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Supplemental Figure 1 

 

Figure S1. Effect of spontaneous changes (with probability 𝝁, also known as mutation probability) and 
errors (controlled by the intensity of selection 𝜷, the largest 𝜷, the less errors individuals do when updating 
strategies) in the infinite population dynamics, Related to Figure 4. Other parameters: 𝜒 = ±0.2, 𝛿 = ±0.2, 
𝑓 = 1.5, 𝑀 = 8. 

  



Supplemental Figure 2 

 

Figure S2. Role of payoff difference uncertainty (the inverse of selection intensity, 𝟏/𝜷), population size (𝒁) 
and group size (𝑵) in overall group achievement, Related to Figure 6. When fixed, 𝑍 = 100,𝑀 = 8, 𝑓 =
1.5, 𝑁 = 11, 𝑐 = 1, 𝑏 = 10, 𝛽 = 10, 𝜇 = 0.05. 𝑀 = rounded[0.5𝑁] when 𝑁 is varying.  



Supplemental Figure 3 

 
Figure S3. Effect of asymmetric biases, that is, deviation from diagonals in Figure 1, Related to Figure 6. 
Same parameters as Figure 6 in main text, but with 𝜒 = ±0.7, 𝛿 = ±0.5. Compare with Figure 6 of the main 
text.   



Supplemental Figure 4 

 
Figure S4. The role of incentives in populations with perception bias: Over-trust (OT), False consensus 
(FC), False uniqueness (FU) and Under-trust (UT), Related to Figure 6. Results for N-person game with co-
existence (f<1), that is, where individuals do not have incentive to contribute further after the group has 
achieved the collective success threshold. Same parameters as Figure 6 in main text.  



Supplemental Figure 5 

 

 Figure S5. The role of incentives in populations with perception bias playing dillemas with different results 
from cooperation (𝒇 = 𝟎. 𝟖 and 𝒇 = 𝟏. 𝟓) and group success threshold (𝑴 = {𝟔, 𝟕, 𝟗, 𝟏𝟎}), Related to Figure 
6. Same parameters as Figure 6 in main text. We can observe that, as discussed in the main text, false 
consensus (FC) requires less punishment to achieve high values of collective success when M and f are 
both high. For low M and f we can also observe situations in which false uniqueness (FU) leads to scenarios 
where it becomes easier to incentivize cooperation. We also represent group success under over-trust (OT) 
and under-trust (UT). 

  



Supplemental Figure 6 

 

Figure S6. The role of incentives under bias heterogeneity, Related to Figure 6. Contrarily to the 
homogeneous bias scenario whose results we represent in Figure 6, here we assume that 𝜒 and 𝛿 convey 
the mean of a normal distribution with standard deviation 𝜎. We compute, numerically, the average fraction 
of cooperators and average group success for each value of defector fee (𝜄), taken over 1000 generations 
(where, at each generation, 𝑍 individuals have the possibility of changing strategies). Instead of using the 
transition probabilities detailed in Equations (9) and (10) below — which preclude any difference among 
cooperators or among defectors — we explicitly sample individuals, each possibly characterized by a 
specific value of bias, and compute the probability that this unique individual changes strategy. Assuming 
that strategy updates follow this stochastic process (also accounting for a mutation probability, 𝜇 = 0.05), 
we keep track of the number of strategies in the population in each generation, which allows us to quantify 
the average collective success (left panel) and average number of cooperators (right panel) associated with 
each value of fee 𝜄. This way, we are able to compute the collective success assuming an arbitrary 
distribution of biases in the population. Each combination of cooperators’ and defectors’ biases (𝜒 and 𝛿) 
represents the mean of a Normal distribution with standard deviation 𝜎. For each bias (false uniqueness, 
false consensus, over-trust, and under-trust), we use the same (𝜒,𝛿) as in Figure 6. We plot results for 𝜎 = 0 
and 𝜎 = 0.15. Despite the noise associated with the numerical procedure we use here — note that now, 
on top of bias heterogeneity, to compute a smooth transition probability between states one needs a very 
large number of samples — we are able to confirm the results of Figure 6 in a scenario of bias 
heterogeneity. Same parameters as Figure 6. Dashed lines correspond to 𝜎 = 0 (homogeneous bias) and 
full lines to 𝜎 = 0.15 (heterogeneous bias).   

