
Supplementary information

Title (100 characters)

A novel framework for engineering protein loops exploring length and compositional variation.

Authors:

Pedro A. G. Tizei1, Emma Harris2, Shamal Withanage3, Marleen Renders3 and Vitor B.

Pinheiro1,2, 3*

Affiliation:

1 University College London, Department of Structural and Molecular Biology, Gower Street,

London, WC1E 6BT, UK.

2 Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX,

UK.

3 KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 – Box

1041, 3000 Leuven, Belgium.

*corresponding author – v.pinheiro@kuleuven.be

Supplementary Figure 1 Optimization of on-bead ligation. (a) Commercially available ligases

were tested for efficient DNA ligation of dsDNA template and assembly block. Reaction time

is shown and remaining reaction conditions are described in Supplementary Methods. Based

on the signal of the ligated product and the decrease in digested fragment, T4 DNA ligase was

selected for further optimization. (b) Ligation time-course of dsDNA template and assembly

block. The dsDNA templates used in these experiments were not phosphorylated. The ligated

assembly block (*) commonly migrated as a doublet in experiments using paramagnetic

beads. Assembly efficiency, calculated by densitometry as the fraction of assembled product,

considered both assembled products and is shown below respective lanes. The sample at

120 min showed significant smearing and was not included in the analysis (ND).

Supplementary Figure 2 InDel assembly efficiency and biases in libraries pre-selection.

(a,b,c) refer to the first round library and (d,e,f) refer to the second round library. (a,d) Library

length distribution determined by next generation sequencing (green) and best-fit binomial

distribution (orange) used to estimate assembly efficiency per cycle – see supplementary note

1 for details of how that was estimated. Sequence length represents the number of building

blocks incorporated in a given construct. Since all building blocks used for the 2 assemblies

introduced 3 nucleotides (one codon), the length also represents the number of amino acids

encoded in the library. (b,e) Predicted and observed residue counts. Residues that could only

have been incorporated through assembly cycles that included sequence degeneracy (i.e. X

in the assemblies in Figure 2b), are shown in cyan. Residues that could be incorporated from

degenerate as well as targeted cycles (i.e. the specified residues included as 50% of the

assembly mixture – see Figure 2b) are shown in orange. Observed counts are shown in black.

(c,f) Biases of incorporation per amino acid are calculated as

. Although

biases are present in each library, analysis suggests that there are no systematic strong

biases for incorporation.

Supplementary Figure 3 Simulation of InDel library assembly. (a) First round assembly

strategy used in simulation – as per Fig. 2b. (b) Based on the 50% incorporation efficiency per

cycle, a 106 library was generated. Coverage becomes increasingly sparse as the assembled

length rises but it is always biased towards R, Y, G and E that were overrepresented in

assembly. (c) Despite the bias, a 106 library under those conditions fully samples sequence

spaces of up to 3 insertions, and sample longer landscapes at increasingly sparse coverage

– always biased towards the sequence neighbourhood of the target RYYGE motif.

Supplementary Figure 4 Substrate spectrum of TEM-1 variants. Wild-type and engineered

TEM-1 were characterized for their antibiotic resistance profile based on the radius of growth

inhibition in solid (a-c) or liquid (d-h) cultures. All strains were characterized for their resistance

against (a) penams ampicillin (AMP) and carbenicillin (CBN), against (b) cephalosporins

ceftazidime (CAZ) and cefotaxime (CTX), and against (c) carbapenem imipenem. As

previously reported, all engineered lactamases had reduced resistance against penams but

were significantly more resistant against cephalosporins. Liquid cultures were used to

determine AMP and CAZ minimal inhibitory concentrations (MIC) for selected TEM-1 variants:

(d) wild-type TEM-1, (e) YYGE, (f) PTX7, (g) MHKKRH - the most enriched sequence after

the second round of selection, and (h) PTX8. A600 of cultures carried out in 96-well plates were

normalized against no antibiotic controls. Experiments were carried out in triplicate, individual

results are shown (•), as well as average (lines) and standard error of the means. RYYGE

MICCAZ was slightly higher (150 μg/mL) than PTX7 MICCAZ (100 μg/mL).

Supplementary Figure 5 InDel assembly coverage of sequence space neighboring PTX7

and impact of selection. (a) The available sequence space is split into fixed-length landscapes

and each analyzed separately using the most frequent PTX7-related variant of the desired

length as the origin for Hamming distances. (b) The biased synthesis used in the InDel

assembly of this second library ensured the sequence neighborhood of the target GYMKER

sequence was efficiently explored, (c) with only minimal bias for glutamate in one of the final

assembly cycles. The height of each residue in the logo is a measure of their frequency at that

position. (d) Selection clearly enriches for functional sequences that include RXYG of RYYGE

in the n-2 and n-1 landscapes but sample a very diverse and unrelated in the PTX7 landscape.

(e) Hamming distances to other unique sequences obtained in each landscape after selection.

