
Towards complete and error-free genome
assemblies of all vertebrate species

In the format provided by the
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-03451-0

1

Towards complete and error-free genome assemblies of all vertebrate
species

Rhie et al.

Supplementary Notes

Supplementary Methods

2

Table of Contents

Supplementary Note 1: Improvements to existing methods 4
Haplotype phasing 4
Optical mapping 4
Comparisons of Hi-C data types and scaffolding 5
Gap filling 6
Polishing 6
Comparative iterative scaffolding 6

Supplementary Note 2: Species and alternative assemblies 7
Supplementary Note 3: Resolving missing genomic regions 9
Supplementary Note 4: Assessing overall assembly quality 10
Supplementary Note 5: The Vertebrate Genomes Project 15
Supplementary Note 6: Current advances in technologies 17
Supplementary Note 7: Assembly pipeline using Docker 17
Supplementary Methods 18

Quality control and contamination screening 18
Binning 10XG linked reads and Hi-C reads 19
ENSEMBL annotation pipeline 19
NCBI annotation pipeline 20
Chromosome size estimate from karyotype imaging 21
Weighted read length distributions 23
Collapsed repeat calculations 25
BUSCO 25
Mis-joins and missed-joins in assemblies 26
Quantifying false duplications with k-mers 28
Reliable blocks 29

Gaps in the reference 30
CLR coverage 30
Linked read coverage 30
Optical map raw molecule (bnx) coverage 31
Hi-C interaction coverage 32
Merging supportive regions 32

Telomere motifs 34
Base pair accuracy (QV) estimate 35

Mapping based approach 35
K-mer based approach 36

RNA-seq and ATAC-seq Mappability 37
False gene annotation in previous assemblies 38
GC-content and missing sequences in prior assemblies 38
Chromosome evolution analyses 39

Supplementary References 41

3

Supplementary Note 1: Improvements to existing methods

This supplementary note contains additional findings that we believe will be useful for the genomics
community. Some of the results were generated during evaluations involving technology engineers and
bioinformaticians from genomics companies, including several co-authors, with whom we actively
exchanged information on what we discovered using the genomic richness of the species in this study.

Haplotype phasing
For diploid assembly, we refer to the more continuous pseudo-haplotype assembly as the ‘primary’ and
the other as the ‘alternate’; we used the primary contigs for scaffolding. Most of the contigging and
scaffolding tools we used were originally designed to handle a haploid representation of the genome. As
shown in this study, this design can result in errors in and around heterozygous alleles. We found that
such errors introduced from haplotype differences early in the process propagate to later stages, and are
not easily corrected. The earlier the haplotypes are sorted in the assembly pipeline, the higher the
assembly quality metrics especially for highly heterozygous genomes, as seen with both haplotypes of the
female zebra finch assembly in the following order of increasing metric quality: 1) Collapsing first and
phasing afterwards (e.g. FALCON-Unzip1); 2) Collapsing first and phasing afterwards using Hi-C (e.g.
FALCON-Phase2); and 3) Phasing reads before assembling into contigs (e.g. TrioCanu3).

During curation, we found a pattern of excessive breaks flanking heterozygous sites, which
contributed to false duplications in the primary assembly. We traced the source and found FALCON often
unnecessarily broke the contigs at the branching point between runs of homozygosity and pairs of
heterozygous alleles, reducing the continuity of the assembly. This case is illustrated in types 3 and 4 in
Extended Data Figure 5a, leaving many homotype duplications at contig boundaries as described in
Extended Data Figure 5b (left). In response, PacBio fixed the problem in an updated software release
(smrtanalysis upgrade, April 2018), which doubled to tripled the contig N50 sizes on a number of
genomes.

Haplotypes are essentially a chromosome-scale genomic repeat, and so new methods developed
for repeat separation should also help the haplotype assembly problem. The fundamental challenge is
distinguishing true genomic variants from errors in the sequencing data, and paralogs from orthologs, and
then linking those solutions across the length of full chromosomes. There is a need for improved tools that
can better model the diploid (or polyploid) architecture of the genome by integrating long-range evidence
from multiple sources, across large repeats, while still preserving haplotype specific variation in the
genome.

Optical mapping
Bionano Genomics used our Anna’s hummingbird and Kakapo samples to help develop and test their 2-
enzyme nicking (BspQI and BssSI) and 1-enzyme non-nicking (DLE-1) approaches for hybrid scaffolding4.
In early 2015, we found that using two sets of nicking enzyme maps together resulted in better scaffolding
continuity compared to using only one (data not shown). This was because the two enzymes compensate
each other and eliminate scaffold breaks. Later in 2017, in the development of DLE-1, we found the
molecule sizes were superior when avoiding unintentional cutting of genomic DNA at label sites. When
applying them to the same FALCON-Unzip primary contigs, we confirmed the scaffold NG50s were higher
in the DLE-1 only approach compared to the 2-enzyme hybrid approach (Supplementary Table 3).
Therefore, we decided to move forward with the latest DLE-1 technology whenever possible.

4

Comparisons of Hi-C data types and scaffolding
As mentioned in the main text, we tested Hi-C and Chicago libraries on the same Anna’s hummingbird
sample from three sources (Dovetail Genomics Hi-C v1 and Chicago v1, Phase Genomics v1, and Arima
Genomics v1) with versions developed as of mid-2016. We mapped back the paired Hi-C reads using
Juicer5 to the previous reference hummingbird assembly generated with short reads6, and evaluated
interaction size distribution, duplication rate, and genome coverage. We caution that this mapping
depends on the structural and base call accuracy of the prior assembly, but all Hi-C datasets were at least
compared to the same assembly. We found that insert size (linking distance) differed: Arima > Phase >
Dovetail Hi-C > Dovetail Chicago. Dovetail Hi-C tended to have more paired end reads without an insert,
which with our feedback they fixed in an upgraded chemistry at the time. Phase Genomics Hi-C had more
PCR duplicates, which were possible to screen out. Arima had the highest per base coverage for phasing
(Supplementary Fig. 1), presumably due to using two enzymes instead of one at the time, but the overall
genome assembly was not distinguishable between the data sets. Based on these analyses, we chose to
use Arima Hi-C v1 to generate most of the assemblies on other species for this study. We note, though,
that each company has continued to make improvements, and thus choice of Hi-C data type will need
continued evaluation.