  



Transparent Methods 

 

Payoff: Players interact in groups of fixed size 𝑁 to obtain a payoff Π! that depends on their action, 𝑋 =
𝐶	or 𝐷, and other players' actions. Action 𝐶 corresponds to costly cooperation, and action 𝐷 corresponds 
to defection. In an interacting group, cooperation costs an amount 𝑐, and, if there are less than 𝑀 
cooperators, there is no benefit to any of the group members. Whenever the group reaches a threshold 
of 𝑀 cooperators, each individual gets a benefit, 𝑏𝑐, plus an additional reward per extra cooperator, 𝑓𝑐. 
Thus, if we let 𝑗 be the number of cooperators in a group, we can write 

Π"[𝑗] = O𝑏𝑐 + 𝑓𝑐(𝑗 −𝑀)TΘ[𝑗 −𝑀]	and	 (1)
Π#[𝑗] = Π"[𝑗] − 𝑐, (2)

 

where Θ[𝑥] is the unit step function, which is 0 for 𝑥 < 0 and 1 for 𝑥 ≥ 0. In Figure 6, we alter the game to 
include punishment applied to defectors (e.g., fines, higher tariffs, or taxes), by an amount 𝜄𝑐, 0 ≤ 𝜄 ≤ 1. 
The value of 𝜄 represents how the fines imposed compare with the costs paid by cooperators, with 𝜄 = 0 
meaning that no punishment is imposed and 𝜄 = 1 that all the payoff advantage of defectors, in comparison 
with cooperators, is removed. Eq. (1) is thereby modified to Π"[𝑗] = O𝑏𝑐 + 𝑓𝑐(𝑗 −𝑀)TΘ[𝑗 − 𝑀] − 𝜄𝑐. 

 

Infinite populations: At each time unit, individuals have the same probability of considering changing their 
strategy. Changing strategy depends on the outcome they expect to get from their interactions, given the 
number of cooperators (and defectors) they perceive will be present. An actor playing 𝑋 will compare the 
expected payoff of cooperation, 𝑓#[𝑥Z!], to the average payoff of defectors, 𝑓"[𝑥Z!], when interacting in a 
group of size 𝑁, depending on the perceived fraction of cooperators in the population perceived by that 
player, 𝑥Z!. Each individual assumes they are equally likely to interact with all others, resulting in expected 
payoffs of 

𝑓#[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$Π#[𝑘 + 1]
%&'

$()

	and	 (3)

𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$Π"[𝑘]
%&'

$()

. (4)

 

The player with strategy 𝑋 will change to the strategy 𝑌 if the expected average payoff is not worse, with 
a probability of 𝑝!→+[𝑓+ − 𝑓!] = Θ[𝑓+ − 𝑓!]. Finally, the perceived fraction of cooperators by each strategy, 
though influenced by the actual number of cooperators in the population, 𝑥, is affected by biases, which 
only act on the strategies of the other players. If 𝜒 and 𝛿 represent the biases affecting cooperators and 
defectors, respectively, then a cooperator will estimate a fraction of cooperators 𝑥Z#[𝑥] = 𝑥')!" =
expc10&,ln[𝑥]d and a defector will estimate a fraction of defectors 𝑥Z"[𝑥] = 𝑥')!# = exp e10&-ln[𝑥]f (where 

the second equality serves to clarify that −𝜒	and −𝛿 are exponents of 10). The previous equalities are also 
usefull to clarify that the choice of basis 10 is arbitrary and does not affect the generality of our results; 
different basis can be considered and, by rescaling 𝜒 and 𝛿, the same results would follow — for example, 

we could consider basis 𝑒 instead of 10, 𝑥Z"[𝑥] = 𝑥.!#
$
 and 𝑥Z#[𝑥] = 𝑥.!"$ , in which case the results under 

basis 10 are recovered by equating 𝜒̅ = ln[10]𝜒 and 𝛿̅ = ln[10]𝛿. This formulation guarantees that positive 
(negative) values of 𝜒 and 𝛿 indicate overestimation (underestimation) of cooperation (see Figure 1 in the 
main text). If 𝜒 = 𝛿 = 0 then 𝑥Z#[𝑥] = 𝑥Z"[𝑥] = 𝑥, which recovers the typical no-bias scenario where 
perceptions match reality. Thus, we can write the probability that the number of 𝐶s increases, and the 