PCA

dimension
PCA-derived motif

Most frequent
match

Ranking

1 Z(D/T/P)Z
ZDZ
ZTZ
ZPZ

1
2
3

2
ZR(Y/G)YGZ
ZR(Y/G)YGXZ
ZR(Y/G)YZ

ZRYYGZ
ZRYYGEZ
ZRYYZ

14
16

324
3 ZDZ ZDZ 1

4
Z(D/S)Z
ZYSZ

ZDZ
ZSZ
ZYSZ

1
4
5

5 ZPZ ZPZ 3

6
ZSZ
ZG(G/S)Z
ZGGXZ

ZSZ
ZGGZ
ZGGWZ

4
12
45

7
Z(S/Q)Z
Z(R/S)YYG
ZYYG

ZSZ
ZQZ
ZRYYGEZ
ZSYYGZ
ZYYGHZ

4
7

16
225

4568

8
ZSZ
ZRGY…Z
ZXHZ

ZSZ
ZRGYHZ
ZPHZ

4
10
18

9
Z(S/G/N)(Y/H/G)Z
ZXYY(G/H)Z
Z(S/G/N)YHZ

ZGGZ
ZRYYGZ
ZSYHZ

12
14
31

10
Z(Q/M)Z
ZRGYXZ

ZQZ
ZRGYHZ

6
10

Supplementary Table 1: Comparison of PCA-derived enriched sequences and NGS read

frequency for the 1st round library. Motifs were reconstructed for the first 10 PCA dimensions

and used to search the NGS results for the ranking of the highest enriched sequences (highest

Z-scores). Although there is a correlation between enrichment, PCA and read frequency (not

shown), PCA can identify motifs shorter than a full assembly (e.g. ZYYG in PCA7) and non-

conserved residues (e.g. ZR(Y/G)YGXZ in PCA2).

PCA component Masked 3-mer PCA values Reconstruction

1 ZD_' 0.263

 DZ_' 0.275

 Z_Z' 0.835

Contribution ZT_' 0.180

11.19 TZ_' 0.182

Cumulative ZP_' 0.175

11.19 PZ_' 0.181

 Z(D/T/P)Z

2 ZR_' 0.503

 Z_Y' 0.176

 'RY_' 0.228

 'R_Y' 0.440

 'YY_' 0.167

 'Y_G' 0.163

Contribution Z_G' 0.116

7.63 'YG_' 0.385

Cumulative G_Z' 0.362 ZR(G/Y)YZ

18.82 Y_Z' 0.163 ZR(G/Y)YGXZ

 ZR(Y/G)YGZ

3 DZ_' 0.579

 ZD_' 0.499

 'YS_' -0.100

 'ZY_' -0.159

 'Y_Z' -0.177

 'SZ_' -0.189 Not detected:

Contribution 'ZT_' -0.203 Z_Z

4.34 'TZ_' -0.210

Cumulative 'ZP_' -0.272

23.16 'PZ_' -0.314

 ZDZ

4 ZY_' 0.452

 ZD_' 0.149

 DZ_' 0.185

 ZS_' 0.132

 Z_S' 0.260

 'YS_' 0.256

 Y_Z' 0.528

 SZ_' 0.373 Not detected:

 'PZ_' -0.109 Z_Z

Contribution 'ZP_' -0.121

4.17 'G_Z' -0.134

Cumulative 'ZT_' -0.148

27.33 'TZ_' -0.156 Z(D/S/Y)SZ

 Z(D/S)Z

5 'ZP_' 0.448

Contribution PZ_' 0.525 Not detected:

3.69 'ZT_' -0.482 Z_Z

Cumulative 'TZ_' -0.502

31.02 ZPZ

6 ZG_' 0.283

 ZS_' 0.125

 SZ_' 0.180

 Z_G' 0.383

 'RG_' 0.128

 'GG_' 0.174 Not detected:

 G_Z' 0.496 Z_Z

 GZ_' 0.145

 'PZ_' -0.106

 'ZR_' -0.108

 'R_Y' -0.120

 'Y_G' -0.128

Contribution 'Y_Z' -0.189

2.74 'YY_' -0.228

Cumulative 'RY_' -0.264

33.76 'Z_Y' -0.322 ZGG(X)Z

Z(G/S)Z

7 ZS_' 0.398

 Z_Z' 0.121

 SZ_' 0.466

 Z_Y' 0.114

 'RY_' 0.143

 'YY_' 0.113

 'Y_G' 0.106

 QZ_' 0.116

 'Z_H' -0.106 Not detected:

 'GZ_' -0.114 GQ_, G_Z, ZR_

 'GY_' -0.120

 'ZP_' -0.132

 'DZ_' -0.134

 'PZ_' -0.148

 'ZY_' -0.163

 'RG_' -0.163

 'ZT_' -0.201

Contribution 'HZ_' -0.222

2.65 'TZ_' -0.224

Cumulative 'Y_Z' -0.236

36.41 'Z_G' -0.286 Z(S/R/X)YYG(S/Q)Z

 Z(S/Q)Z

8 ZS_' 0.187

 Z_H' 0.246

 ZR_' 0.349

 'RG_' 0.158

 'R_Y' 0.171

 'GY_' 0.102

 HZ_' 0.416

 SZ_' 0.246

 'PZ_' -0.109

 'RY_' -0.128 Not detected:

 'YG_' -0.165 Z_Z, Z_G

 'GZ_' -0.167

 'ZG_' -0.173

 'ZY_' -0.178

Contribution 'Y_G' -0.196

2.41 'YY_' -0.197

Cumulative 'G_Z' -0.231 ZXHZ

38.82 'Z_Y' -0.231 ZSZ

 ZRGY…Z

9 ZG_' 0.154

 ZN_' 0.126

 'YH_' 0.125

 'Y_G' 0.187

 GZ_' 0.120

 N_Z' 0.105

 'Z_M' -0.102

 'RR_' -0.105 Not detected:

