGB) representative genomes.44 We selected all

SGB representatives with at least 5 genomes in the group, and for these representatives genomes kept only unique regions as a refer-

ence dataset. Mapping was performed using bowtie2 and abundance was estimated by calculating the mean coverage of unique

genomic regions across the 50 percent most densely covered areas. Feature names including the lowest taxonomy level were iden-

tified. We selected only species that observed in more than 5% of the individuals.

Metabolomics profiling and preprocessing
Metabolite concentrations weremeasured in serum samples by an untargeted LC/MS platform (Metabolon, Inc., Durham, North Car-

olina, USA) as previously described.115–117 Metabolon Inc. performed all preprocessing and profiling. In this study, we handled the

processed metabolite intensities, and all annotations were provided by Metabolon. Samples were sent to profiling in two different

runs. A total of 540 serum samples belonging to 491 healthy participants from a different study43 were profiled in the first run. In

the second run, we profiled 90 MS patients together with 35 healthy controls from our study. Quantile normalization was performed

for each metabolite based on 35 samples from the first run and 35 controls from the second run; all 70 samples belonged to healthy

subjects and the two groups were matched by gender, age and BMI. The matching was performed with MatchIt R package for age

and BMI in males and females separately, using nearest neighbor method and Mahalanobis distance. 35 quantiles were calculated

for eachmetabolite, and themean of the two groups was taken as a reference distribution. Interpolation was performed based on the

reference distribution in order to get the corrected values of the metabolites for 90MS samples from the second run and 90 matched

healthy samples from the first run. The matching procedure here, as before, was performed with MatchIt R package for age and BMI

in males and females separately, using nearest neighbor method and Mahalanobis distance. Using imputations models while using

quantile normalization can cause unreliable results on the imputed metabolites, so only metabolites that were present in 100% of the

samples were included.

Gene expression preprocessing
Sequencing Libraries were prepared using INCPM mRNA Seq. SR60 reads were sequenced on 8 lane(s) of an Illumina HiSeq High

Output V4. The output was �21 million reads per sample. Poly-A/T stretches and Illumina adapters were trimmed from the reads

using cutadapt;118 resulting reads shorter than 30bp were discarded. Reads were mapped to the H. sapiens reference genome

GRCh38 using STAR,112 supplied with gene annotations downloaded from Ensembl (with EndToEnd option and outFilterMismatch-

NoverLmax was set to 0.04). Expression levels for each gene were quantified using htseq-count,113 using the gtf above. For each

gene, we truncated outliers, which were defined as values not within three standard deviations of the data between the 5 percentile

and the 95 percentile. For the computation of the correlation with the different species, we used only genes, which had a value higher

than five in at least 50% of the 49 participants. The data was normalized for each sample by the sum of all the genes expression

values.

Nutritional data
We obtained a very large nutritional data from 44 patients, which recorded their entire nutritional intake for at least 3 days and in real-

time using a specialized app provided to them (Table S7). They logged 4,806 different food items. Each food item within every meal

was logged along with its weight by selecting it from a database of 6,401 foods with full nutritional values based on the Israeli Ministry

of Health database that was further improved and expanded with additional items from certified sources.

Feature groups definitions
The feature groups for association with metabolites analysis (Figure 3C) were previously described by Bar et al.54; The ‘‘diet’’ feature

group includes answers for a detailed food frequency questionnaire (FFQ) aimed at capturing long term dietary habits, and the daily

mean consumption of different food types, computed over a week based on real-time logging. In both cases only items that were

reported to be consumed at least once by at least 1%of our participants were kept, resulting in 670 different food types from logging,

and 141 different items from the FFQ. The ‘‘anthropometrics’’ feature group includes weight, BMI, waist and hips circumference, and

waist to hips ratio (WHR). The ‘‘cardiometabolic’’ feature group includes systolic and diastolic blood pressure, heart rate in beats per
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minute and a glycemic status as previously described in Rothschild et al.114 The ‘‘drugs’’ feature group includes 30 binary features

representing the intake of 20 common medications as reported in questionnaires, in addition to 10 medication groups as previously

