

Supporting Information for DOI: 10.1055/a-1315-1279 © 2020. Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Online Material for

Facile Pyridine S_NAr Reactions via N-Phosphonium Pyridinium Intermediates

Benjamin T. Boyle, J. Luke Koniarczyk and Andrew McNally*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States. *andy.mcnally@colostate.edu

Table of Contents

1.	General Information	<i>S2</i>
2.	Optimization Studies	<i>S4</i>
3.	Iodine Spiking Studies	<i>S6</i>
4.	Challenges and Limitations	<i>S9</i>
5.	Preparation of Heteroaryl Phosphoniums	<i>S10</i>
6.	References	S19
7.	¹ H, ¹³ C, ¹⁹ F and ³¹ P Spectra	S20

1. General Information

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded at ambient temperature on either a Bruker Ultrashield-400 (400 MHz) spectrometer, a Varian 400 MR (400 MHz) spectrometer or an Agilent Inova 400 (400 MHz) spectrometer. Chemical shifts (δ) are reported in ppm and quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (7.26 ppm), C_6D_6 (7.16 ppm), (CD₃)₂SO (2.50 ppm), CD₃OD (3.31 ppm) or CD₃CN (1.94 ppm) and coupling constants (J) are quoted in Hertz (Hz). Data are reported as follows: Chemical shift (multiplicity, coupling constants, number of protons). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, sext = sextet, sp = septet, m = multiplet, br = broad. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded at ambient temperature on either a Bruker Ultrashield-400 (400 MHz) spectrometer, a Varian 400 MR spectrometer (100 MHz) or an Agilent Inova 400 (100 MHz) spectrometer. Chemical shift (δ) was measured in ppm and quoted to the nearest 0.1 ppm relative to the residual solvent peaks in CDCl₃ (77.16 ppm), C₆D₆ (128.06 ppm), (CD₃)₂SO (39.51 ppm), CD₃OD (49.00 ppm) or CD₃CN (1.32 ppm). DEPT135, NOE experiments and 2-dimensional experiments (COSY, HMBC, and HSQC) were used to support assignments where appropriate.

Low-resolution mass spectra (LRMS) were measured on an Agilent 6310 Quadrupole Mass Spectrometer.

Analytical thin layer chromatography (TLC) was performed using pre–coated Merck glass backed silica gel plates (Silicagel 60 F254). Flash column chromatography was undertaken on Fluka or Material Harvest silica gel (230–400 mesh) under a positive pressure of air. Visualization was achieved using ultraviolet light (254 nm) and chemical staining with ceric ammonium molybdate or basic potassium permanganate solutions as appropriate.

Tetrahydrofuran (THF), toluene, hexane, diethyl ether and dichloromethane were dried and distilled using standard methods.¹ Chloroform (CHCl₃) was purchased anhydrous from Sigma Aldrich chemical company. All reagents were purchased at the highest commercial quality and used without further purification. Reactions were carried out under an atmosphere of air unless otherwise stated. All reactions were monitored by TLC, ¹H NMR spectra taken from reaction

samples, gas chromatography (GC) and gas chromatography–mass spectrometry (GCMS) using an Agilent 5977A fitted with an Agilent J&W HP–5ms Ultra Inert Column (30 m, 0.25 mm, 0.25 μ m film) for MS analysis and an Agilent J&W VF–5ms column (10 m, 0.15 mm, 0.15 μ m film) for FID analysis or liquid chromatography mass spectrometry (LCMS) using an Agilent 6310 Quadrupole Mass Spectrometer. Melting points (mp) were recorded using a Büchi B–450 melting point apparatus and are reported uncorrected.