 'TZ_' -0.109 Z_Z, HG_

 'Z_R' -0.111

 'PZ_' -0.124

 'Z_S' -0.134

Contribution 'YS_' -0.140

2.21 'ZY_' -0.164

Cumulative 'ZR_' -0.189 ZNXZ

41.03 'R_Y' -0.194 ZGZ

XYHGZ

10 'ZM_' 0.114

 'MZ_' 0.119

 'GY_' 0.116

 'PZ_' -0.110

 'DZ_' -0.132

 'HZ_' -0.133

 'ZT_' -0.138

 'Z_H' -0.140

Contribution 'TZ_' -0.154

1.91 'G_Z' -0.164

Cumulative 'SZ_' -0.198

42.94 'ZP_' -0.205 ZMGYMZ

 ZMZ

Supplementary Table 2: Reconstructing enriched motifs in the 1st round of selection. Pre-

and post-selection library sequencing is used to score sequences based on their enrichment

in the population. Sequences are then decomposed using the masked k-mer analysis and

principal component analysis (PCA) carried out to reconstruct enriching motifs in the library -

as described in Figure 4. Masked 3-mers identified as enriching (i.e. positive PCA score

greater than 0.05) are used to reconstruct the motifs being selected, with depleted 3-mers (i.e.

negative PCA scores) used to avoid false positives. We show here the first 10 PCA

components (assembled in SI Table 1) and most significant 3-mer scores (|score|>0.1).

Enriching 3-mers are presented broadly in reconstruction order to facilitate interpretation,

while negative PCA values are shown in order. Where ambiguity in assembly was observed

(e.g. 1st component), all possible variants were considered. Missing k-mers (i.e. not detected

above cut-offs) are also highlighted.

PCA component Masked 3-mer PCA values Reconstruction

1 'ZM_' 0.271

 'Z_H' 0.27

 'MH_' 0.27

 'M_K' 0.271

 'HK_' 0.27

 'H_K' 0.267

 'KK_' 0.267

 'K_R' 0.29

 'KR_' 0.267

Contribution 'K_H' 0.267

30.77 'RH_' 0.289

Cumulative 'R_Z' 0.305

30.77 'HZ_' 0.291

 ZMHKKRHZ

2 'ZE_' 0.269

 'Z_Y' 0.36

 'EY_' 0.267

 'E_G' 0.265

 'YG_' 0.348

 'Y_E' 0.27

 'GE_' 0.306

Contribution 'G_Q' 0.268

19.37 'EQ_' 0.263

Cumulative 'E_Z' 0.269

50.14 'QZ_' 0.308

 ZEYGEQZ

3 'ZR_' 0.308

 'Z_Y' 0.224

 'RY_' 0.308

 'R_G' 0.308

 'YG_' 0.234

 'Y_T' 0.308

 'GT_' 0.307

 'G_Z' 0.33

 'TZ_' 0.308

 'R_Z' -0.103

 'G_Q' -0.103

 'ZE_' -0.105

Contribution 'ER_' -0.116

10.49 'Z_E' -0.129

Cumulative 'QZ_' -0.186

60.62 'GE_' -0.187

 ZRYGTZ

4 'ZG_' 0.396

 'Z_E' 0.351

 'GE_' 0.131

 'G_R' 0.263

 'G_Z' 0.12

 'ER_' 0.35

 'E_Q' 0.229

 'RQ_' 0.255

 'R_Z' 0.316

 'QZ_' 0.126

 'Y_E' -0.114

 'G_Q' -0.115

 'EY_' -0.123

Contribution 'ZE_' -0.125

8.26 'E_G' -0.133

Cumulative 'EQ_' -0.134

68.88 'E_Z' -0.139 ZGERQZ

 ZGEZ

5 'ZG_' 0.378

 'Z_V' 0.332

 'GV_' 0.332

 'G_Y' 0.358

 'VY_' 0.331

 'V_G' 0.157

 'V_Z' 0.169

 'YZ_' 0.175

 'Y_G' 0.135

 'GG_' 0.135 Not detected:

 'G_F' 0.135 G_Z, YG_

 'GF_' 0.135

Contribution 'FZ_' 0.134

5.24 'Z_E' -0.132

Cumulative 'R_Z' -0.143

74.12 'ER_' -0.174 ZGVYZ

 ZGVYGGFZ

6 'ZA_' 0.212

 'Z_K' 0.201

 'AK_' 0.194

 'A_E' 0.21

 'KE_' 0.291

 'K_R' 0.19

 'ER_' 0.147

 'E_H' 0.358

 'RH_' 0.187

 'HZ_' 0.277

 'ZE_' 0.133

 'Z_V' 0.118

 'GV_' 0.118

 'G_Y' 0.116

 'VY_' 0.118

 'V_Z' 0.15

 'G_V' -0.103 Not detected:

 'VZ_' -0.104 ZG_, EV_, EK_,

 'YV_' -0.104 R_Z, YZ_

 'Y_Z' -0.112

 'GE_' -0.113

 'GY_' -0.12

 'QZ_' -0.134

Contribution 'ZG_' -0.147

3.73 'E_Q' -0.159

Cumulative 'G_R' -0.161 GVYZ

77.85 'RQ_' -0.174 ZAKERHZ

 ZE(V/K/R)XZ

7 'ZG_' 0.217

 'Z_Y' 0.366

 'GY_' 0.374

 'G_V' 0.312

 'YV_' 0.313

 'Y_Z' 0.321

 'VZ_' 0.312

 'ZA_' 0.107

 'A_E' 0.107 Not detected:

