1	Supplementary Information
2	
3	IP ₆ -assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic
4	checkpoint to safeguard glucose-induced insulin secretion against
5	hyperinsulinemia
6	
7	Lin et al.
8	

2

insulin Supplementary Fig. Enhanced secretion and congenital 3 1. hyperinsulinemia in $Csn2^{WT/K70E}$ (Het) mice. (a) Daily food intake of wildtype and 4 Het mice (n = 4). Data are presented as Mean \pm SD. P values were calculated by 5 two-tailed Student's t-test. (b-c) Serum levels of free fatty acids (b) and triglycerides 6 (c) after 6-h fasting (n = 4, n.s.: not significant, student's T test). Data are presented as 7 Mean \pm SD. (d) Intraperitoneal insulin tolerance test (ITT) of wildtype and Het mice 8 at 4 month age (n = 4, ***p < 0.001, calculated by two way repeated-measures 9 ANOVA testing Genotype-x-Time effect). Data are presented as Mean \pm SD. 100% 10 blood glucose means 9.94 \pm 1.3 mM for WT, and 8.3 \pm 1.1 mM for Het. (e) Effect of 11 metformin (Met) treatment on insulin tolerance test of wildtype and $Csn2^{WT/K70E}$ (Het) 12 mice (n = 5, ***p < 0.001, calculated by two way repeated-measures ANOVA testing 13 Treatment-x-Time effect). Data are presented as Mean \pm SD. 4-month old mice were 14 treated with/without 250 mg/kg Metformin in drinking water for three weeks. 100% 15 blood glucose means 8.8 \pm 0.7 mM for WT without Metformin treatment, 8.4 \pm 0.8 16 mM for WT with Metformin treatment, 9.2 ± 0.9 mM for Het without Metformin 17 treatment, and 7.6 \pm 0.9 mM for Het with Metformin treatment. (f) Effect of 18 metformin (Met) treatment on serum insulin levels of wildtype and Csn2^{WT/K70E} (Het) 19 mice (n = 5). Data are presented as Mean \pm SEM. P values were calculated by 20 two-tailed Student's t-test. (g) Effect of streptozocin (STZ) treatment (i.p., 50 mg/kg 21 for four days) on the body weight of wildtype and $Csn2^{WT/K70E}$ (Het) mice (n = 4, n.s.: 22 not significant, calculated by two way ANOVA testing genotype main effect). Data 23 are presented as Mean \pm SEM. 24

- 25
- 26
- 27
- 28
- 29

2

Supplementary Fig. 2. Activation of the CRL4^{COP1}-ETV5 degradation axis 3 underlies glucose-induced insulin secretion and is constitutively augmented in 4 $Csn2^{WT/K70E}$ (Het) mice. (a) Effect of IP₆ (20 µM) addition to pancreatic lysate on 5 CSN3-Cul4B co-immunoprecipitation from wildtype and $Csn2^{WT/K70E}$ pancreas. (b) 6 Effect of MLN4924 on average islet cytoplasmic Ca²⁺ responses to depolarization 7 induced by 25mM KCl, assayed with Fura2AM [n = 4 (WT), or 5 (Het), n.s.: not8 significant, student's T test]. Data are presented as Mean \pm SEM. (c) Daily food intake 9 of mice is not affected by MLN4924 treatment (n = 4, n.s.: not significant, student's T 10 test). Data are presented as Mean ± SEM. P values were calculated by two-tailed 11 Student's t-test. (d) ETV5 ChIP on Sytl3 and Exoc6 promoters (n = 3). Data are 12 presented as Mean \pm SEM. P values were calculated by two-tailed Student's t-test. 13 14

Supplementary Fig. 3. Interaction domain characterization within the CRL4^{COP1}
complex. (a) DET1 knockdown abolishes Cul4B immunoprecipitation of COP1. (b)
Deleting COP1 aa 277-296 (Δ20) abolishes COP1 interaction with DET1 and DDB1,
but not ETV5. (c) DET1 Fragment mapping experiments showing that DET1 aa 1-110
binds to DDB1. (d-e) Reciprocal co-immunoprecipitation experiments showing that
DET1 aa 451-500 specifically interacts with COP1.