described. The ‘‘lifestyle’’ feature group includes smoking status (current, past), stress levels obtained from questionnaires, and the

daily mean sleeping time, exercise time and midday sleep time based on real time logging. The ‘‘time of day’’ feature is a binary

feature indicating whether the sample was taken during the first half of the day. The ‘‘seasonal effects’’ feature is the month in which

the sample was taken. In some analyses months were grouped by season (winter: December - February; spring: March - May; sum-

mer: June - August; fall: September - November). The ‘‘microbiome’’ feature group includes bacterial relative abundance calculated

both by considering coverage and by MetaPhlAn2, as well as the first 10 principal components computed over the log transformed

relative abundance of a bacterial gene catalog119 as previously described.114,120 Bar et al.54 built gradient boosting trees models for

predicting the level of eachmetabolite based on the different feature groups. The R2 of eachmodel was considered as the importance

of the feature that the model was based on in explaining the variability of that metabolite (Figure 3C).

MS treatment effects
Modifying-disease treatments for MS have mainly immunomodulatory effects. Their goal is to reach a target of no evident disease

activity (NEDA), meaning that the patient will have no relapses, no increase in neurological disability (as measured by EDSS63)

and no new or active brain or spinal cord lesions (onMRI scans). The strong connection between the gut microbiome and the immune

system can suggest that immunomodulatory treatment will influence microbiome composition.22,64,65

In order to assess the effect of the different immunomodulatory treatments (Figures S1A, S1B, S2A, and S2B) on the altered micro-

biota and on the altered metabolites profile we found in MS patients, we first asked whether a machine learning algorithm based on

microbiome data can classify treated patients from untreated patients. No separation was observed between treated and untreated

MS patients based onmicrobiome data (Figures S2C and S2D). Amachine-learning algorithm based onmetabolomics data yielded a

moderate separation between the two groups (Figures S3C and S3D). Using SHAP, we identified the contribution of each metabolite

to this prediction. Only one metabolite had a high impact on the model (6-hydroxyindole sulfate, SHAP value > 0.05) and none of the

significantly different metabolites between MS patients and controls had a high impact on the model (SHAP value < 0.05), meaning

that the effect of immunomodulatory treatment on these metabolites is negligible.

To further ensure that the observed effects betweenMS and healthy controls is not solely based onMS treatment, we repeated the

main analyses for a group of untreated MS patients (N = 65), which did not receive any kind of treatment. To test for differences be-

tween the microbiome of untreated patients and healthy controls, we performed Mann-Whitney U test on the relative abundances of

species. We found 11 species that significantly differed between the two groups (p < 0.05 after 5% FDR correction). Out of these 11

species, 10 were significantly different also between all the MS patients to the controls.

Next, we examined for a difference in the sum of the abundances for all butyrate-producing bacteria between untreated MS

patients and controls, and we found a lower level in the untreated MS patients (mean relative abundance of 0.06 versus 0.083 for

untreated MS versus controls respectively, Mann-Whitney U p < 0.03). No significant difference was found for levels of butyrate-pro-

ducing bacteria, between patients under treatment (N = 64) to patients which were not under treatment (N = 65) (Mann-Whitney U p >

0.26). We also searched for differences of butyrate-producing bacteria, between patients that received a DMD treatment for at least

90 or 180 days to patients that were not under treatment or received treatment for less than 90 or 180 days respectively. No significant

difference was found also in these cases (N = 78 or N = 64 respectively versus N = 51 or N = 85 respectively; Mann-Whitney U p > 0.43

or p > 0.24 respectively). No correlation was found between levels of butyrate-producing bacteria to treatment duration (Pearson R =

�0.12 p > 0.15).

We then examined for difference in the sum of the abundances of all indolelactate-producing bacteria between untreated MS pa-

tients and controls (mean relative abundance of 0.073 versus 0.094 for untreated MS versus control respectively, Mann-Whitney U

p < 0.04). To test for differences between the metabolomics of untreated MS patients and healthy controls, we performed Mann-

Whitney U test on the relative abundances of metabolites and we found 31 metabolites that significantly differed between the two

groups (p < 0.05 after 5% FDR correction; Table S5). We found lower serum levels of indolelactate and indolepropionate in MS pa-

tients (Mann-Whitney U p < 0.04 after 5% FDR correction).