 'KE_' 0.123 AK_, HZ_

 'E_H' 0.107

 'YG_' -0.114

Contribution 'Z_E' -0.116

3.46 'G_Z' -0.124

Cumulative 'RQ_' -0.132

81.3 'QZ_' -0.154 Z(A/G)YVZ

 ZAKEXH

8 'ZE_' 0.277

 'Z_E' 0.359

 'EE_' 0.293

 'E_V' 0.273

 'EV_' 0.281

 'E_H' 0.159

 'VH_' 0.274

 'V_Z' 0.354

 'HZ_' 0.191

 'FZ_' -0.101

 'K_R' -0.123

 'Z_K' -0.124

 'AK_' -0.129

 'R_Z' -0.141

Contribution 'KE_' -0.147

2.23 'ER_' -0.156

Cumulative 'A_E' -0.164

83.54 'ZA_' -0.168

 ZEEVHZ

9 'ZW_' 0.203

 'Z_E' 0.2

 'WE_' 0.203

 'W_G' 0.203

 'V_G' 0.113

 'EG_' 0.266

 'E_R' 0.472

 'GR_' 0.266

 'RZ_' 0.195

 'G_Q' 0.163

 'RQ_' 0.116

 'ZA_' 0.112

 'Z_Y' 0.11

 'AY_' 0.136

 'YE_' 0.17

 'Y_H' 0.152

 'EH_' 0.152 Not detected:

 'HR_' 0.136
G_Z, A_E, R_Z,
QZ_

 'H_Z' 0.136

 'E_Q' -0.11

Contribution 'ER_' -0.119

1.71 'ZG_' -0.122

Cumulative 'G_R' -0.153

85.25 'GE_' -0.205 ZAYEHRZ

 ZWERGR(Q)Z

 VEGRQ

10 'ZA_' 0.163

 'Z_Y' 0.112

 'AY_' 0.139

 'A_E' 0.162

 'YE_' 0.234

 'Y_H' 0.205

 'EH_' 0.206

 'HR_' 0.139

 'H_Z' 0.14

 'RZ_' 0.119

 'ZG_' 0.107

 'G_Y' 0.121

 'V_Z' 0.233

 'YZ_' 0.258

 'GY_' -0.104

 'YV_' -0.128

 'G_V' -0.128 Not detected:

 'VZ_' -0.128 E_R

 'Y_Z' -0.138

 'YG_' -0.151

 'G_F' -0.191

 'GG_' -0.192

 'Y_G' -0.192

 'GF_' -0.192

Contribution 'Z_E' -0.198

1.56 'FZ_' -0.206 VXZ

Cumulative 'G_Z' -0.208 Z(A/G)Y(Y/E)HRZ

86.81 'V_G' -0.216 ZG(Y/X)(Y)Z

 ZGAYEHRZ

Supplementary Table 3: Reconstructing enriched motifs in the 2nd round of selection. Pre-

and post-selection library sequencing is used to score sequences based on their enrichment

in the population. Sequences are then decomposed using the masked k-mer analysis and

principal component analysis (PCA) carried out to reconstruct enriching motifs in the library -

as described in Figure 4. Masked 3-mers identified as enriching (i.e. positive PCA score

greater than 0.05) are used to reconstruct the motifs being selected, with depleted 3-mers (i.e.

negative PCA scores) used to avoid false positives. We show here the first 10 PCA

components (assembled in Table 1) and most significant 3-mer scores (|score|>0.1). Enriching

3-mers are presented broadly in reconstruction order to facilitate interpretation, while negative

PCA values are shown in order. Where ambiguity in assembly was observed (e.g. 4th

component), all possible variants were considered. Missing k-mers (i.e. not detected above

cut-offs) are also highlighted.

Name Sequence (5’  3’) Use

InDel Assembly

Init-Opt-FAM-T
GTGTGGCGTGTAGGTAAGATGATTTCCTTCA
CCTATGATAGAAGAGCAAA

Fluorescent-labelled biotinylated initiation block for
assembly condition optimization (5' Biotin-TEG and
dT fluorescein at the position in bold)