Supplementary Fig. 1 | Read mapping statistics and interaction distance of three Hi-C platforms
benchmarked on Anna's hummingbird assembly. a, Read % mapped back to the reference; the higher the
alignable portion of the reads mapped the more useful for assembly. b, The higher the proportion of unique
mapped reads the more useful for assembly; duplicates do not add new information. c, The higher the
proportion of long range interactions distances between Hi-C read pairs, greater than the long read lengths
(~20 kbp for CLR) and spanning contigs, the more useful for chromosomal scale scaffolding. These data sets
are from v1 chemistries from each company (Dovetail Genomics, Phase Genomics, and Arima Genomics) used
on the samples from the same Anna’s hummingbird, mapped back to our newly generated FALCON-Unzip
contigs. Each company has made improvements since, including based on the results of this figure and
associated data that we provided.

We tested different Hi-C scaffolding algorithms (Phase Genomics Proximo Hi-C; Dovetail Chicago
HiRise; 3D-DNA7, and SALSA8). We found that with software versions used at the time, SALSA 2.0 resulted
in the highest NG50 metrics with apparent over-scaffolding when tested on the hummingbird Hi-C data
sets. With feedback from curation of the hummingbird and other assemblies, we also improved SALSA to
SALSA2.2, with a feature that breaks mis-joins introduced in prior scaffolding rounds with support from

5

Hi-C interactions. These changes simplified and streamlined downstream visualization of the assemblies.
As with the Hi-C data types, developers of these algorithms continue to make improvements, including
with our iterative feedback, and may thus work differently than the versions we tested.

Gap filling
We attempted to use PBJelly9 on the hummingbird, a tool developed using a previous G10K supported
assembly of the Assemblathon 2.0 budgerigar genome10 and other genomes to fill in gaps between contigs
in scaffolds with PacBio CLR reads. However, we found during evaluation that in addition to properly
filling gaps, PBJelly introduced many base call errors in the gap-filled consensus when using default
options. The default scaffolding function also introduced mis-joins. Subsequently, we tested Arrow
(smrtanalysis 5.1.0.26412 version) on these same assemblies, a consensus base caller that also has a gap
filling function, developed by Pacific BioSciences
(https://github.com/PacificBiosciences/GenomicConsensus)11. Arrow was more conservative and had
better consensus quality of the filled gaps (Supplementary Table 4). With this result, we replaced PBJelly
with Arrow in our initial pipeline.

Polishing
We initially attempted to use Pilon12 for Illumina SR polishing, and found the best combination of polishing
to get the highest QV with minimal steps (Supplementary Table 5). However, Pilon was memory
intensive to run on large genomes. Thus, we switched to FreeBayes13 and bcftools14 for variant calling and
consensus generation. During our initial FreeBayes polishing, we encountered regions with excessive
coverage (>4000x). We worked with the original author of FreeBayes (E.G. of this study) and found it was
hanging on low complexity regions or regions with excessively high coverage. The low complexity issue
was fixed by changing the coding in the entropy calculation steps; the excessive coverage issue from
loading reads was fixed by setting an upper limit of the coverage (release v1.3.1). These fixes also resulted
in optimized memory usage and speed. In all cases of polishing, the reads were mapped to both the
primary and alternate haplotype assemblies and the better of the two mappings selected as the primary
to avoid reverting haplotype-specific variants.

Comparative iterative scaffolding
When using Hi-C scaffolding alone, we found there were a higher number of inversion errors for the
smaller contigs as reported in Ghurye et al8 (Supplementary Table 3), which can be difficult to orient
correctly using long-range data alone. Optical mapping with the non-nicking DLE-1 chemistry yielded the
most accurate scaffolding, but similar to Hi-C, optical mapping had a limited ability to scaffold short
contigs due to the smaller chance of containing sufficient labeled enzyme sequence sites to confidently
align the optical cmaps. These small contigs can be difficult to handle in later assembly stages, because
most scaffolding tools were not designed to place a contig within an existing scaffold gap. 10XG linked
reads were better at localizing smaller contigs, complementing what optical maps missed. We found a few
cases where Scaff10X15 mis-joined contigs due to the ambiguity at the contig boundaries near repeats.
However, because subsequent scaffolding and curation steps can break such errors, and because of the
difficulty of placing short sequences manually, we kept the linked read scaffolding step before the optical
map scaffolding step.

https://github.com/PacificBiosciences/GenomicConsensus

6

Supplementary Note 2: Species and alternative assemblies

Species were chosen: 1) to compare assemblies of simpler (birds) to more complex and repetitive
genomes (amphibians and fishes); 2) to include those threatened (platypus) or critically endangered
(kākāpō) of becoming extinct and having low heterozygosity due to small effective population sizes16; 3)
to answer specific biological questions (e.g. basis of vocal learning in birds and bats)17,18; 4) to compare
with previous assemblies with available genetic-linkage or FISH karyotype maps (zebra finch,
platypus)6,19; 5) to contribute to collaborative projects with the VGP (e.g. Bat1K20); and 6) to take
advantage of high quality samples and available funding within the VGP collaboration. The final
assemblies of six species (four teleost fishes, the skate, the caecilian) submitted to the NCBI/ENA public
databases (Supplementary Table 10) used slightly different pipelines than our standard approach
(Extended Data Fig. 3). The two species, the thorny skate and channel bull blenny, that did not meet the
minimum 1 Mbp NG50 contig size, required manual modifications to the pipeline to do so. Below are brief
descriptions of the alternative assembly pipelines used for these species.

The two-lined caecilian, aRhiBiv1.1 (GCA_901001135.1) assembly: This assembly mostly follows the
VGP 1.5 standard pipeline, however, run at the Sanger Institute without having a formal functional
equivalence evaluation between this setup and the centralized VGP setup. Versions used and differences
in the pipeline are as follows: FALCON-Unzip1 (v1.2.1), Purge_Haplotigs21 (v1.0.1), Scaff10x15 (v3.0) (ran
two rounds of Scaff10x followed by one round of break10x15, which differs from the main VGP 1.5
pipeline), Bionano Solve4 (v3.2.2), SALSA8 (v2.2), Arrow11 (GenomicConsensus 2.2.2), longranger22
(v2.2.2), freebayes13 (v1.1.0-3-g961e5f3) and bcftools14 consensus (v1.7). Manual curation was applied as
described in the main text and methods and chromosome-scale scaffolds confirmed by the Hi-C data were
named in order of size.