Overall, we have found for the untreatedMS patients group the same trends throughout the analyses. Consistent with the previous

results (Figures S2C, S2D, S3C, and S3D), our findings suggest that the effect of immunomodulatory treatment on the altered micro-

biota and on the altered metabolites profile we found in MS patients is negligible.

Experimental design
We did not replicate or blind the data at any stage of the study. Randomization for cross validation was used with Python Numpy

random.seed function. All the statistical methods we used for the analyses are described through all the main text and the STAR

Methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the statistical details of this work can be found in the Results section. Further details can be found in this section. Significance

was defined in this work as p val. < 0.05, after 5% FDR correction.
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Functional analysis
To infer the functions of the microbial communities of the MS and control groups we applied DIAMOND algorithm47 for each meta-

genomic sample after subsampling it to 8million reads.We set our subsampling threshold to 8M reads for themicrobiome gene anal-

ysis to balance between the number of samples and the number of reads in each of the samples, so it can conserve a large amount of

the study participants together with a large number of reads for each sample. The reference database was comprised from both the

KEGG genes database48 and the IGC database,119 resulting in 11,245 different KOs (KEGG Orthology) (Table S3). For each meta-

genomic read in a sample, we assigned the KO with the highest-scoring annotated hit, only if the e value of the score was smaller

than 0.0001, otherwise no KO was assigned to the read. Lastly, a relative abundance was assigned to each KO by accumulating

its hits and divided by the total number of reads, which was 8 million for our samples. The abundances of the enzymes were in-

spected, and not a binary presence/absence. The read coverage per KO is large enough for the known bacterial gene biomarkers

for butyrate-producing communities, so we can reliably rely on the results we achieved (Table S3).

Predictive models
Our microbiome predictor is based on code adapted from the 0.72.1 xgboost library.45 Our metabolomics predictor is based on a

logistic regression model; code is adapted from the sklearn library. 100 predictors were built, each with ten-fold cross-validation,

and prediction accuracy was measured as the mean of area-under-curves.

Feature attribution analysis
For interpreting our predictions (Figure 1D), we used SHAP (SHapley Additive exPlanations), a recently introduced framework, which

assigns each feature an importance value for a particular prediction. Briefly, for a specific prediction, a feature’s SHAP value is

defined as the change in the expected value of the model’s output when this feature is observed versus when it is missing. It is

computed using a sum that represents the impact of each feature being added to the model averaged over all possible orderings

of features being introduced.

Individual SHAP values were computed for held-out subjects in 10-fold CV using the module XGBoost (version 0.72.1),45 based on

models trained only on features from the respective feature group. For every feature, we computed the mean absolute SHAP value

across all instances in a specific model, reflecting themean impact of each feature on the predictions and serving as a feature impor-

tance measure.

Possible confounders effects on the results
First, as there are significant differences in the males/females proportions, ages distribution and BMI levels between MS and con-

trols, wewanted to test if the differenceswe obtained for the butyrate-producing bacteria and indolelactate-producing bacteria levels

are not because one or a combination of those possible confounders.We relied on previous knowledge for estimating the effect of the

covariates on the outcome (bacteria levels). We examined if there are any correlations between the sum of butyrate-producing bac-

teria levels to the covariates in a large cohort of healthy participants (N = 1361). We did not found a significant difference in sum of

butyrate-producing bacteria levels between genders (542 males and 819 females, Mann-Whitney U p > 0.38), and a weak negative

correlation with age (Pearson R = �0.05, p > 0.047) and with BMI (Pearson R = �0.002, p > 0.93). We also tried to predict butyrate-

producing levels using gradient boosting decision trees using age, gender and BMI as features, andwe achieved low accuracy (Pear-

son R = 0.02, p > 0.3). In addition, we examined correlation for each of the butyrate-producing bacteria separately, and then removed

the species which were significantly correlated to one of the covariates (Mann-Whitney U p < 0.05 after 5% FDR correction). After we

removed the correlated species, we still achieved a significant difference in the sum of the remaining butyrate-producing species

levels, between MS and controls (mean relative abundance of 0.021 versus 0.034 for MS versus control respectively, Mann-Whitney