Init-Opt-B
TTTGCTCTTCTATCATAGGTGAAGGAAATCAT
CTTACCTACACGCCACAC

Initiation block for assembly condition opimization

Cap-Opt-T
NNNACCGGTCGTGGTGCTGTTTCTGAAAAAG
ATGCGCCAAAAGA

3' Capping block for assembly condition
optimization

Cap-Opt-B
TCTTTTGGCGCATCTTTTTCAGAAACAGCACC
ACGACCGGT

3' Capping block for assembly condition
optimization

Init-TEM1-1G-T
ACCGCTTTTTTGCACAACATGGGGGATCATG
TAACTCGCCTTGATAGAAGAGCAAA

Initiation block for 1G library

Init-TEM1-1G-B
TTTGCTCTTCTATCAAGGCGAGTTACATGATC
CCCCATGTTGTGCAAAAAAGCGGT

Initiation block for 1G library

Init-TEM1-2G-T
CTTTTTTGCACAACATGGGGGATCATGTAACT
CGCCTTGATCGTAGAAGAGCAAA

Initiation block for 2G library

Init-TEM1-2G-B
TTTGCTCTTCTACGATCAAGGCGAGTTACATG
ATCCCCCATGTTGTGCAAAAAAG

Initiation block for 2G library

Cap-TEM1-T
NNNCTGAATGAAGCCATACCAAACGACGAGC
GTGACACCACGACCCCT

3' Capping block for both diversification rounds

Cap-TEM1-B
AGGGGTCGTGGTGTCACGCTCGTCGTTTGGT
ATGGCTTCATTCAG

3' Capping block for both diversification rounds

BB-A-T
NNNGCAAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Ala

BB-A-B GACATACAGACAGGGATGAGCTCTTCTTGC Building block for Ala

BB-C-T
NNNTGCAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Cys

BB-C-B GACATACAGACAGGGATGAGCTCTTCTGCA Building block for Cys

BB-D-T
NNNGACAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Asp

BB-D-B GACATACAGACAGGGATGAGCTCTTCTGTC Building block for Asp

BB-E-T
NNNGAGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Glu

BB-E-B GACATACAGACAGGGATGAGCTCTTCTCTC Building block for Glu

BB-F-T
NNNTTCAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Phe

BB-F-B GACATACAGACAGGGATGAGCTCTTCTGAA Building block for Phe

BB-G-T
NNNGGTAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Gly

BB-G-B GACATACAGACAGGGATGAGCTCTTCTACC Building block for Gly

BB-H-T
NNNCACAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for His

BB-H-B GACATACAGACAGGGATGAGCTCTTCTGTG Building block for His

BB-I-T
NNNATCAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Ile

BB-I-B GACATACAGACAGGGATGAGCTCTTCTGAT Building block for Ile

BB-K-T
NNNAAGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Lys

BB-K-B GACATACAGACAGGGATGAGCTCTTCTCTT Building block for Lys

BB-L-T
NNNCTGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Leu

BB-L-B GACATACAGACAGGGATGAGCTCTTCTCAG Building block for Leu

BB-M-T
NNNATGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Met

BB-M-B GACATACAGACAGGGATGAGCTCTTCTCAT Building block for Met

BB-N-T
NNNAACAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Asn

BB-N-B GACATACAGACAGGGATGAGCTCTTCTGTT Building block for Asn

BB-P-T
NNNCCAAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Pro

BB-P-B GACATACAGACAGGGATGAGCTCTTCTTGG Building block for Pro

BB-Q-T
NNNCAGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Gln

BB-Q-B GACATACAGACAGGGATGAGCTCTTCTCTG Building block for Gln

BB-R-T
NNNCGTAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Arg

BB-R-B GACATACAGACAGGGATGAGCTCTTCTACG Building block for Arg

BB-S-T
NNNTCCAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Ser

BB-S-B GACATACAGACAGGGATGAGCTCTTCTGGA Building block for Ser

BB-T-T
NNNACCAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Thr

BB-T-B GACATACAGACAGGGATGAGCTCTTCTGGT Building block for Thr

BB-V-T
NNNGTGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Val

BB-V-B GACATACAGACAGGGATGAGCTCTTCTCAC Building block for Val

BB-W-T
NNNTGGAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Trp

BB-W-B GACATACAGACAGGGATGAGCTCTTCTCCA Building block for Trp

BB-Y-T
NNNTACAGAAGAGCTCATCCCTGTCTGTATG
TC

Building block for Tyr

BB-Y-B GACATACAGACAGGGATGAGCTCTTCTGTA Building block for Tyr

Cloning

Vec-TEM1-F
ATCGGTCTCAGTAACCCATGCGAGAGTAGGG
AACTG

Amplification of the vector for cloning TEM-1 coding
sequence

Vec-TEM1-R
ATCGGTCTCATCATGGTTAATTCCTCCTGTTA
GCCCAAAAAAC

Amplification of the vector for cloning TEM-1 coding
sequence

TEM1-Nter-F
ATCGGTCTCAATGAGTATTCAACATTTCCGTG
TCGCC

Amplification of the TEM-1 coding sequence for
cloning

TEM1-Nter-R ATCGGTCTCAGGGACCCACGCTCACCGGC
Amplification of the TEM-1 coding sequence for
cloning

TEM1-Cter-F
ATCGGTCTCAUCCCGCGGTATCATTGCAGCA
CTG

Amplification of the TEM-1 coding sequence for
cloning

TEM1-Cter-R
ATCGGTCTCATTACCAATGCTTAATCAGTGAG
GCACCTATC

Amplification of the TEM-1 coding sequence for
cloning

TEM1-YYG-F
ATCGGTCTCATATTACGGTGAGCTGAATGAA
GCCATACCAAACG

Creating the RYYGE variant as a control

TEM1-MutLoop-
R

ATCGGTCTCAAATAACGATCAAGGCGAGTTA
CATGATC

Creating the RYYGE variant as a control

TEM1-M182T-F CCCCTGCAGCAATGGCAACAAC
Inverse PCR primer for introduction of M182T
mutation into TEM-1

TEM1-M182T-R TCGTGGTGTCACGCTCG
Inverse PCR primer for introduction of M182T
mutation into TEM-1