The zig-zag eel, fMasArm1.2 (GCA_900634775.2) assembly: FALCON-Unzip1 (v1.8.6) contigs were
created using a read length cutoff of 6,500 bp. The primary contigs were extended by merging with a
miniasm23 (0.2-r168) assembly. The contigs were then scaffolded using the 10XG linked read Illumina
data with Scaff10x15 (v1.0). Further scaffolding was applied using synteny with Lates calcarifer (v3 from
http://seabass.sanbi.ac.za/) and the cross_genome tool
(https://sourceforge.net/projects/phusion2/files/cross_genome/). PBJelly9 (PBSuite_15.8.24) was used
to fill gaps followed by long read polishing with Arrow11 (GenomicConsensus 2.2.1). The assembly was
polished again using the linked reads by mapping with bwa mem24 (0.7.17-r1188), calling homozygous
non-reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these
errors with bcftools14 consensus (v1.7). This assembly was manually curated with incorporating evidence
from Bionano optical map4 and Arima Hi-C data. This initial fMasArm1.1 (GCA_900634775.1) was
submitted as scaffolds. An additional run of SALSA8 (v2.0) was applied, followed by another round of
manual curation to remove heterotypic duplications to produce chromosome-level scaffolds. These
chromosome-level scaffolds were named based on synteny to a medaka genome assembly and submitted
as fMasArm1.2 (GCA_900634775.2).

The climbing perch, fAnaTes1.2 (GCA_900324465.2) assembly: An initial PacBio contig assembly was
made using FALCON-Unzip1 (v1.8.6) with a read length cutoff of 10,000 bp. The primary contigs were then
scaffolded using the 10XG linked read data with two rounds of Scaff10x15 (v1.0) followed by a round of
break10x15 to break at mis-joins identified by the 10XG data. PBJelly9 (PBSuite_15.8.24) was used to fill
gaps followed by long read polishing with Arrow11 (GenomicConsensus 2.2.1). The assembly was polished
again using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling homozygous non-
reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these errors
with bcftools14 consensus (v1.7). Manual curation incorporated evidence from Bionano optical map and

7

Arima Hi-C data, and the initial fAnaTes1.1 (GCA_900324465.1) assembly was submitted as scaffolds. An
additional run of SALSA8 (v2.0) was applied, followed by another round of manual curation to remove
heterotype duplications using Purge_Haplotigs21 (v1.0) to produce chromosome-level scaffolds. These
chromosome-level scaffolds were named based on synteny to a medaka genome assembly and submitted
as fAnaTes1.2 (GCA_900324465.2).

The channel bull blenny, fCotGob3.1 (GCA_900634415.1) assembly: An initial PacBio Falcon-unzip1
(falcon-2018.03.12-04.00) assembly was run without Dazzler repeat-masking during overlap detection.
A separate wtdbg25 (v1.1) assembly was made from the PacBio reads. Contigs from the wtdbg assembly
were used to guide initial scaffolding of the Falcon contigs using cross_genome, then scaffolded further
with the 10XG Illumina data and Scaff10x15 (v1.0). The Bionano optical map data was used for two-enzyme
hybrid scaffolding4 (Solve3.2.2_08222018). The PacBio CLR data was used to gap fill with PBJelly9
(PBSuite_15.8.24) and polish with Arrow11 (GenomicConsensus 2.2.2). The assembly was polished again
using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling homozygous non-
reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these errors
with bcftools14 consensus (v1.7). The assembly failed to meet the VGP contig NG50 goals, so a new strategy
was tried to improve the assembly. Canu26 v1.6 was used to correct the PacBio reads using a k-mer size of
k=21. Contigs from a wtdbg25 (v1.1) assembly of the corrected reads were then used to conservatively fill
gaps in the main assembly where contigs were unambiguously anchored on either side of a gap. Long-
read and short-read polishing was performed as above, to ensure sequence that had been used to fill gaps
was also polished. Retained haplotigs were identified and removed with Purge_Haplotigs21 (v1.0). Finally,
the assembly was scaffolded to chromosomes using Arima Hi-C data and SALSA8 (v2.0). Manual curation
was applied using gEVAL27 as described in the main text and methods to correct mis-joins and improve
concordance with the Bionano optical map and Arima Hi-C data. This assembly met the VGP metrics, and
chromosome-scale scaffolds were named based on synteny to a medaka genome assembly.

The eastern happy, fAstCal1.2 (GCA_900246225.3) assembly: First the PacBio raw reads were
scrubbed to remove chimeric reads and other artifacts using the Dazzler framework
(https://dazzlerblog.wordpress.com/2017/04/22/1344/). The scrubbed reads were then used to make
an initial contig assembly with PacBio Falcon-unzip (https://github.com/millanek/FALCON-integrate). A
separate assembly was created with miniasm23 (0.2-r159), then used to scaffold the Falcon primary
contigs using cross_genome. The contigs were then scaffolded further using the 10XG Illumina data with
Scaff10x15 (v1.0). Some contigs in the scaffolds were gap filled with PBJelly9 (PBSuite_15.8.24) and
polished with Quiver11 (GenomicConsensus 2.2.1). The assembly was manually curated using gEVAL27 to
correct mis-joins and improve concordance with the Bionano optical map data. The assembly was then
polished again using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling
homozygous non-reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to
correct these errors with bcftools14 consensus (v1.7). This assembly was submitted as fAstCal1.1
(GCA_900246225.1). A further round of curation and verification with gEVAL27 along with integration
with two genetic maps28,29 allowed assignment of scaffolds to chromosomal linkage groups. This was
submitted as revised assembly fAstCal1.2 (GCA_900246225.3).

The thorny skate, sAmbRad1.pri (GCA_010909765.1) assembly: Applying the VGP 1.0 pipeline to the
thorny skate did not result in an assembly that met all the desired VGP metrics, due to the very high repeat
content in this species, as described in the main text. Therefore, we developed a modified approach that
handled high repeat genomes better. We used Canu26 v1.7 to assemble the contigs, and purged false
duplications with Purge_Haplotigs21 instead of the purged FALCON-Unzip1 contigs, because the contig
NG50 and overall BUSCO30 completeness scores were higher in the Canu contigs (Supplementary Table
13, compare p1 stats of the vgp_standard_1.5 and vgp_nhgri_1.5). We believe these differences could be
due to the less aggressive repeat masking of Canu compared to FALCON. The rest of the scaffolding process

https://dazzlerblog.wordpress.com/2017/04/22/1344/
https://github.com/millanek/FALCON-integrate

8

followed the VGP Standard Pipeline 1.5. Two rounds of Arrow11 polishing was applied (t1), with 3 rounds
of SR polishing (t2~t4) with the 10XG linked reads using longranger22 align (v2.2.2) and freebayes13
(v1.3.1) --skip-coverage option to skip regions with excessive coverage. Too many false duplications
were found during curation, and thus the assembly was sent back for further improvements. We applied
Purge_Dups31 on t4 primary scaffold, by breaking scaffolds at any gaps. Purged primary contigs (u1) were
re-scaffolded with optical maps (u2) and further scaffolded with 2 rounds of SALSA8 (u3-u4). We
discovered a linked read library failure and so obtained additional Illumina WGS reads. Using the WGS
reads, 3 rounds of polishing was performed with bwa mem24 and freebayes.