Tri-p-anisole phosphine (99%) was purchased from Oakwood Chemicals and stored in a glovebox. Tri-p-anisole phosphine was commonly dispensed into vials for use in the reaction and stored under air on a benchtop prior to use. Anhydrous chloroform (0.05-0.1% EtOH as stabilizer) was purchased from Sigma Aldrich chemical company and used without further purification

2. Optimization Studies

Table S1: Phosphine Screen at 50 °C

	Phosphine CH ₂ Cl ₂ 50 °C	IT IN N
Entry	Phosphine	Yield (%)*
1	PPh ₃	79
2	(p-Cl)Ph ₃ P	4
3	(thienyl) ₃ P	15
4	(p-tol) ₃ P	97
5	(o-tol) ₃ P	2
6	nBu ₃ P	56
7	(p-OMe)Ph ₃ P	97
8	Ph ₂ PEt	99

*¹H NMR yields shown using triphenylmethane as an internal standard.

Table S2: Phosphine Screen: Room Temperature

Entry	Phosphine	Yield (%)*
1	Ph ₃ P	6
2	nBu ₃ P	5
3	PEt ₃	8
4	PhPEt ₂	79
5	Ph ₂ PEt	86
6	(p-tol) ₃ P	78
8	(p-OMe)Ph ₃ P	86

*¹H NMR yields shown using triphenylmethane as an internal standard.

 Table S3: Phosphonium Formation Additive Screen

	Additive (p-OMe)Ph3 ^P 1.0 eq CH ₂ Cl ₂ rt	
Entry	Conditions/Additive	Yield (%)*
1	H ₂ O (10 eq)	83
2	Cs ₂ CO ₃	n.d.†
3	MeOH*	nd t
-	110011	11.u.
4	Light excluded	83
4 5	Light excluded Sublimed Iodopyridine	83 66

*¹H NMR yields shown using triphenylmethane an internal standard. †Products were not detected by LCMS or ¹H NMR. ‡MeOH was used as the solvent instead of CH₂Cl₂.

Table S4: AIBN Study: Radical Initiator -Shortened Reaction Times

I	Additive	₽R3
\checkmark	(p-OMe)Ph3 ^P 1.0 eq	
	CH ₂ Cl ₂ rt	→ ()
Entry	Additive	Yield (%)*
1	None	23
2	AIBN (5 mol%)	22
3	(10)	24
5	AIBN ($10 \text{ mol}\%$)	24

^{*1}H NMR yields shown using triphenylmethane as an internal standard. No increase in reaction rate was observed using AIBN as a radical initiator, this experiment was ran at 50 °C and 80 °C with no observable increase in reaction rate.

3. Iodine Spiking Studies

Scheme S1: ¹H NMR and ³¹P NMR: I₂ addition to (p-anisole)Ph₃P. Show reaction and shifting of phosphine peaks as iodine concentration increase. Consistent with reports of I-⁺PAr3 formation.

Scheme S2: ¹H NMR: I₂ addition to (p-anisole)Ph₃P with 1 equivalent of pyridine. Show reaction and shifting of phosphine peaks as iodine concentration increase. Consistent with formation of an activated pyridinium species, in particular meta position proton shift 7.3 to 7.5 ppm and para position shift from 7.7 to 7.85 ppm.

Scheme S3: ¹H NMR: I₂ addition to pyridine. Known reactivity to form activated pyridines. Shows distinct peaks when compared to Scheme S3 indicating species observed under reaction conditions are not associated with an iodo-pyridinium.

4. Challenges and Limitations

5. Preparation of Heteroaryl Phosphonium Salts

General Procedure A:

An oven dried 8 mL vial (< 1.0 mmol) or 16 mL vial (1.0-4.0 mmol) equipped with a stir bar was charged with the iodopyridine (1.0 equiv) and (p-anisole)₃P (1.0 equiv) and CHCl₃ (0.5 M). The reaction was then stirred at the temperature indicated (rt, 50 °C or 80 °C) for the stated time. The reaction was then purified by diluting the crude reaction with CHCl₃ and by crashing out in Et₂O (100 mL per 1.0 mmol) at room temperature.

Notes:

- 1. Reaction was ran under air and N₂ atmospheres and no notable differences in yields were observed.
- 2. Additional phosphine can be used to increase the reaction rate (1st order in phosphine)
- 3. In general the reaction does not product by-products besides trace phosphine oxide.