number of 𝐷s decreases, per time unit as 𝑇/[𝑥] = (1 − 𝑥)𝑝"→# e𝑓#c𝑥Z"[𝑥]d − 𝑓"c𝑥Z"[𝑥]df and the probability 
that the number of 𝐶s decreases, and the number of 𝐷s increases, per time unit as 𝑇&[𝑥] =
𝑥	𝑝#→" e𝑓"c𝑥Z#[𝑥]d − 𝑓#c𝑥Z#[𝑥]df. The gradient of selection (Figure 4 and Figure S1) indicates the most likely 

direction of evolution of the population and is given by 𝑔[𝑥] = 𝑇/[𝑥] − 𝑇&[𝑥]; when 𝑔[𝑥] > 0, the number 
of cooperators is likely to increase and 𝑔[𝑥] < 0 implies that cooperation is likely to decrease.  

 

Finite populations: Let us now consider a population of size 𝑍. As before, players interact in groups of 
fixed size 𝑁 ≤ 𝑍 to obtain a payoff Π! that depends on their action, 𝑋 = 𝐶	or 𝐷, and other players' actions 
(as detailed above).  

Each time unit, individuals have the same probability of considering changing their strategy based on the 
outcome they expect to get from their interactions, given the number of cooperators (and defectors) they 
perceive will be present. An actor playing 𝑋 will compare the average payoff of cooperation, 𝑓#[𝑥Z!], to the 
average payoff of defectors, 𝑓"[𝑥Z!], depending on the perceived fraction of cooperators in the population 
seen by that player, 𝑥Z!. We assume a complete graph of interactions from which the interaction groups 
are sampled, resulting in average payoffs of  

𝑓#[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^\𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^Π#[𝑘 + 1]
%&'

$()

	and	 (5)

𝑓"[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘 ^ \𝑍(1 − 𝑥Z
!) − 1

𝑁 − 1 − 𝑘
^Π"[𝑘]

%&'

$()

. (6)

 

The player with strategy 𝑋 will change to strategy 𝑌 with a probability that increases with the difference of 
expected average payoffs. The player can also change spontaneously from one strategy to another at a 
rate 𝜇, due to some exogenous event. Combining those effects resuls in a probability of changing strategy 

of 𝜇 + (1 − 𝜇)O1 + 𝑒&0(2%&2&)T&'. Finally, the actual fraction of cooperators in the population, 𝑥, affects the 
perceived fraction of cooperators by each strategy. However, biases on the strategies of others also affect 
the latter. If 𝜒 and 𝛿 represent the bias affecting cooperators and defectors, respectively, then a cooperator 
will estimate a fraction of cooperators 𝑥Z#[𝑥] and a defector will estimate a fraction of defectors 𝑥Z"[𝑥] given 
by 

𝑥Z#[𝑥] = o
𝑍𝑥 − 1
𝑍 − 1 p

')!"

+
1
𝑍 	and	 (7)

𝑥Z"[𝑥] = o
𝑍𝑥
𝑍 − 1p

')!'

. (8)
 

This formulation guarantees that positive (negative) values of 𝜒 and 𝛿 indicate overestimation 
(underestimation) of cooperation. Again, we note that, in Eqs. (7) and (8), −𝜒 and −𝛿  are exponents of 10, 
and basis 10 was chosen without loss of generality. Thus, we can write the probability that the number of 
𝐶s increases, and the number of 𝐷s decreases, per time unit, 𝑇/[𝑥], and the probability that the number 
of 𝐶s decreases, and the number of 𝐷s increases, per time unit, 𝑇&[𝑥], as  

𝑇/[𝑥] = (1 − 𝑥)q𝜇 + (1 − 𝜇) o1 + 𝑒&042(567
)[6]/':;&2)567

)[6];<p
&'
r 	and (9)

𝑇&[𝑥] = 𝑥 q𝜇 + (1 − 𝜇) o1 + 𝑒&042)567
([6]&':;&2(567

([6];<p
&'
r . (10)

 



We note that this update resembles a smooth best-response (Fudenberg et al., 1998) and, in the past, was 
also used to model so-called counterfactual thinking (Pereira and Santos, 2018). As when considering 
infinite populations, the gradient of selection indicates the most likely direction of evolution of the 
population and is, thus, given by 𝑔[𝑥] = 𝑇/[𝑥] − 𝑇&[𝑥]. In this case, diffusion indicates the level of noise 
of the system at any configuration and is given by 𝑑[𝑥] = (𝑇/[𝑥] + 𝑇&[𝑥]) 𝑍⁄ . 