Supplementary Note 3: Resolving missing genomic regions
Although the VGP genomes have a greater amount of genomic content assembled relative to the most
commonly used prior references (e.g. Extended Data Fig. 8), we also noted that some of the VGP genomes
had a smaller proportion of missing genomic content relative to prior assemblies. We investigated this
source of the missing regions, and found it was due to repeat content and GC-content. Almost all genome
assemblers mask out reads with repeat structure before assembly, as it becomes computationally
expensive or impossible to assemble with repeats present. FALCON masks portions of reads which
coincide with repetitive regions, and does so in two stages: 1) tandem repeat masking; and 2) masking of
general repeats/segmental duplications. The masked repetitive regions then do not contribute to the
overall overlap computation. For large repeats (longer than the read length), this means that the genomic
region will not be represented in the final assembled contigs. In addition, and not related to repeat
masking, FALCON also applies a cutoff threshold to limit the minimum length of reads to find overlaps. If
the limit is set too high, the assembly may miss some genomic regions. After the initial contig phase, the
repeats as well as smaller reads are brought back into the assembly for Arrow11 polishing and later gap
filling. However, we found that certain reads with repeats and a given read size were not being
incorporated into the assembly if they did not have a region to anchor onto in the initial contigs. An
example were some genes with GC-rich sequence and repeat regions of the Anna’s hummingbird that were
present on reads shorter than 10,000 bp. These non-repetitive genes were surrounded by GC-rich and
repeat genomic regions, which may have biased the molecule size of the sequencing library32. These
shorter and/or repetitive reads were excluded from overlap detection, or ignored due to the shorter
overlap length with no anchor to bring them into the assembly at later stages. When we reduced the p-
read cut off to 2,000 bp, the NG50 values decreased, but many of the genes on these shorter and repetitive
reads were incorporated into the assembly. This highlights the need of further investigation and
improvements in ways to rescue missing regions when applying general length cutoffs during the
assembly process.

Supplementary Note 4: Assessing overall assembly quality

Below are example measures for the six categories of genome assembly quality proposed in this study
(Table 1).

Continuity: The current most popular measure of genome assembly continuity is the scaffold N50, and
secondarily the contig N50, defined as the largest s where scaffolds (or contigs) of length s or greater is
half or greater the total assembly size. However, the assembly size can be larger or smaller than the true
genome size depending on the assembly tools and data quality used. Thus, we recommend using NG50 (G

9

for genome), which uses the estimated genome size instead of the assembly size for normalization33. We
prefer to estimate the genome size from actual sequence data, using k-mers (sequence fragment length of
k) such as done in GenomeScope34. All high copy k-mers should be included when counting k-mers to
properly include repeat contents, which is not a default behavior in most k-mer counters for practical
reasons. For gaps, we recommend using a measure of the rate of gaps per unit of Gbp assembled, as larger
genomes would otherwise be penalized for containing more gaps.

The specific metric thresholds we chose for the continuity measures were based on output of the
achievable short- and long-read based assembly pipelines we assessed. In the B10K-2014 short-read only
assemblies, protein coding exon sequences are mostly complete, but they often have incomplete exon-
intron gene structure, missing GC-rich regulatory regions, and/or genes with high repeat content. In the
VGP-2016 to VGP-2020 assemblies, most gene structures have high continuity, but the highly repetitive
centromeres and telomeres may be incomplete. The thresholds of the finished quality assemblies were
calculated based on gapless and error-free assembled chromosomes, with complete, non-collapsed
centromeres, telomeres, and other segmental duplications.

Structural accuracy: To assess structural accuracy without a known truth, we propose mapping the raw
data types to the final assembly and measure concordance as the NG50 size of reliable blocks. We define
concordance here as how many of the data types support the assembled structure at each base. In this
study, we defined reliable blocks with support from at least two of the four sequencing platforms (long
reads, linked reads, Opt, and Hi-C). This can be extended with additional data types, such as genetic maps
or FISH karyotypes, when available. In assemblies that only have one or two data types, it is more difficult
to determine reliability, but one can still consider consensus read data from high-coverage sequencing as
another measure of both sequence and structural reliability.

Each supportive region is obtained by mapping back sequencing data to the assembly. Regions
with excessive coverage or coverage dropouts are usually an indication of an assembly error and thus get
excluded. Regions with excessive coverage are caused by collapsed bases, where sequences are present
in the assembly with an unexpected copy number. Coverage dropouts are caused by chimeric junctions.
To measure these structural metrics, we used an implementation in Asset35, with details described in the
Supplementary Methods.

Our third measure of structural accuracy is false duplications. Potential false duplications are
often reflected in the BUSCO duplication score. But to assess false duplications with species that are highly
divergent from the available BUSCO database, we also use k-mers. For a k-mer size that is sufficiently long
to be unique in the genome, and a genome sequenced with high-fidelity reads to a depth of coverage c, a
complete de novo assembly should recover k-mers from the homozygous (two-copy) regions of the
genome with roughly c times and k-mers from the heterozygous (single-copy) regions with c/2 times. All
k-mers in the heterozygous and homozygous regions are expected to be found once in a (pseudo)
haplotype assembly. Any additional k-mer copy found in the assembly compared with the high-fidelity
reads are considered to be falsely duplicated36. To identify falsely duplicated k-mers, we used an
implementation in Merqury37 to count the number of distinct k-mers with additional copies in the
heterozygous and homozygous regions and report the relative portion compared to the expected k-mers
with no additional copies (Supplementary Fig. 2). Both approaches (BUSCO and k-mer) showed
comparable trends, with the k-mer approach having higher sensitivity as it captures false duplications on
a genome-wide level (Fig. 2f-i).

Finally, curation of the genome assembly manually assesses structural accuracy of the
automatically-generated assembly, identifying false chimeric joins (misjoins), missed joins, inversions,
and other errors. When fixed by a manual or automated process, this increases the structural accuracy of
an assembly.

The specific thresholds we chose in each quality category reflects the range of NG50 reliable
blocks we obtained with the 16 species in this study and the false duplication rate, which is influenced by
the degree of correct haplotype phasing. For the VGP quality assemblies, we listed a manual curation

10

process, which is valuable and essential as highlighted in this study. We caution that it is subject to
individual human interpretation and requires specialized expertise. To scale up to 1000s of genomes, the
curation process would benefit from more automated processes to identify and fix structural errors,
which is currently an active area of development. More details on each curation step and tested
improvements are described in our companion paper by Howe et al38.