(3-Chloropyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1b)

Prepared according to general procedure A using 3-chloro-4-iodopyridine (72 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at room temperature for 36 hours. After purification procedure, the title compound was isolated as a light brown solid (174 mg, 0.3 mmol, 98% yield). mp 91-93 °C; ¹H NMR (400 MHz, CDCl₃) δ : 9.12 – 8.59 (m, 2H), 7.58 (dd, *J*=12.7, 8.9, 6H), 7.48 – 7.10 (m, 7H), 3.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.40 (d, *J*=3.0), 151.98 (d, *J*=5.0), 150.11 (d, *J*=9.8), 136.35 (d, *J*=12.4), 134.75 (d, *J*=2.2), 130.32 (d, *J*=8.4), 129.29 (d, *J*=88.3), 117.02 (d, *J*=14.5), 105.78 (d, *J*=100.0), 56.51; ³¹P NMR (162 MHz, CDCl₃) δ : 21.08; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 464.2, C₂₆H₂₄ClNO₃P⁺ requires 464.1.

Tris(4-methoxyphenyl)(3-(trifluoromethyl)pyridin-4-yl)phosphonium iodide (1c)

Prepared according to general procedure A using 4-iodo-3-(trifluoromethyl)pyridine (27 mg, 0.10 mmol), tris(4-methoxyphenyl)phosphane (35 mg, 0.10 mmol), and chloroform (0.2 mL) at room temperature for 37 hours. After purification procedure, the title compound was isolated as a yellow solid (53 mg, 0.09 mmol, 85% yield). mp 93-96 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.26 (m, 2H), 7.72 – 7.56 (m, 7H), 7.26 (m, 6H), 3.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.41 (d, *J*=3.0), 156.20 (d, *J*=9.5), 150.29, 150.21 (d, *J*=5.2), 136.67 (d, *J*=12.3), 131.24 (d, *J*=8.9), 122.51 (qd, *J*=273.2, 2.7), 116.80 (d, *J*=14.6), 106.96 (d, *J*=99.9), 56.4; ¹⁹F NMR (365 MHz, CDCl₃) δ : -54.14 (d, J=2.1); ³¹P NMR (162 MHz, CDCl₃) δ : 25.27; *m/z* LRMS (ESI + APCI) found [M-I]⁺498.2, C₂₇H₂₄F₃NO₃P⁺ requires 498.1.

(3-Aminopyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1d)

Prepared according to general procedure A using 4-iodopyridin-3-amine (66 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a dark red crystalline solid (163 mg, 0.29 mmol, 95% yield). mp 148-151 °C; IR v_{max}/cm^{-1} (film): 3048, 3001, 2961, 1576, 1555, 1443, 1433, 1094, 796, 754, 698; ¹H NMR (400 MHz, CD₃CN) δ : 8.46 (d, *J*=7.3, 1H), 7.99 (dd, *J*=5.3, 3.4, 1H), 7.74 – 7.48 (m, 6H), 7.24 (dd, *J*=9.0, 2.7, 6H), 6.76 (dd, *J*=15.4, 5.4, 1H), 4.85 (s, 2H), 3.92 (s, 9H).; ¹³C NMR (100 MHz, CD₃CN) δ : 166.18 (d, *J*=2.9), 147.39 (d, *J*=3.5), 141.32 (d, *J*=5.9), 138.31 (d, *J*=10.8), 137.39 (d, *J*=12.4), 134.47 (d, *J*=11.1), 128.00 (d, *J*=8.6), 117.20 (d, *J*=14.2), 107.65 (d, *J*=98.0), 56.8; ³¹P NMR (162 MHz, CDCl₃) δ : 17.57; *m/z* LRMS (ESI + APCI) found [M-I]⁺445.3, C₂6H₂6N₂O₃P⁺ requires 445.2.