TEM1-InDel-
AmpF1

ATCGGTCTCAACCGCTTTTTTGCACAACATG
G

Amplification of the first round library fragments for
cloning into the constant region of TEM-1

TEM1-InDel-
AmpF2

ATCGGTCTCACTTTTTTGCACAACATGGGGG
ATC

Amplification of the second round library fragments
for cloning into the constant region of TEM-1

TEM1-InDel-
AmpR

ATCGGTCTCAAGGggTCGTGGTGTCAC
Amplification of library fragments for cloning into
the constant region of TEM-1

Vec-TEM1-
InDel-F

ATCGGTCTCAcCCTGCAGCAATGGCAACAAC
Amplification of the vector for cloning of library
fragments

Vec-TEM1-
InDel-R1

ATCGGTCTCACGGTTAGCTCCTTCGGTCC
Amplification of the vector for cloning of first round
library fragments

Vec-TEM1-
InDel-R2

ATCGGTCTCAAAAGCGGTTAGCTCCTTCGGT
CC

Amplification of the vector for cloning of second
round library fragments

TEM1-Seq1 GTGAAAGTAAAAGATGCTG Sequencing primer for construct checking

TEM1-Seq2 AGGCAACTATGGATGAACG Sequencing primer for construct checking

TEM1-Seq3 GATTTGAACGTTGCGAAG Sequencing primer for construct checking

TEM1-Seq4 AACGCTCGGTTGCC Sequencing primer for construct checking

TEM1-Seq5 GAAAACGTTCTTCGGGGC Sequencing primer for construct checking

TEM1-Seq6 TTTGAGTGAGCTGATACCG Sequencing primer for construct checking

TEM1-Seq7 GGGATTTTGGTCATGAG Sequencing primer for construct checking

NGS

TEM1-MiSeq-R
CAAGCAGAAGACGGCATACGAGATCGGTCTC
GGCATTCCTGCTGAACCGCTCTTCCGATCTA
GGGGTCGTGGTGTCAC

Reverse primer for NGS libraries

1G-Pre-MiSeq-F
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCTNNNC
GATGTACCGCTTTTTTGCACAACATGG

Forward primer for pre-selection first round library

1G-Post-MiSeq-
F

AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCTNNNTT
AGGCACCGCTTTTTTGCACAACATGG

Forward primer for post-selection first round library

2G-Pre-MiSeq-F
AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCTNNNC
AGATCCTTTTTTGCACAACATGGGGGATC

Forward primer for pre-selection second round
library

2G-Post-MiSeq-
F

AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCTNNNG
ATCAGCTTTTTTGCACAACATGGGGGATC

Forward primer for post-selection second round
library

Supplementary Table 4 Oligonucleotides used in this work.

Library
Quality
filtered
count

Matched
count

1st round pre-
selection

3256942 2269710

1st round post-
selection

320891 228691

2nd round pre-
selection

7877580 6575072

2nd round post-
selection

65064 63612

Supplementary Table 5 Read counts in NGS libraries after quality filtering and after matching

translated sequence ends.

Supplementary Note 1 – Distribution of incorporation

Given the stochastic and discrete nature of the InDel cycle, a simple agent-based binomial
model was used to simulate the incorporation per cycle of the available building blocks.

For a given agent i, P(xnxn+1) = p, where p is the cycle efficiency.

As shown below in the MATLAB code, that simple routine can be applied to each individual
agent sequentially. A cycle of InDel assembly represents this binomial simulation applied once
to each and every agent available. Successful events lead to the incorporation of the building
block, unsuccessful events leave the agent unchanged. Repetition of those cycles can be
implemented to simulate the multiple cycles of the assembly process.

Nevertheless, assembly also must consider the identity of the building block being used in that
particular cycle. We reasoned that given the large number of agents (and even greater number
of molecules in the real assembly) a simple random selection algorithm would be adequate.
At this step, if a successful incorporation is detected, the algorithm picks among one of the
building blocks used in that particular cycle. The probability of selection is proportional to the
molar ratio used in the reaction, i.e. if Ala:Phe blocks are used 1:4, then the probability of
incorporating Phe is four times higher than Ala.

This approach assumes no bias in incorporation between the different building blocks. This
was expected given the small differences in sequence and length of the blocks used in this
report – that is also supported in the analysis of the generated library (Supplementary Fig.
2).

An example of the block distribution per cycle is shown in Supplementary Fig. 4a and the
result of the assembly, stratified by length, shown in Supplementary Fig. 4b.

MATLAB script

%% InDEL assembly prediction (v.0.2)
% By V. Pinheiro

%% Creating the assembly setup

prompt = ['How many assembly cycles'];
dlg_title = 'Assembly cycles';
num_lines = 1;
cycles = inputdlg(prompt, dlg_title, num_lines);
cycles = str2num(cycles{1});
% Asks user prompt for assembly cycle number

composition = zeros(20,cycles);

for n = 1: cycles;
 prompt = {'A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N',
'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'};
 dlg_title = 'What is your desired composition for this cycle?';
 num_lines = 1;
 def = {'0', '0','0','0','0','0','0','0','0','0','0',
'0','0','0','0','0','0','0','0','0'};
 composition_answer = inputdlg(prompt, dlg_title, num_lines, def);

 for a = 1: 20;
 composition(aa2int(prompt{a}),n) = str2num(composition_answer{a});
 end
end
% Asks user to choose ratio of amino acids for assembly cycle

composition_freq = zeros(20,cycles);
for n = 1: size(composition, 2);
 total = sum(composition(:,n));
 composition_freq (:,n) = composition (:,n)/total;
end
% Adjusting amino acid frequencies

figure(1);
imagesc(composition_freq, [0,1]);
set(gca,'xtick',[],'ytick',[]); %colormap bone;