Base accuracy: There are multiple ways of measuring base-level accuracy, called base pair QV. One
approach is to align (i.e map) highly accurate reads to the assembled genome and call base errors similarly
to variant calling. We define “mappable” as all reads that align, excluding low-coverage and excessively
high-coverage regions (see Supplementary Methods for exact parameters used), where we can rely on
base error calls. The other, more reliable, way to measure base accuracy is using k-mers found both in the
assembly and highly accurate unassembled reads. Base error rate inferred directly from k-mers was more
comprehensive, and thus more accurate than the widely used mapping and variant calling protocols,
which artificially inflated QV values because they excluded regions that are difficult to map
(Supplementary Table 17). All k-mers found only in an assembly are likely produced from a base pair
error. By counting these k-mers and comparing the fraction to all k-mers found in an assembly, we can
estimate the error rate and calculate the quality value using the k-mer survival rate37. We found k-mer
based methods include unmappable regions and thus avoid over-estimated QVs from the mapping-based
approach. We note that both mapping-based and k-mer-based approaches have limitations of measuring
base accuracy in highly repetitive regions, as the short reads are difficult to map accurately and a k-mer
with a true error may match by chance with some other true k-mer that belongs elsewhere in the genome.
This may artificially inflate the QV, especially in those repetitive regions.

To assess if all bases in a genome are properly assembled, we propose using k-mers as the truth
set to get an estimate of k-mer completeness. Reliable k-mers obtained from highly accurate reads are
obtained by excluding erroneous k-mers from sequencing errors. The fraction of the k-mers found in the
assembly of these reliable k-mers are indicative for genome completeness. This measure is dependent on
the base pair QV as well, because k-mers from assembly errors will affect the completeness measure. We
use the implementation in Merqury37 to obtain the k-mer completeness, reported in Extended Data Table
1.

The specific thresholds we chose reflects the level of tolerance one is willing to have for nucleotide
errors, which can be misinterpreted as biological variation. A Q40 value means an average frequency of 1
error every 10,000 bp, which means that genes this size or bigger are likely to have at least 1 error. A Q50
value, 1 error in every 100,000 bp, which is equivalent to a large multi-exon gene, means that most genes
will be unlikely to contain an error within their coding sequence. The k-mer completeness thresholds are
a reflection of the k-mer based QV thresholds, and give a sense of the base level accuracy of the genomes
assembly as a whole.

11

Supplementary Fig. 2 | k-mer spectrum of each submitted assembly, plotted on the 21-mer multiplicity found in the
Illumina sequencing set from the 10X linked reads. For each species, the first and third column of graphs show the
overall k-mers found (spectra-asm) in the primary set (red), alternate set (blue), shared in both assemblies (green), and
missing k-mers in any assembly set (black). Fewer missing k-mers observed (black) indicates the assembly more completely
represents the genome. The second and fourth columns show the copy number spectrum (spectra-cn) of the primary
assembly set, colored by the copy numbers found in the assembly: once (red), twice (blue), 3 (green), 4 (purple), >4
(orange), and missing (black). k-mers in spectra-cn are expected to be found once (red) in a pseudo haplotype assembly;
thus, k-mers found more than once (blue, green, purple, and orange) originate from falsely duplicated sequences assuming
no allele-specific duplications exist in the genome.

12

Haplotype phasing: We propose to use phase block NG50 as a measure for haplotype consistency. A
phase block is expected to match one of the parental haplotype sequences, with no haplotype switches.
Haplotype consistency is important for gene annotation, because haplotype switches could mix the true
gene structure, creating an artificially mixed gene that does not exist in nature. Currently, the most reliable
way to measure phase consistency is by using parental sequences. In this study, we used Merqury37 to
infer haplotype blocks from haplotype specific k-mers. Accounting for sequencing errors accidentally
corrupting a true haplotype specific k-mer, we allowed short-range switches to occur up to 0.05% (~100
times within 20kbp) within a phase block. We expect block sizes to be more dependent on genome
heterozygosity levels, where less heterozygous genomes will have longer runs of homozygosity (ROH)
that prevent linking of heterozygous sites when no parental information is used. Heterozygosity will also
vary across segments of a genome, and thus, one value may not be equally applicable across the genome.
Therefore, we set smaller block NG50 requirements to cover one gene and its regulatory regions (typically
10 to 500 kbp) in one phase block, which falls within 1Mbp NG50 in the quality metric (Table 1),
independent of chromosome sizes except for the “finished” quality.

Methods for cross linking distant heterozygous sites using Hi-C or Strand-seq are on the
horizon2,39,40, which will help increase phase block continuity. However, accurate measures of the phase
blocks are not as well developed without parental data, presumably because the importance of phasing to
prevent errors has been unappreciated. This measure pertains to not only diploid genomes, but also
polyploid genomes, which are found in amphibians and fishes.

Functional completeness: Gene-based metrics could be used as an indicator for genome completeness
and is one of the most important factors when conducting functional studies. However, it is almost
impossible to have a truth set of all genes, especially for genomes with no reference available. One indirect
way to measure functional completeness is by using BUSCO genes sets, which are sets of highly conserved
orthologous genes present in a single copy across vertebrates or other groups of species30. To work
properly, the sequences of the gene set needs to be complete and error free, but this is not the case for
many BUSCO genes41. Overall, however, the absence of complete single copy genes in an assembly may be
evidence of functional incompleteness.

Transcript mappability with transcriptome data from the same species or even individual is a
more robust way to measure gene completeness, because a more complete genome is expected to map
more transcriptome sequences unambiguously (uniquely) to the assembly. In addition to transcripts, one
can assess functional regulatory genome completeness by mapping epigenetic sequence data, as we have
done here with ATAC-Seq reads (Fig. 3a-b and 4c-d).

Considering the thresholds we chose, without BUSCO gene sets being complete, and with natural
gene losses in some species, there will be an upper limit of less than 100% mapping for some species, and
this is why we chose 98% in the finished quality category. For our VGP assemblies, we have obtained some
assemblies with 99.9% BUSCO gene mapping. The thresholds for transcriptome mappability were
determined based on empirical observations shown here, and align with the BUSCO scores in some
assemblies. The epigenetic genome mapping scores for the zebra finch assemblies were lower than for
the transcripts, and this we believe could be due to regulatory regions having a higher GC content, which
can be harder to sequence and assemble.