(3-Hydroxypyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1e)

Prepared according to general procedure A using 4-iodopyridin-3-ol (66 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a yellow solid (169 mg, 0.29 mmol, 99% yield). mp 123 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.79 (d, *J*=6.5, 1H), 8.09 (dd, *J*=5.2, 3.7, 1H), 7.50 (dd, *J*=12.7, 8.9, 6H), 7.15 (dd, *J*=9.0, 2.7, 6H), 6.90 (dd, *J*=14.6, 5.2, 1H), 3.91 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.81 (d, *J*=2.9), 159.17, 140.97, 136.05 (d, *J*=12.4), 133.87 (d, *J*=11.8), 127.72 (d, *J*=8.0), 116.24 (d, *J*=14.5), 114.31 (d, *J*=13.5), 108.13 (d, *J*=100.0), 56.2; ³¹P NMR (162 MHz, CDCl₃) δ : 19.74; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 446.2, C26H₂₅NO4P⁺ requires 446.2

(3,5-Dimethylpyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1f)

Prepared according to general procedure A using 4-iodo-3,5-dimethylpyridine (70 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 80 °C for 19 hours. After purification procedure, the title compound was isolated as a red crystalline solid (175 mg, 0.3 mmol, 99% yield). mp 122-124 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.50 (d, *J*=6.0, 2H), 7.68 – 7.55 (m, 6H), 7.28 – 7.23 (m, 7H), 3.94 (s, 9H), 1.83 (d, *J*=1.1, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.16 (d, *J*=3.0), 152.49 (d, *J*=8.5), 137.55 (d, *J*=7.6), 136.14 (d, *J*=12.2), 126.41 (d, *J*=81.8), 117.09 (d, *J*=14.2), 109.34 (d, *J*=95.7), 56.51, 21.08 (d, *J*=5.2); ³¹P NMR (162 MHz, CDCl₃) δ : 15.33; *m/z* LRMS (ESI + APCI) found [M-I]⁺458.3, C₂₈H₂₉NO₃P⁺ requires 458.2.

Tris(4-methoxyphenyl)(2-oxo-1,2-dihydropyridin-4-yl)phosphonium iodide (1g)

Prepared according to general procedure A using 4-iodopyridin-2-ol (66 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a brown solid (160 mg, 0.29 mmol, 98% yield). mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (s, 1H), 7.54 (dd, *J*=12.5, 8.5, 6H), 7.25 – 7.18 (m, 6H), 7.13 (d, *J*=6.7, 1H), 7.08 (d, *J*=1.6, 1H), 6.67 – 6.55 (m, 2H), 6.30 (s, 1H), 3.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.53 (d, *J*=2.9), 139.50 (d, *J*=14.1), 136.44 (d, *J*=12.0), 135.43 (d, *J*=79.6), 134.30, 129.62 (d, *J*=8.1), 116.87 (d, *J*=14.2), 105.81 (d, *J*=10.3), 105.80, 56.4; ³¹P NMR (162 MHz, CDCl₃) δ : 20.74; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 446.2, C₂₆H₂₅NO4P⁺ requires 446.2.

Tris(4-methoxyphenyl)(1H-pyrrolo[2,3-b]pyridin-4-yl)phosphonium iodide (1h)

Prepared according to general procedure A using 4-iodo-1H-pyrrolo[2,3-b]pyridine (73 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a yellow solid (156 mg, 0.26 mmol, 87% yield). mp 131 °C; ¹H NMR (400 MHz, CDCl₃) δ : 11.66 (s, 1H), 8.55 (t, *J*=4.7, 1H), 7.85 (t, *J*=2.9, 1H), 7.50 (dd, *J*=12.5, 8.9, 6H), 7.18 (dd, *J*=9.0, 2.7, 6H), 6.98 (dd, *J*=14.8, 4.9, 1H), 5.63 (d, *J*=3.5, 1H), 3.92 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.15 (d, *J*=2.9), 148.35 (d, *J*=11.6), 142.84 (d, *J*=11.4), 136.20 (d, *J*=12.1), 131.61, 121.71 (d, *J*=8.8), 120.82 (d, *J*=9.1), 118.42 (d, *J*=88.1), 116.60 (d, *J*=14.2), 107.66 (d, *J*=98.1), 100.09 (d, *J*=3.0), 56.37; ³¹P NMR (162 MHz, CDCl₃) δ : 18.33; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 469.3, C₂₈H₂₆N₂O₃P⁺ requires 469.2.