%% Generating a population

prob_ligation = 0.5;
n_samples = 10000;
% Defining system variables

lib = zeros(n_samples,cycles);
for n = 1: n_samples;
 for x = 1: cycles;
 a = rand(1);
 if a <= prob_ligation;
 b = rand(1);
 for c = 1: 20;

 if b > 0;
 lib(n,x) = c;
 b = b - composition_freq(c,x);
 end
 end
 end
 end
end

% This for loop simulates the assembly method, generating a matrix (lib)
% containing the result of individual simulated assembly experiments.
% Matrix uses the numerical codes for the amino acids in the cycle they are
% incorporated.

%% Collating the resulting libraries

Output = {};

for n = 1: n_samples;
 Clone = [];
 for x = 1: cycles;
 if lib (n,x) ~= 0;
 Clone = horzcat(Clone, int2aa(lib(n,x)));
 end
 end
 Output = vertcat(Output, Clone);
end

% This for loop converts the sparse simulation matrix into a cell
% containing the resulting 'obtained' library, which is the starting point
% of the analysis and similar to what would be obtained from a deep
% sequencing run.

%% Counting mutants

Freqs = tabulate(Output);
% Make a table with the frequency of each variant

%% Creating a frequency and composition table

Max_column = ((cycles+1)/2)*cycles;
End_column = zeros(cycles, 1);
Start_column = zeros(cycles, 1);
Output_count = zeros (20, Max_column);
Output_frequency = zeros (20, Max_column);

% This creates the basic matrix where all loop lengths will be stored.
% Columns will be sequential so n=1 will be column 1, n=2 will be columns 2
% and 3, and so on. That will be the simplest route to making a master
% table that can be broken into smaller sets.

for n = 1: cycles;
 End_column(n) = ((n+1)/2)*n;
 Start_column(n) = End_column(n) - n +1;
end
% This generates a vector identifying the limits of each sublibrary

for n = 1: length(Output);
 a=0;
 for a = 1: length(Output{n});
 Column = ((length(Output{n})+1)/2)*length(Output{n}) -
length(Output{n}) + a;
 Output_count(aa2int(Output{n}(a)),Column) =
Output_count(aa2int(Output{n}(a)),Column) + 1;
 end
end

% Reads all assembly outputs separating them by length and counting the
% occurences of each amino acid at a given position of the library.

total = zeros(cycles,1);

% Creates a vector containing the sum of sequences for each sublibrary

for n = 1 : cycles;
 total(n) = sum(sum(Output_count(:,Start_column(n):End_column(n))));
 Output_frequency(:,Start_column(n):End_column(n)) =
Output_count(:,Start_column(n):End_column(n))/total(n);
end

% Creates a frequency matrix for each sublibrary

total_frequencies = zeros(cycles,1);
for a = 1: length(total);
 if total(a) ~= 0;
 total_frequencies(a) = total(a)/sum(total);
 else

 total_frequencies(a) = 0;
 end
end

% Converts the total count into a frequency table

%% Histogram

figure(2);
bar(total_frequencies);

%% Amino acid positional probability per sublibrary

figure(3);

Gap = 0.5;
Left = zeros(cycles, 1);
Width = zeros(cycles, 1);

for n = 1: cycles;
 Left (n) = (Start_column(n) + (n*Gap))/(Max_column + (cycles+2)*Gap);
 Width (n) = (End_column(n) - Start_column (n) +1)/(Max_column +
(cycles+2)*Gap);
end

% This for loop defines the placement for each sublibrary graph

for b = 1: cycles;
 if total(b) ~= 0;
 Max_freq =
max(max(Output_frequency(:,Start_column(b):End_column(b))));
 else
 Max_freq = 1;
 end

 % This if routine normalises the display scale in each sublibrary
 % ensuring that the highest frequency incorporation is used to
 % normalise the displayed signal in each sublibrary

 axes('Position', [Left(b), 0.05, Width(b), 0.75]);
 imagesc(Output_frequency(:,Start_column(b):End_column(b)),
[0,Max_freq]);
 set(gca,'xtick',[],'ytick',[]); %colormap bone;

 axes('Position', [Left(b), 0.85, Width(b), 0.05]);
 imagesc(total_frequencies(b),[0,max(total_frequencies)]);
 set(gca,'xtick',[],'ytick',[]);
end

% This generates a compound figure showing the frequency of the
% sublibraries and the positional composition of each sublibrary.