Chromosome status: For defining scaffolds as chromosomes, and therefore the percent of the assembly
assigned to chromosomes, we believe the current best tool besides genetic linkage or FISH karyotype
mapping is Hi-C mapping. We consider a scaffold as a complete chromosome (albeit with gaps) when there
is a diagonal signal in the Hi-C mapping plot for that scaffold with no other scaffolds that can be placed in
that same scaffold. The Hi-C maps prove useful for identifying large-scale structural aberrations in the
assemblies, including false chromosome fusions. The more uniform the Hi-C signal across the main
diagonal, the more likely the assembly structure is correct. High-frequency, off-diagonal Hi-C interactions
are a strong sign of mis-assembly, of which some can be corrected with manual curation. Based on these

13

criteria, one can then estimate the percent of the genome that is assigned to chromosomes. The thresholds
we set from 75% to 100% chromosome assigned are based on values we generated in this study using
different assembly approaches. See Lewin et al.42 for an alternate view of naming scaffolds.

Sex chromosomes are typically a challenge as they are often highly diverged between the
partners. The sex-specific chromosome (e.g. Y in XY mammals or W in ZW birds and snakes) are often rich
in highly repetitive heterochromatin. Sex determination mechanisms are highly variable in amphibians,
reptiles, and fishes, with different sex genes (mostly unknown) defining non-homologous sex pairs. In
many species, it is unclear whether there is male heterogamety (XY as in mammal) or female
heterogamety (ZW as in birds). Many reptiles and some fish have no sex chromosomes and determine sex
by an environmental signal (commonly temperature). Thus, we only require sex chromosomes to be
assembled and identified in lineages known to have sex chromosomes, and make an effort to sequence
the heterogametic sex to assemble both sex chromosomes, or one of each sex to have greater confidence.
Once a pseudo-haplotype assembly is assembled, sex-specific chromosomes can be further determined by
comparing differences in read depth in males and females when available, identification of known of sex-
specific genes for the relevant clade, synteny with sex chromosomes in closely related species, and the
coverage pattern of PAR and haploid regions.

Organelle genomes, as shown here, can require a different set of tools to assemble, but are still
subject to some of the same metrics. This includes QV, scaffold, contig, gaps, and other values. As shown
here, obtaining one complete gapless and accurate assembled sequence is possible with mitochondrial
genomes using a combination of short and long reads, due to the relatively smaller size of its genome.

14

Supplementary Note 5: The Vertebrate Genomes Project

The goal of the Vertebrate Genomes Project (VGP) is to generate at least one high-quality, error-free, near
gapless, chromosome-level, haplotype phased, and annotated reference genome assembly for all extant
vertebrate species and to use those genomes to address fundamental questions in evolution, disease, and
biodiversity conservation. We plan to conduct this international project in phases according to
phylogenetic scale, from orders (Phase 1) to families (Phase 2), genera (Phase 3), and finally all species
(Phase 4; Supplementary Fig. 3). Phase 1 serves as a proof of principle project. At the family level, we
would complete vertebrates in the Phase 1 goal of the Earth BioGenome Project (EBP BioProject ID
PRJNA533106) for high-quality reference genome assemblies for all eukaryotic families43. At the genus
level, we would complete the original G10K mission of approximately 10,000 vertebrate species44. At the
final species level, we would complete the data generation mission of the VGP (BioProject ID
PRJNA489243) and specific vertebrate taxonomic groups, such as all birds (B10K6,45 BioProject
PRJNA489244) and all bats (Bat1K20,46 BioProject PRJNA489245).

For Phase 1, although there are approximately 150 named orders of vertebrates, the criteria for
taxonomic divisions are not consistently applied among vertebrate classes. Therefore, we sought to use a
more uniform definition. Based on findings from the Avian Phylogenomics Project47 and mammalian
phylogenomic studies48, we noted that taxonomists have often delimited orders encompassing species
that shared a most recent common ancestor 50-70 million years ago (Mya), following the last mass
extinction event at the Cretaceous-Paleogene transition. Thus, for VGP Phase 1 we aimed to partition
lineages that have an inferred common ancestor not substantially older than 50 Mya. This definition
resulted in our current target list of approximately 260 “order level” lineages
(http://vgpdb.snu.ac.kr/details/).

When we first began working on the hummingbird assemblies in 2015 and initiated the VGP and
sequencing of ordinal representative genomes in 2017, there were 66,178 named species gathered from
various databases, estimated based on the IUCN Red List of Threatened Species and reported in the
Vertebrate Wikipedia page from 2014 to date (https://en.wikipedia.org/wiki/Vertebrate). This is a
number that we had initially used in public announcements of the project49. However, we collated
available lists of vertebrate species, and we obtained 71,657 named species as of January 2019. We believe
the increased number of species is due to additional species discoveries in the last 10 years, revisions of
previously defined species (e.g. Northern vs. Southern ostrich), and analyses of genomic relationships50.
With this list, we have created, for the first time that we are aware of, an all-vertebrate species list
(http://vgpdb.snu.ac.kr/splist/). We are populating this list with accessions to the high-quality reference
genomes, including the 17 of this study, as well as draft and medium quality genome assemblies. We hope
that this list will be useful to the scientific community to track genome assemblies for all vertebrate
species.

To conduct the VGP in an efficient and democratic manner, we built a governance and committee
structure that consists of an executive council and task-specific committees focused on specific issues,
including permits, sample preparation, genome assembly, genome annotation, comparative genomics,
and conservation genomics. We developed a scalable assembly pipeline within a cloud environment,
where working data is hosted on an Amazon S3 bucket (s3://genomeark). The production of the VGP
assemblies is performed on DNAnexus, which is available for anyone. The entire source code of the
pipeline to run locally or on the DNAnexus platform is publicly available on github
(https://github.com/VGP/vgp-assembly). The scaffolding pipeline is also available to run on a generic
compute architecture using Docker containers (Supplementary Note 7). Intermediate assemblies and
raw data are available to download from Genome Ark (https://vgp.github.io) until archived in an INSDC
database (e.g. GenBank). We also built a public website for the VGP
(https://vertebrategenomesproject.org/), and its parent G10K (https://genome10k.soe.ucsc.edu/), with
links to associated projects (B10K, Bat1K, and EBP). Our assemblies and raw sequences are deposited in
international public databases with NCBI and EBI under a VGP BioProject ID PRJNA489243

http://vgpdb.snu.ac.kr/details/
https://en.wikipedia.org/wiki/Vertebrate)
http://vgpdb.snu.ac.kr/splist/
https://github.com/VGP/vgp-assembly
https://vgp.github.io/
https://vertebrategenomesproject.org/
https://genome10k.soe.ucsc.edu/

15

(https://www.ncbi.nlm.nih.gov/bioproject/489243). We currently produce about three genome
assemblies per week, but will need to scale up to 125 genomes per week to complete all ~70,000 species
within a 10-year period, assuming the availability of future funding and the development of more
advanced computational infrastructure. In addition to the 17 genomes released publicly with this
publication, there are 120 more assemblies in progress (https://docs.google.com/spreadsheets/d/1s5J-
s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing), that are supported by individual
institutions and scientists (https://genome10k.soe.ucsc.edu/data-use-policies/).