Tris(4-methoxyphenyl)(2-(4-(trifluoromethyl)phenyl)pyridin-4-yl)phosphonium iodide (1i)

Prepared according general procedure А 4-iodo-2-(4to using (trifluoromethyl)phenyl)pyridine (35 mg, 0.10 mmol), tris(4-methoxyphenyl)phosphane (35 mg, 0.10 mmol), and chloroform (0.2 mL) at 50 °C for 18 hours. After purification procedure, the title compound was isolated as a yellow amorphous solid (62 mg, 0.09 mmol, 89% yield). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$: 9.08 (td, J=5.0, 0.9, 1H), 8.10 – 8.04 (m, 2H), 7.83 (ddd, J=13.6, 1.6, 0.9, 1H), 8.10 – 8.04 (m, 2H), 7.83 (ddd, J=13.6, 1.6, 0.9, 1H) 1H), 7.74 – 7.66 (m, 2H), 7.58 (dd, J=12.4, 8.9, 7H), 7.29 (dd, J=9.0, 2.8, 6H), 3.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 165.52 (d, J=2.9), 157.68 (d, J=10.2), 151.84 (d, J=10.6), 140.44, 136.50 (d, J=12.1), 132.10 (d, J=85.2), 131.95 (d, J=32.7), 127.86, 126.23 (d, J=8.1), 126.09 (q, J=3.8), 123.90 (q, J=272.5), 123.52 (d, J=8.8), 117.04 (d, J=14.2), 106.13 (d, J=98.6), 56.52; ¹⁹F NMR (365 MHz, CDCl₃) δ: -62.76; ³¹P NMR (162 MHz, CDCl₃) δ: 20.80; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 574.3, C₃₃H₂₈F₃NO₃P⁺ requires 574.2.

(2-(2,5-Difluorophenyl)-3-methylpyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1j)

Prepared according to general procedure A using 2-(2,5-difluorophenyl)-4-iodo-3methylpyridine (99 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 21 hours. After purification procedure, the title compound was isolated as a white solid (171 mg, 0.25 mmol, 83% yield). mp 112 °C; ¹H NMR (400 MHz, CDCl₃) δ: 8.82 (t, *J*=4.5, 1H), 7.59 (dd, *J*=12.5, 8.9, 6H), 7.40 – 7.25 (m, 7H), 7.21 – 7.03 (m, 3H), 3.94 (s, 9H), 1.91 (s, 3zH); ¹³C NMR (100 MHz, CDCl₃) δ: 165.30 (d, *J*=3.0), 158.86 (dd, *J*=244.9, 2.2), 156.54 (d, *J*=2.4), 156.60 – 156.33 (m), 154.13 (d, *J*=2.6), 148.96 (d, *J*=11.6), 136.14 (d, *J*=12.1), 130.02 (d, *J*=84.0), 128.48 (d, *J*=10.5), 127.95 (ddd, *J*=18.4, 8.0, 2.4), 118.25 – 117.76 (m), 117.88 (d, *J*=24.1), 117.14 (d, *J*=14.2), 116.90 (d, *J*=8.6), 106.84 (d, *J*=97.9), 56.52, 19.93; ¹⁹F NMR (365 MHz, CDCl₃) δ: -116.86 - -117.90 (m), -120.61 - -122.10 (m); ³¹P NMR (162 MHz, CDCl₃) δ: 20.32; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 556.3, C₃₃H₂₉F₂NO₃P⁺ requires 556.2.