Supplementary Figure 4 а Refeed after fasting С b Fasted Refed, 1h 20 Refed, 1h min Fasted 10 #1 #2 #3 #1 #2 #3 mice #1 #2 #3 mice #1 #2 #3 ETV5 70 70 ETV5 70 ETV5 55 ETV4 GAPDH GAPDH 35 35 GAPDH liver 35 iWAT pancreas f d е Glucose deprivation #1 #2 #1 #2 Mice #1 #2 Islet mRNA levels 10 20 30 60 min kD 0.01 Glucose 30 mir 60 min kD 70 ETV5 70 ETV5 1.0 GAPDH actin 0 35 40 Islets Islets Etv5 Sytl3 Exoc 1.2 n. s. g Fed Fast 1.0· 1.0· #1 #3 #1 #3 mice #2 #2 Relative IP₆ 0.6--IP6 GTP 0.4 Native PAGE, Toluidine blue staining 0.2 0.0 Fast Fed

3

1

2

Supplementary Fig. 4. ETV5 as a CRL4^{COP1} regulated physiologic checkpoint for 4 nutrient/glucose-induced insulin secretion. (a) Levels of ETV5 in the pancreas of 5 overnight-fasted mice, with/without refeeding for the indicated time periods. (b-c) 6 Refeeding does not significantly change Levels of ETV5 in the liver (b) and adipose 7 tissue (c) of fasted mice. (d) Levels of ETV5 in isolated islets cultured in RPMI 8 mediated containing 11 mM glucose, followed by glucose withdrawal at the indicated 9 time points. (e) Levels of ETV5 in isolated islets after exposure to 16.8 mM glucose 10 at the indicated time points. (f) Transcript levels of Etv5 and its targets in islets 11 incubated with 2.8 mM or 11.8 mM glucose (n = 3). Data are presented as Mean \pm 12 SEM. P values were calculated by two-tailed Student's t-test. (g) Total levels of 13 cellular IP₆ in the pancreas of mice with/without fasting (6h) (n = 3, n.s.: not 14 significant, student's T test). Data are presented as Mean \pm SD. 15

- 16
- 17
- 18

1

3 Supplementary Fig. 5. The CRL inhibitor Pevonedistat/MLN4924 stabilizes ETV5 and improves diet-induced or leptin deficiency-induced obesity/diabetes. 4 (a) Effect of MLN4924 injection (i.p. 15 mg/kg) on ETV5 levels from mice fed with 5 NCD. (b-c) Glucose (b) and insulin (c) tolerance test in HFD or NCD mice 6 with/without MLN4924 treatment (n = 5, ***p < 0.001, calculated by two way 7 repeated-measures ANOVA testing Treatment-x-Time effect). 100% blood glucose 8 means 16.3 ± 2.2 mM for WT and 12.2 ± 1.4 mM for Het. 100% blood glucose means 9 7.2 ± 0.6 mM for NCD without MLN4924, 7.4 ± 0.5 mM for HFD with MLN4924, 10 9.8 \pm 1.4 mM for HFD without MLN4924, and 7.6 \pm 0.5 mM for HFD with 11 MLN4924. (d) Concurrent treatment with Glargine (Sanofi, 50 IU/Kg, twice weekly), 12 a slow-releasing insulin, reverses the anti-obese effect of MLN4924 (n = 5, n.s.: not 13 significant, two way repeated-measures ANOVA testing Treatment-x-Time effect). 14 Data are presented as Mean \pm SD. Note that (e-f) Glucose (e) and insulin (f) tolerance 15 test in ob/ob mice with/without MLN4924 treatment (n = 5, ***p < 0.001, calculated 16 by two way repeated-measures ANOVA testing Treatment-x-Time effect). Data are 17 presented as Mean \pm SEM. 100% blood glucose means 16.3 \pm 2.2 mM for ob/ob mice 18 without MLN4924 treatment and 12.2 ± 1.4 mM for ob/ob mice with MLN4924 19 treatment. 20 21