The challenges for scaling up that we are working on include: 1) Blanket sample permits for
vertebrates, in different countries; 2) High throughput DNA and library sample preparations for ultra-
high molecular weight DNA (>200kb); 3) An automated metadata tracking system for information flow
from samples to their genomic data, transcriptomic data, assemblies, and annotations; 4) Increased
efficiency to perform massively parallel high-quality sequencing; 5) Automated assembly pipeline that
allows iterative updates, and more efficient assembly compute for hundreds of assemblies
simultaneously; 6) A more automated curation process and many curators to manually check each
assembly, make fixes where needed, and provide iterative feedback; 7) A more efficient reference-free
genome alignment tool that can handle 10,000s of species; and 8) Rapid annotations of genomes in the
hundreds per week. The VGP is working on all eight fronts, with the plan that at each Phase of the project
will need more and more advanced tools for increased scaling. Future efforts should also include
development of tools that can automatically estimate parameters needed to assemble a genome
accurately with different repeat, heterozygosity, and ploidy levels.

Related large-scale reference genome efforts have adopted lessons learned from the VGP,
including the Bat1K20,46 (https://bat1k.com), Bird B10K6,45 (https://b10k.genomics.cn), Global Ant
Genomics Alliance51 (GAGA; http://antgenomics.dk), Earth BioGenome Project43 (EBP.
https://www.earthbiogenome.org), Global Invertebrate Genomics Alliance52 (GIGA; http://giga-cos.org),
Darwin Tree of Life (https://www.darwintreeoflife.org), and human pangenome
(https://humanpangenome.org) projects, which target all species for particular clades or geographic
regions of interest, or multiple individuals within a species representing diversity of the extant
population.

Supplementary Fig. 3 | Schematic of proposed phases to conduct the VGP. Circles represent phylogenetic
classification scales, going from smaller to larger numbers of species (arrow). A sequenced species represents
an order, family, and genera in Phases 1-3. To the left are listed goals and related projects for whose milestones
will be completed at the completion of specific VGP phases. Redefining species means that within Phase 4 it
might become possible to use the genome sequence differences to determine when individuals should be
considered belonging to the same species or their own distinct species50.

https://www.ncbi.nlm.nih.gov/bioproject/489243
https://docs.google.com/spreadsheets/d/1s5J-s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1s5J-s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing
https://genome10k.soe.ucsc.edu/data-use-policies/
https://bat1k.ucd.ie/
https://b10k.genomics.cn/
http://antgenomics.dk/
https://www.earthbiogenome.org/
http://giga-cos.org/
https://www.darwintreeoflife.org/
https://humanpangenome.org/

16

Supplementary Note 6: Current advances in technologies

After we completed the evaluations on the genomes of the 16 species in this study, as expected, new
advances in genome sequencing technology and algorithm development have been made. Here we
provide a prospective on these developments, including how we will potentially incorporate them into a
Phase 2 VGP pipeline, towards even higher-quality assemblies.

The 10XG linked read technology we used is no longer available as of mid-2020, but can be
substituted by three other technologies: TELL-Seq WGS (Universal Sequencing)53; stLFR (BGI)54; and
CPTv2-seq (Illumina)55. The ONT data generated here were not considered for further benchmarking
beyond contigs due to practical issues concerning systematic base call errors, consistency, and scalability
at the time (early 2017)56. However, the technology has since improved in these areas57, and the latest
r10.3 base calling leads to higher-quality long reads. These could be potentially in place of or in
combination with the PacBio long reads. PacBio has also recently introduced their next generation reads,
circular consensus reads (CCS) or HiFi58, which delivers both reasonable read length (20 kbp) and
excellent read accuracy (99.9%) in a single technology. The higher accuracy may eliminate the need for
assembly polishing. The VGP infrastructure has been flexibly designed so that we may continually
evaluate and adapt to new technologies in order to reach our ultimate goal of producing error-free,
gapless, and complete telomere-to-telomere assemblies. We believe the principles of the pipeline we
generated will be applicable to new technologies. We are optimistic that, given continuing advances in
diploid sequencing and assembling technology, finished-quality reference genomes will be achievable at
reasonable cost for most species of interest within the next decade.

Supplementary Note 7: Assembly pipeline using Docker

An implementation of the pipeline has been developed to run on generic architecture using WDL
workflows (https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md) and Docker
containers (https://www.docker.com/). We intend for this to be a portable and modular implementation,
which diverges from the main workflow as little as possible.

WDL (Workflow Description Language) is a standard which enables the description of workflows
in both human- and machine-readable ways. Workflows are composed of tasks; tasks have defined inputs
and outputs, a script to perform the work, hardware requirements, and an environment in which to be
run. Docker is a virtualization tool that we use to provide the environment for tasks. A Docker container
is a lightweight image of a filesystem that can contain specific tool versions. It uses a layered filesystem,
where multiple snapshots can inherit from a single base image.

The design of the VGP's WDL workflow implementation aims to replicate current functionality
while minimizing changes to the main codebase. The main codebase is designed to run in an HPC
environment and uses CEA-HPC Modules (https://github.com/cea-hpc/modules) to manage use of
specific tool versions. The WDL implementation replicates this environment in the Docker images, so as
to reduce modification to the existing scripts. There is a base Docker image which includes the modules
infrastructure, common libraries, and tools used in multiple tasks. Task-level Docker images extend from
this and add task-specific code. Slurm submission scripts from the original pipeline were rewritten and
translated into WDL tasks. Operative bash scripts (the entry points Slurm uses) are copied into the task
images and are invoked directly where possible.

Scaffolding and QC tasks have been implemented in WDL/Docker: Contigging+purging, linked
read scaffolding, optical map scaffolding, Hi-C scaffolding, BUSCO30, and Merqury37. Each task can be run
independently, and the whole scaffolding suite can be run via a single workflow. For information on
running the workflow, see the manual here:

17

https://github.com/VGP/vgp-assembly/blob/master/wdl_pipeline/WDL_Manual.md

https://github.com/VGP/vgp-assembly/blob/master/wdl_pipeline/WDL_Manual.md

18

Supplementary Methods

Quality control and contamination screening
Before assembly of the sequence and scaffold data, a quality control screening for poor sequencing
reactions or contamination with foreign genome data was performed using Mash. When running Mash59,
21-mers were used to generate sketches with sketch size of 10,000 and compared among each sequencing
runs. For example, using this approach, we detected two outlier libraries in the initial Canada lynx PacBio
data that did not cluster with the other sequencing runs (Supplementary Figure 4). Further investigation
determined that these files had been mis-tracked and the data originated from an unrelated sequencing
project on rice, so the rice runs were removed prior to assembly.