(3-Carboxy-2-chloropyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1k)

Prepared according to general procedure A using 2-chloro-4-iodonicotinic acid (85 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a yellow solid (136 mg, 0.27 mmol, 89% yield). mp 95-98 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.61 – 8.57 (m, 1H), 7.58 (dd, *J*=12.5, 9.0, 6H), 7.25 – 7.21 (m, 1H), 7.15 (dd, *J*=9.0, 2.9, 6H), 3.91 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.05 (d, *J*=3.7), 164.88 (d, *J*=3.0), 162.59 (d, *J*=2.8), 151.07 (d, *J*=12.5), 149.73 (d, *J*=11.9), 136.88 (d, *J*=12.1), 130.92 (d, *J*=86.4), 126.90 (d, *J*=9.9), 116.08 (d, *J*=14.5), 108.06 (d, *J*=100.0), 56.21; ³¹P NMR (162 MHz, CDCl₃) δ : 22.97; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 508.2, C₂₇H₂₄CINO₅P⁺ requires 508.1.

(5-Bromo-2-chloropyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (11)

Prepared according to general procedure A using 5-bromo-2-chloro-4-iodopyridine (96 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 80 °C for 19 hours. After purification procedure, the title compound was isolated as a golden

yellow solid (201 mg, 0.3 mmol, 99% yield). mp 111-114 °C; ¹H NMR (400 MHz, CDCl₃) δ: 8.75 (d, *J*=5.7, 1H), 7.61 (dd, *J*=12.8, 8.9, 6H), 7.30 – 7.24 (m, 6H), 7.12 (d, *J*=14.1, 1H), 3.95 (s, 10H); ¹³C NMR (100 MHz, CDCl₃) δ: 165.56 (d, *J*=3.0), 154.76 (d, *J*=6.7), 152.76 (d, *J*=13.7), 136.61 (d, *J*=12.4), 134.49 (d, *J*=87.9), 131.87 (d, *J*=10.5), 123.00 (d, *J*=3.5), 117.16 (d, *J*=14.5), 105.14 (d, *J*=100.1), 56.5: ³¹P NMR (162 MHz, CDCl₃) δ: 23.14; *m/z* LRMS (ESI + APCI) found [M-I]⁺ 542.1, C₂₆H₂₃BrClNO₃P⁺ requires 542.0.

Tris(4-methoxyphenyl)(2-oxo-1,2-dihydropyridin-4-yl)phosphonium iodide (1m)

Prepared according to general procedure A using 3-(allyloxy)-4-iodopyridine (78 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at room temperature for 36 hours. After purification procedure, the title compound was isolated as a yellow solid (160 mg, 0.30 mmol, 99% yield). mp 71 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.66 (d, *J*=6.5, 1H), 8.53 (dd, *J*=4.9, 3.6, 1H), 7.54 (dd, *J*=12.8, 8.9, 6H), 7.26 – 7.16 (m, 6H), 7.08 (dd, *J*=14.8, 4.9, 1H), 5.40 (ddd, *J*=16.2, 10.7, 5.4, 1H), 5.09 (dd, *J*=10.5, 1.2, 1H), 5.00 (dd, *J*=17.2, 1.4, 1H), 4.59 (d, *J*=5.5, 2H), 3.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.02 (d, *J*=3.0), 154.93, 143.88 (d, *J*=11.0), 137.18 (d, *J*=4.5), 135.95 (d, *J*=12.5), 130.09, 128.12 (d, *J*=7.2), 119.85, 117.55 (d, *J*=87.3), 116.54 (d, *J*=14.5), 107.11 (d, *J*=100.3), 70.98, 56.4; ³¹P NMR (162 MHz, CDCl₃) δ : 19.64; *m/z* LRMS (ESI + APCI) found [M-I]⁺486.3, C₂₉H₂₉NO4P⁺ requires 486.2.