U p < 0.001). We repeated this process for indolelactate-producing bacteria; Also here, after removing the species with significant

correlation to age, gender or BMI (Mann-Whitney U p < 0.05 after 5% FDR correction), we still achieved a significant difference be-

tween MS and controls (mean relative abundance of 0.023 versus 0.037 for MS versus control respectively, Mann-Whitney U p <

0.001).

Second, wewanted to test for the effect of disease type on butyrate-producing bacteria levels. No differences were found between

the different disease groups (Mann-Whitney U p > 0.3 after 5% FDR correction for all pairwise-comparisons for the following 5

groups: RIS, CIS, RRMS, progressive, patients during a relapse).

No differences in bacteria associated with P-cresol
We examined any differences in levels of bacteria which are associated with p-cresol betweenMS and controls. The associated bac-

teria were defined as ones that have the ability to produce p-cresol from tyrosine (C. difficile121,122) or contribute to p-cresol formation

either by converting tyrosine to p-hydroxyphenylacetate (pHPA) (C. difficile,C. scatologenes,123 P. vulgaris,124 or converting pHPA to

p-cresol (Lactobacillaceae species.125,126 For all the above species, only L. ruminis (s7061) appeared in more than 5% of the individ-

uals, and no significant difference was found for this species (0.0009 ± 0.003 versus 0.0005 ± 0.001 for MS versus control respec-

tively, Mann-Whitney U p > 0.34).
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Supplementary Figure 1​ ​| Most significantly different metabolites between MS and controls​; 
Related to Figure 3A.  
Box plots (center, median; box, interquartile range (IQR); whiskers, 1.5 × IQR) showing metabolites 
levels for 90 MS patients and 90 controls, for the 9 most significantly different metabolites (out of 42 
significantly different metabolites). 

 



 

Supplementary Figure 2 | A machine learning model based on microbiome data was not able to                
separate the MS treated patients from the MS untreated patients; Related to STAR Methods -               
MS treatment effects. 
(A) Treatment duration and ​(B) treatment type in MS cohort with microbiome data. ​(C) Receiver               
operating characteristic curve and ​(D) Precision recall curve for prediction of treatment group (MS              
treated vs. MS untreated) using XGBoost model, average of 100 models. The light lines represent               
results of each model, the dark lines represent the mean of 100 models. Grey curve represents baseline                 
prediction with age, gender, and BMI features. (Area-under-curve=0.567, 95% CI = [0.563, 0.571],             
average precision=0.552, 95% CI = [0.547, 0.556]). Blue line represents prediction results using             
microbial features. (Area-under-curve=0.486, 95% CI = [0.480, 0.491], average precision=0.488, 95%           
CI = [0.484, 0.493]). The XGBoost model with microbial features was not able to separate the two                 
groups. 

  



 

 

Supplementary Figure 3 | A machine learning model based on metabolomics data yielded only a               
moderate separation between MS treated patients and MS untreated patients; Related to STAR             
Methods. 
(A) Treatment duration and (B) treatment type in MS cohort with metabolomics data. ​(C) Receiver               
operating characteristic curve and ​(D) Precision recall curve for prediction of treatment group (MS              
treated vs. MS untreated) using XGBoost model, average of 100 models. The light lines represent               
results of each model, the dark lines represent the mean of 100 models. Grey curve represents baseline                 
prediction with possible covariates (age, gender and BMI) as the features. (Area-under-curve=0.493,            
95% CI = [0.488, 0.499], average precision=0.622, 95% CI = [0.619, 0.626]). Blue line represents               
prediction results using metabolites levels as the features. (Area-under-curve=0.593, 95% CI = [0.588,             
0.599], average precision=0.731, 95% CI = [0.727, 0.735]). The XGBoost model with metabolomics as              
features separated moderately the two groups. 
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