%% Amino acid positional probability taking the whole population into
consideration

figure(4);

% This requires a new frequency matrix with positional distribution
% calculated for the entire population rather than per sublibrary

Output_frequency_all = Output_count/sum(total);

Max_freq2 = max(max(Output_frequency_all));

for b = 1: cycles;

 axes('Position', [Left(b), 0.05, Width(b), 0.9]);
 imagesc(Output_frequency_all(:,Start_column(b):End_column(b)),
[0,Max_freq2]);
 set(gca,'xtick',[],'ytick',[]); %colormap bone;

end

% This generates a compound figure showing the frequency of the
% sublibraries and the positional composition of each sublibrary based on
% the total frequency

%% Cleaning up unnecessary variables

varlist = {'Output', 'lib', 'a', 'b', 'c', 'Clone', 'Column',
'composition_answer', 'cycles', 'def', 'dlg_title', 'End_column', 'Gap',
'Left', 'Max_column', 'Max_freq', 'Max_freq2', 'n', 'num_lines', 'prompt',
'total', 'total_frequencies', 'Width', 'x', 'varlist'};
clear(varlist{:});

Supplementary Note 2 - NGS Analysis workflow

1- Trimming – Remove the initial NNN nucleotides from all sequences and trims them to
100 nucleotide length, which is more than is needed to cover all possible variants for
the Ω-loop (fastx_trimmer is from the FASTX-Toolkit, available at:
http://hannonlab.cshl.edu/fastx_toolkit/)

fastx_trimmer -Q 33 -f 4 -l 104 -i illumina/UCLGMS1233-
33669653/Sample241116-41186489/Sample241116_S1_L001_R1_001.fastq -o
illumina/trim.fastq

2- Quality Control – Keep all reads with >30 quality value over >90% of their sequence,
discard the rest (fastq_quality_filter is from the FASTX-Toolkit, available at:
http://hannonlab.cshl.edu/fastx_toolkit/)

fastq_quality_filter -Q 33 -q 30 -p 90 -v -i illumina/trim.fastq -o
illumina/q30_trim.fastq

Input: 14207534 reads.
Output: 13263866 reads.
The read counts for each library after quality filtering are in Supplementary Table 5.

3- Demultiplexing – Use the indices in the input text file to divide the fastq file containing
all the reads into separate files for each sequencing library.

cat illumina/q30_trim.fastq | fastx_barcode_splitter.pl --bol --
exact --bcfile illumina/BC_161125.txt --prefix illumina/split/ --
suffix .fq

4- Trim each file – Remove indices from each file

fastx_trimmer -Q 33 -f 7 -l 93 -i illumina/split/1g_pre.fq -o
illumina/split/1g_pre_trim.fq

5- Further trimming – Remove fixed regions and ensure all libraries could be translated
in the +1 frame. Each library was individually inspected to determine the number of
residues that needed to be removed.

fastx_trimmer -f 46 -Q 33 -i 1g_post_trim.fq -o 1g_post_frame1.fq

6- Convert from fastq to fasta – The translation package uses a fasta input.

./bin/fastq_to_fasta -Q 33 -i frame/control-frame1.fq -o
frame/fasta/control.fasta

7- Translate in frame 1 – transeq is from the EMBOSS package (v 6.6.0)32. The output
is a FASTA file containing each read translated in frame +1 from nucleic acid to protein
sequences.

transeq -sequence control.fasta -outseq control_translated.fasta

8- Remove C-terminal fixed regions – Custom perl script Cter-trim.pl was written to
remove any sequence after the target in the W-loop that was not diversified. Since the
length of the variable region is not constant, this could not be done by fixed-length
trimming and the sequence of the fixed region had to be matched. The read counts for
each library after this step are in Supplementary Table 5.

perl Cter-trim.pl 1g_pre.fasta 1g_pre-trim.fasta

9- Count reads – Custom perl script fasta-to-fastaCounts.pl was written to count unique
reads, output is a .fasta file containing each unique sequence with the number of times
it was repeated in the sequencing dataset in its header.

perl fasta-to-fastaCounts.pl 1g_pre-trim.fasta 1g_pre-counts.fasta

10- Convert fasta counts files into CSV files – Custom perl script fastaCounts-to-
Matlab.pl was written to transform the data into a .csv format that could be used as
input for the MATLAB analysis pipeline. Outputs contain the raw sequences, the same
sequences with Zs added to each end for k-mer analysis and –Exc file containing all
sequences with mutations that disrupted the C-terminal fixed region and prevented
accurate analysis.

perl fastaCounts-to-Matlab.pl ../TrimTransSeqs/1g_post-counts.fasta
1g_postML.csv 1g_postML-Z.csv 1g_postML-Exc.csv

11- Calculate Z-scores for post-selection enrichment - A Z-score was calculated for
each pair of pre- and post-selection libraries to compare the distributions and identify
highly-enriched sequences, using a Poisson distribution to model each sequencing
dataset. MATLAB script TEM1_PoissonZscores_csvOutput.m takes in the .csv files
created in the previous step and a third .csv file containing the total number of reads
in each library. The output of this script is a .csv file containing the sequences from the
post-selection library, followed by their counts in both libraries and the calculated Z-
score.

12- Kmer-based PCA - InDEL_analysis_Poisson.m takes the .csv output of the previous

script and carries out the k-mer based PCA analysis of selection, using the separate
function pc.m

13- Hamming Distance calculations - Custom perl script fastaCounts-HammD.pl

calculates Hamming distances from an input origin sequence to all sequences of the
same length from an input fasta file, producing a .csv file containing all sequences of
the same length as the seed, their counts and Hamming distances to the seed.

perl fastaCounts-HammD.pl [Hamming distance origin sequence]
1g_pre-counts.fasta 1g_pre-HammD.csv

Supplementary Note References

34. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open
Software Suite. Trends Genet 16, 276-277 (2000).