Tris(4-methoxyphenyl)(quinolin-4-yl)phosphonium iodide (1n)

Prepared according to general procedure A using 4-iodoquinoline (78 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at room temperature for 39 hours. After purification procedure, the title compound was isolated as a yellow solid (147 mg, 0.24 mmol, 81% yield). mp 112-113 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.10 (t, *J*=4.1, 1H),

8.23 (d, J=8.2, 1H), 7.79 (t, J=7.7, 1H), 7.54 – 7.29 (m, 9H), 7.18 (dd, J=8.9, 2.6, 6H), 3.88 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 165.24 (d, J=3.0), 150.10 (d, J=12.2), 148.72 (d, J=6.9), 136.23 (d, J=12.3), 131.72 (d, J=2.3), 131.15, 130.11 (d, J=9.0), 129.31, 126.59 (d, J=74.2), 126.15 (d, J=2.7), 125.92 (d, J=6.4), 116.95 (d, J=14.3), 107.15 (d, J=98.0), 56.46; ³¹P NMR (162 MHz, CDCl₃) δ : 19.60; m/z LRMS (ESI + APCI) found [M-I]⁺ 480.2, C₃₀H₂₇NO₃P⁺ requires 480.2.

Tris(4-methoxyphenyl)(pyridin-2-yl)phosphonium iodide (10)

Prepared according to general procedure A using 2-iodopyridine (32 µL, 0.30 mmol), tris(4methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a yellow solid (114 mg, 0.20 mmol, 63% yield). mp 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.96 (dt, *J*=4.7, 1.4, 1H), 8.20 (tdd, *J*=7.9, 5.0, 1.7, 1H), 7.86 (ddt, *J*=7.6, 6.4, 1.2, 1H), 7.73 (dddd, *J*=7.8, 4.7, 2.8, 1.1, 1H), 7.58 (dd, *J*=12.3, 8.9, 6H), 7.21 (dd, *J*=9.0, 2.7, 6H), 3.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.21 (d, *J*=2.9), 152.29 (d, *J*=19.4), 147.10, 145.89, 138.90 (d, *J*=10.4), 136.70 (d, *J*=11.8), 131.73 (d, *J*=24.5), 128.13, 116.53 (d, *J*=14.0), 107.85 (d, *J*=97.7), 56.36; ³¹P NMR (162 MHz, CDCl₃) δ : 13.80; *m/z* LRMS (ESI + APCI) found [M-I]⁺430.2, C₂6H₂₅NO₃P⁺ requires 430.2.

Tris(4-methoxyphenyl)(5-(trifluoromethyl)pyridin-2-yl)phosphonium iodide (1p)

Prepared according to general procedure A using 2-iodo-5-(trifluoromethyl)pyridine (82 mg, 0.30 mmol), tris(4-methoxyphenyl)phosphane (106 mg, 0.30 mmol), and chloroform (0.6 mL) at 80 °C for 19 hours. After purification procedure, the title compound was isolated as a golden solid (174 mg, 0.28 mmol, 93% yield). mp 87 °C; ¹H NMR (400 MHz, CDCl₃) δ: 9.11 (s, 1H), 8.65 –

8.41 (m, 1H), 8.31 (dd, J=8.1, 5.9, 2H), 7.58 (dd, J=12.4, 8.9, 6H), 7.21 (dd, J=9.0, 2.8, 6H), 3.92 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.37 (d, J=3.0), 150.84 (d, J=118.7), 148.36 (dd, J=19.7, 3.8), 136.74 (d, J=12.0), 136.33 (dd, J=10.4, 3.6), 131.98 (d, J=24.6), 129.81 (d, J=31.0), 122.44 (qd, J=275.3, 1.7), 116.67 (d, J=14.2), 106.65 (d, J=98.3), 56.34; ¹⁹F NMR (365 MHz, CDCl₃) δ : -62.82; ³¹P NMR (162 MHz, CDCl₃) δ : 15.08; m/z LRMS (ESI + APCI) found [M-I]⁺ 498.2, C₂₇H₂₄F₃NO₃P⁺ requires 498.1.