 

Analysis of the dynamics for infinite populations 

The gradient of selection and diffusion govern the dynamics, which can be written as: 

𝑥̇ = 𝑔[𝑥] + w𝑑[𝑥]	Γ[𝑡], (11) 

where Γ[𝑡] is a random variable with gaussian distribution of zero mean and unit variance. Thus, when 𝑔[𝑥] 
is positive, 𝑥 tends to increase. When 𝑔[𝑥] is negative, 𝑥 tens to decrease. The sign of 𝑔 alone contains 
the information of the preferential direction of evolution of the fraction of cooperators in the population.  

In the case of an infinite population, 𝑍 → ∞, and perfect best response, 𝛽 → ∞, we get 

𝑥̇ = 𝜇(1 − 2𝑥) + (1 − 𝜇) o(1 − 𝑥)	Θ e𝑓#c𝑥Z"[𝑥]d − 𝑓"c𝑥Z"[𝑥]df − 𝑥	Θ e𝑓"c𝑥Z#[𝑥]d − 𝑓#c𝑥Z#[𝑥]dfp , (12) 

and 

𝑓#[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$(𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀) + 𝑓𝑐) − 𝑐
%&'

$(=&'

(13)

𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)T
%&'

$(=

(14)

 

and 

𝑓#[𝑥Z!] − 𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$(𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀) + 𝑓𝑐)
%&'

$(=&'

− 𝑐

− [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)T
%&'

$(=

= 𝑏𝑐 \𝑁 − 1M− 1^ (𝑥Z
!)=&'(1 − 𝑥Z!)%&> + 𝑓𝑐 [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$

%&'

$(=

− 𝑐

= 𝑓𝑐(1 − CDF[Binomial[𝑁 − 1, 𝑥Z!],𝑀 − 1]) + \𝑁 − 1𝑀 ^(𝑥Z!)>&'(1 − 𝑥Z!)%&>𝑏𝑐 − 𝑐. 

Notice that 𝑓#[0] − 𝑓"[0] = −𝑐 < 0 and, when 𝑓 > 1, 𝑓#[1] − 𝑓"[1] = 𝑓𝑐 − 𝑐 > 0. If 𝑋 = 𝐷, this change of 
signs guarantees that, from the perspective of a defector, there is at least one coordination dilemma, i.e., 
there is no incentive to change strategy if there are too few cooperators, and there is an incentive to 
become a cooperator if there are enough cooperators. Identically for the perspective of cooperators, when 
𝑋 = 𝐶, irrespectively of the bias function. 

Analysis of the dynamics for finite populations 

Recovering Eqs.(5-6) and Eqs.(1-2), we can write 



𝑓"[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^Π"[𝑘]
%&'

$()

= [\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)TΘ[𝑘 −𝑀]
%&'

$()

= [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^ (𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀))
%&'

$(>

(15)

 

𝑓#[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^o𝑍(1 − 𝑥Z

!) − 𝛿!"
𝑁 − 1 − 𝑘

pΠ#[𝑘 + 1]
%&'

$()

= [\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^\𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)TΘ[𝑘 + 1 −𝑀]
%&'

$()

− 𝑐

= [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^ \𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)T
%&'

$(=&'

− 𝑐

= \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑀 − 1 ^ \𝑍(1 − 𝑥Z

!)
𝑁 −M ^𝑏𝑐 +

+[ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^ \𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)T
%&'

$(=

− 𝑐 (16)

 

 

To compute 𝑇/ we need 

𝑓# }𝑥Z"[𝑥] +
1
𝑍~ − 𝑓"c𝑥Z

"[𝑥]d =

= \𝑍 − 1𝑁 − 1^
&'
\ 𝑍	𝑥Z

"

𝑀− 1^\
𝑍(1 − 𝑥Z") − 1

𝑁 −M ^𝑏𝑐 +

+𝑓𝑐 [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

"

𝑘 ^ \𝑍(1 − 𝑥Z
") − 1

𝑁 − 1 − 𝑘
^

%&'

$(=

− 𝑐

= 𝑓𝑐O1 − CDFcHyperGeo[𝑍 − 1,𝑁 − 1, 𝑍𝑥Z"],𝑀 − 1dT +

+\𝑍 − 1𝑁 − 1^
&'
\ 𝑍	𝑥Z

"

𝑀− 1
^\𝑍(1 − 𝑥Z

") − 1
𝑁 −M

^𝑏𝑐 − 𝑐. (17)

 