	1				
Primers	Primer sequences				
A.	A. Primers to generate different constructs				
hCOP1-shRNA1	GCTAACAGTCAGGGTACAATT				
hCOP1-shRNA2	GCTGGAGTTACAAAGAAGATT				
hETV5-shRNA1	GAGCGATACGTCTACAAATTT				
hETV5-shRNA2	TCCATGGCTTTCCCGGATAAC				
mCOP1-shRNA1	GCTGTATCAGTTGGAGTAGTT				
mCOP1-shRNA2	CCTTGGTATAACAGCACATTA				
mDet1-shRNA1	ATCAAGGGCTCTACTTGTATA				
mDet1-shRNA2	TCCTTGTTTCTTACGGAAATT				
mEtv5-shRNA1	GCCAAAGATGATGCCTGAA				
mEtv5-shRNA2	GCCATGAAGGATTCCCGTA				
hSytl3-ECOR1-F	CTCGAGCTCAAGCTTCGAATTCATGGCCCAAGAAA				
	TAGATC				
hSytl3-BamH1-R	CGTCGTCGTCCTTGTAGTCGGATCCTCAGTGCAGG				
	ACAAGAGTC				
hExoc6-ECOR1-F	CTCGAGCTCAAGCTTCGAATTCATGGCGGAGAACA				
	GCGAGA				
hExoc6-BamH1-R	CGTCGTCGTCCTTGTAGTCGGATCCCTACATGTGCT				
	GGGACATA				
hDET1-F	AAAAGTCGACcATGGATCATCATGTTTCTACCA				
hDET1-R	AAAAGCGGCCGCCTACGTGCAGCAGTGTCGCATAT				
hDet1-1-110-F	GCGGAATTCGGTCGACCATGGAT				
hDet1-1-110-R	GCGGCGGCCGCCTAGTCATTGCCATTGGACAGGA				
hDet1-111-286-F	GCGGAATTCGGTCGACCCAGCGGTCAGTGAATATC				
	С				
hDet1-111-286-R	GCGGCGGCCGCCTAGGGATTGGCCATGCCT				
hDet1-287-450-F	GCGGAATTCGGTCGACCTTTAGGGATCCTTTCATC				
	AATTCC				
hDet1-287-450-R	GCGGCGGCCGCCTAGATGGGGAGCTGACCC				
hDet1-451-550-F	GCGGAATTCGGTCGACCAGTGCTCAGTCTTACAGC				
	G				
Det1-451-550-R	GCGGCGGCCGCCTACGTG				
mDcaf8-shRNA	GCCATACTGGTTGTGTCAATA				
mWdr59-shRNA	CTCCCTAGTGATTGCCTTCTT				
mWdr51-shRNA	CCAGGTCTAATTGCAGTAATA				
mWdr61-shRNA	GATGCCTGGACTTTGGCATTT				
mWdr57-shRNA	GCAGGATTTGACTAATA				
mDcaf5-shRNA	GAGGAAATGATGAGCAAGTTA				
mDcaf9-shRNA	CTTACAAGCAACGGCCATATA				
mDcaf14-shRNA	GGAGTCAAAGTTCGATCTTAT				
mDcaf16-shRNA	CTCTAAATGGAGCACTGCAAT				

1 Supplementary Table 1. Primer information

mDcaf10-shRNA	TGATACCACAATAGCACTATG
mDcaf2-shRNA	TGATGAAGCTGCCTACATTTG
mDcaf11-shRNA	GAGCGGCCACATTGTTAAGAA
mDcaf4-shRNA	CTTCTCCAGTTATTGCCGTTT
mDcaf7-shRNA	CAACAACAAGAACTCAGACTT
mDcaf19-shRNA	GCAGCATATTTATATGGGATA
mDcaf1-shRNA	TGCAATTGGAAGACCTATTAT
mWdr12-shRNA	CCTACAGATGAAGAAGATGAA
mDcaf13-shRNA	CCCTGTTGAGACATTTCTCTT
mWdr39-shRNA	GCTGGAAATGTATCTGCACTT
mFbxw5-shRNA	GCGGCTCTTTAAGATCCAGAA
mRbbp4-shRNA	ATTTGGGACACTCGTTCAAAC
mWsb2-shRNA	CAATGGTCTTTGCTGCACGTT
mTtrpc4ap-shRNA	CTGATGAAGTTCAACGTCGAT
mEed-shRNA	TCTTGCTAGTAAGGGCACATA
mDdb2-shRNA	ATACCCAGATCCTAATCTTAA
mCsa-shRNA	GAGTTAAACAAAGACAGGGAT
mSMU1-shRNA	CCCATGATTATGTTAAAGCAA
mWsb1-shRNA	ACATGAGCTGCTGCTATATAT
mRbbp7-shRNA	CCTTTGATTCAACTGTCATTT
mDda1-shRNA	CTGCACCAGCAATGGGATAAA
mCrbn-shRNA	CCTACCAAGTTCAAGAGCATA
mDcaf17-shRNA	GAATCTGACTGGATCTATTTC
mWdr75-shRNA	CGAAGTCACAGAGCTTATTAA
	B: RT-PCR Primers
rSytl3-F	ATCCTGCACTGAGGTGAAGC
rSytl3-R	AGGCTCCCCGACAGTAATCT
rExoc6-F	AGATCGAAAGCACGGACACC
rExoc6-R	TCTCCTTGTCATGGTTGCGG
hETV5-F	TAGGCTAAGTTGGGGAGGCT
hETV5-R	GGGTGGTTCCCAAGAGTAGC
rIns1-F	CCAAGTCCCGTCGTGAAGT
rIns1-R	GGTGCAGCACTGATCCACAA
rGapdh-F	ATGACTCTACCCACGGCAAG
rGapdh-R	GGAAGATGGTGATGGGTTTC
mIns1-F	CACTTCCTACCCCTGCTGG
mIns1 P	
mIns? F	
mmsz-K	
mSytI3-F	
mSyt13-R	GUUAAGTIUUIGIAAUUIGU

mExoc6-F	GAAAAGCTAGACGCTTGTATCCG
m Exoc6-R	TGAGGAGTTCCGTAATCGCAT
mGapdh-F	TCAAGAAGGTGGTGAAGCAG
mGapdh-R	AGGTGGAAGAGTGGGAGTTG