(5-chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3'-bipyridin]-4'-yl)tris(4-

methoxyphenyl)phosphonium iodide (1q)

Prepared according to general procedure A using 5-chloro-4'-iodo-6'-methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-bipyridine (48 mg, 0.10 mmol), tris(4-methoxyphenyl)phosphane (35 mg, 0.10 mmol), and chloroform (0.2 mL) at room temperature for 34 hours. After purification procedure, the title compound was isolated as a yellow solid (76 mg, 0.09 mmol, 92% yield). mp 180 °C (decomposition); ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (d, *J*=6.9, 1H), 8.10 (d, *J*=8.4, 2H), 7.82 (d, *J*=2.3, 1H), 7.63 (dd, *J*=12.3, 9.0, 6H), 7.51 (d, *J*=2.3, 1H), 7.44 (d, *J*=8.5, 2H), 7.22 (d, *J*=16.1, 1H), 7.14 (dd, *J*=9.0, 2.8, 6H), 3.89 (s, 9H), 3.12 (s, 3H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.54 (d, *J*=3.0), 160.57 (d, *J*=10.9), 152.82 (d, *J*=7.3), 148.29 (d, *J*=2.7), 146.71, 141.56, 140.92, 138.61, 135.82, 133.76 (d, *J*=4.0), 132.12, 130.65, 130.30, 130.01 (d, *J*=43.3), 128.90, 116.01 (d, *J*=14.3), 109.34 (d, *J*=100.2), 56.36, 44.39, 25.00; ³¹P NMR (162 MHz, CDCl₃) δ : 23.46; *m/z* LRMS (ESI + APCI) found [M-I]⁺709.3, C₃₉H₃₅ClN₂O₅PS⁺ requires 709.2.

(8-chloro-11-(1-(ethoxycarbonyl)piperidin-4-ylidene)-6,11-dihydro-5Hbenzo[5,6]cyclohepta[1,2-b]pyridin-4-yl)tris(4-methoxyphenyl)phosphonium iodide (1r)

Prepared according to general procedure A using ethyl 4-(8-chloro-4-iodo-5,6-dihydro-11Hbenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (51 mg, 0.10 mmol), tris(4-methoxyphenyl)phosphane (35 mg, 0.10 mmol), and chloroform (0.2 mL) at 50 °C for 19 hours. After purification procedure, the title compound was isolated as a yellow solid (83 mg, 0.1 mmol, 96% yield). mp 153 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.69 (dd, *J*=5.1, 4.2, 1H), 7.56 (dd, *J*=12.5, 8.9, 6H), 7.28 (dd, *J*=9.0, 2.8, 6H), 7.22 – 7.06 (m, 2H), 7.00 (dd, *J*=14.8, 5.1, 1H), 6.78 (d, *J*=2.0, 1H), 4.13 (q, *J*=7.1, 2H), 3.97 (s, 9H), 3.73 (ddd, *J*=22.4, 12.2, 5.8, 2H), 3.37 (ddd, *J*=12.7, 8.2, 4.1, 2H), 3.28 (ddd, *J*=14.8, 11.6, 5.7, 1H), 2.83 (dt, *J*=17.4, 5.2, 1H), 2.63 (dt, *J*=15.0, 4.8, 1H), 2.53 – 2.32 (m, 2H), 2.21 (s, 1H), 1.72 (ddd, *J*=17.2, 11.8, 5.3, 2H), 1.25 (t, *J*=7.1, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.34 (d, *J*=3.0), 163.60 (d, *J*=8.2), 155.55, 148.92 (d, *J*=11.4), 139.15, 137.23, 136.80 (d, *J*=6.5), 136.28 (d, *J*=12.0), 133.66, 132.73, 131.66, 130.01, 129.15 (d, *J*=83.0), 127.18 (d, *J*=10.3), 126.58, 117.12 (d, *J*=14.2), 107.04 (d, *J*=97.8), 61.57, 56.54, 44.82, 44.61, 31.01, 30.54, 29.88, 14.7; ³¹P NMR (162 MHz, CDCl₃) δ : 19.39; *m/z* LRMS (ESI + APCI) found [M-I]⁺733.3, C₄₃H₄₃ClN₂O₅P⁺ requires 733.3.

6. References

1. D. D. Perrin, W. L. F. Amerego, Purification of Laboratory Chemicals (Pergamon, ed. 3, 1988).

7. ¹H, ¹³C, ¹⁹F and ³¹P Spectra

— 25.27

— 3.95

.0

— 19.39