To compute 𝑇& we need 

𝑓" }𝑥Z#[𝑥] −
1
𝑍~ − 𝑓#c𝑥Z

#[𝑥]d =

= −\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑀 − 1 ^ \𝑍(1 − 𝑥Z

#)
𝑁 −𝑀 ^𝑏𝑐 −

−𝑓𝑐 [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑘 ^ o𝑍(1 − 𝑥Z

#)
𝑁 − 1 − 𝑘

p
%&'

$(=

+ 𝑐

= −𝑓𝑐O1 − CDFcHyperGeo[𝑍 − 1,𝑁 − 1, 𝑍𝑥Z# − 1],𝑀 − 1dT −

−\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑀 − 1

^ \𝑍(1 − 𝑥Z
#)

𝑁 −𝑀
^𝑏𝑐 + 𝑐. (18)

 

Importantly, we can write 



𝑥Z![𝑥] = o
𝑍𝑥 − 𝛿!#
𝑍 − 1 p

')!*&

+
𝛿!#
𝑍 , (19) 

with	𝑏! = 𝜒𝛿!# + 𝛿	𝛿!".	 Here, 𝛿!+ represents the Kroneker delta and should not be confused with 𝛿 
(without subscripts and representing defectors’ bias): 𝛿!+ = 1 if 𝑋 = 𝑌 and 𝛿!+ = 0 otherwise. For any 𝜇 >
0 and finite 𝛽 we can define a Markov chain of the number of cooperators over time, 𝑖, using the 
probabilities of increasing and decreasing 𝑖 by one unit as 𝑇/[𝑖/𝑍] and 𝑇&[𝑖/𝑍], respectively. The evolution 
of 𝑖 is governed by a Master-equation of the form 

𝑑𝑝?[𝑡]
𝑑𝑡 = 𝑝?&'[𝑡]𝑇/ }

𝑖 − 1
𝑍 ~ + 𝑝?/'[𝑡]𝑇& }

𝑖 + 1
𝑍 ~ − 𝑝?[𝑡] o𝑇/ }

𝑖
𝑍~ + 𝑇

& }
𝑖
𝑍~p ,

(20) 

where 𝑝?[𝑡] is the probability of finding the system in configuration 𝑖 after a period 𝑡 in which the system 
was in some configuration 𝑖), 𝑝?[0] = 𝛿??+. The solution will converge to a stationary solution, 𝑝?∗, which is 
independent of the initial condition 𝑖). Thus, 𝑝?∗ reflects the probability of finding the system with 𝑖 
cooperators a longer time after we observe 𝑖) cooperators (which is our best bet if there are no 
observations at all).  

With it, we can compute the expected number of groups that reach the threshold, which we call group 
achievement, 𝜂. The group achievement is computed as 

𝜂 =[𝑝?∗ [ \𝑍𝑁^
&'
\𝑖𝑘^ \

𝑍 − 𝑖
𝑁 − 𝑘^

%

$(>

:

?()

. (21) 

We can also compute the average level of cooperation simply as 

〈
𝑖
𝑍
〉 =[𝑝?∗

𝑖
𝑍

:

?()

. (22) 

 

A note on the definition of false uniqueness 

We note that the operationalization of false uniqueness that we use throughout our main text does not 
perfectly match all previous definitions of this social perception bias: false uniqueness was referred to as 
the tendency for individuals to underestimate the proportion of those sharing their desirable attributes 
(Baumeister and Vohs, 2007; Suls et al., 1988); an alternative would be using pluralistic ignorance, 
previously defined as the tendency for individuals to wrongly assume that their behaviors differ from 
everybody else’s, which happens as public actions can differ from private beliefs and opinions (Baumeister 
and Vohs, 2007; Miller and McFarland, 1987). A completely accurate implementation of false uniqueness 
would require defining desirability, while a completely accurate implementation of pluralistic ignorance 
would require distinguishing public and private strategies in or model. As explicitly introducing desirability 
or private behaviors would increase the complexity of our model beyond the scope of the analysis we 
intend to perform (for the complexity of modeling desirability and private information associated with 
cooperation see, respectively, (Ohtsuki and Iwasa, 2004; Santos et al., 2018) and (Hilbe et al., 2018; 
Ohtsuki et al., 2015)), we opted to use false uniqueness to simply denote the tendency for individuals to 
underestimate the representativeness of their own strategy in the population, following works such as 
(Galesic et al., 2018; Krueger, 2000; Lee et al., 2019).   
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