Supplementary Fig. 4 | Mash maps to detect poor quality data and foreign species contamination.
Raw read data of PacBio CLR (top left 4 and the bottom right) and linked reads (darker brown area) are
aligned to each other. Based on sequence similarity and coverage, the top two (top left corner) SMRT cells
were identified as outliers. The higher the similarity and coverage, the darker the color.

19

Binning 10XG linked reads and Hi-C reads
For the trio based assembly, linked reads and Hi-C reads were binned using an “exclusion” criteria. Unlike
trio-binning3, here we excluded any read-pair having at least one parental specific k-mer when assigning
to a bin. This allowed short reads to remain in both maternal and paternal bins, which originate from the
homozygous part of the genome. This process uses meryl-lookup in Meryl37 v1.0:

meryl-lookup -memory 2 -exclude -mers pat.meryl -sequence $read1 -sequence2 $read2 -r2

mat.R2.fastq.gz | pigz -c > mat.R1.fastq.gz

meryl-lookup -memory 2 -exclude -mers mat.meryl -sequence $read1 -sequence2 $read2 -r2

pat.R2.fastq.gz | pigz -c > pat.R1.fastq.gz

An implemented version is available on Merqury:

https://github.com/marbl/merqury/blob/master/trio/exclude_reads.sh

ENSEMBL annotation pipeline
The Ensembl gene annotation system60 was used to generate annotation for the high-quality assemblies.
Annotation was created primarily through alignment of transcriptomic data to the genome, with gap
filling via protein-to-genome alignments of a select set of vertebrate proteins from UniProt61 and, for
mammal species, coordinate mapping of GENCODE62 human reference annotations via a pairwise whole
genome alignment.

The transcriptomic data consisted primarily of short-read RNASeq data sourced from the public
archives, which included data for most species generated by the VGP for this study. This included PacBio
Iso-Seq and Nanopore long-read transcriptome data. Short-read data were initially mapped via bwa
mem24 and then locally re-aligned in a splice-aware manner via Exonerate63. Transcripts were then
inferred based on the strongest intron/exon signals for likely genic loci on a per tissue basis. Long-read
data were mapped to the genome using Minimap264 with the recommended settings for Iso-Seq and
Nanopore data. Due to the high error rate of the Nanopore data, post mapping error correction was
employed to maximize the number of usable mappings. Intron/exon boundaries that were non-canonical
or deemed low frequency (five or fewer observations across all mappings at a locus) were replaced with
high frequency boundary coordinates (greater than five observations) within a 50bp edit distance. High
frequency boundary observations were determined both from canonical boundary observations from the
Nanopore mapping themselves and also from the alignments of the short-read data. A similar strategy
was employed to remove likely artificial gaps of 200bp or less from exons described by the Nanopore data.
In these cases, low frequency potential gaps between two adjoining exons were filled in based on high
frequency observations of single exons with the same terminal boundary coordinates. For each transcript
model generated from either short- or long-read data, the longest open reading frame was assessed via a
BLAST65 of UniProt vertebrate proteins that had experimental evidence of existence at either the protein
level or the transcript level.

For gap filling, where the transcriptomic data were absent or fragmented, homology-based
methods were employed. Splice-aware protein-to-genome alignments were carried out via GenBlastG66.
Annotation mapping from human was carried out via a pairwise alignment using LastZ67
(https://etda.libraries.psu.edu/catalog/7971) and subsequent exon coordinate mapping and transcript
reconstruction via both in-house software and CESAR68 v2.0.

At each locus, low quality transcript models (in particular those with evidence of a fragmented
ORF) were removed, and the data collapsed and consolidated into a final gene model plus its associated
non-redundant transcript set. ORF likelihood was determined by aligning the ORF translation against
known vertebrate proteins. Priority was given to models derived from transcriptomic data. For loci where

https://github.com/marbl/merqury/blob/master/trio/exclude_reads.sh

20

the transcriptomic data was not available or highly fragmented, homology data took precedence, with
preference given to longer transcripts that had strong intron support from the short-read data. Summary
statistics of the annotations are available in the annotation reports in Supplementary Table 20.

NCBI annotation pipeline
The NCBI Eukaryotic Genome Annotation Pipeline was used to annotate genes, transcripts, and proteins
on the primary assembly of the 17 assemblies, submitted between September 2018 and April 2020, and
the product of the annotations were added to the RefSeq collection. The genome sequences were masked
using Windowmasker69. RNA-Seq reads were retrieved from SRA for the species, or for the family, in the
case of lynx, kakapo, Anna’s hummingbird, Goode's thornscrub, blunt snouted clingfish and thorny skate
for which no or insufficient amount of RNA-Seq data was not yet available at the species level. Depending
on the species, between 385 million and 10 billion RNA-Seq reads, ESTs, and RefSeq and GenBank
transcripts for the species or closely related species were aligned to the masked genome using BLAST65
followed by Splign70. PacBio IsoSeq for lynx, kakapo, Anna’s hummingbird, zebra finch and Oxford
Nanopore Technologies transcriptomics reads for kakapo were aligned to these species’ respective
assemblies using minimap264. In addition, human RefSeq proteins and GenBank and RefSeq proteins for
related organisms were aligned to the genome using Blast and ProSplign. The gene models’ structures and
boundaries were obtained with Gnomon(NCBI eukaryotic gene prediction tool. Available at:
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/) by “chaining” the alignments into
preliminary models. Partial open reading frames on these chained alignments (missing either a start or a
stop) were joined and filled if adjacent and in compatible frames, or extended by the ab initio module of
Gnomon using a hidden Markov model trained on the species, if the coding propensity of the region was
sufficiently high, or called non-coding. tRNAs were predicted with tRNAscan-SE:1.2371 and small non-
coding RNAs were predicted by searching the RFAM 12.0 HMMs for eukaryotes using cmsearch from the
Infernal package72.

Gene and transcript models were then evaluated at each locus, and one of overlapping gene
models was chosen in this order of precedence: same-species curated RefSeq models, RFAM models,
Gnomon models, and finally tRNA models. Among Gnomon models, if multiple fully-supported transcript
variants were predicted for a gene, only the models supported in their entirety by a single long alignment
(e.g., a full-length mRNA) or by RNA-Seq reads from a single BioSample were selected. Poorly supported
Gnomon models conflicting with better-supported models annotated on the opposite strand were
excluded from the final set of models. Further filtering of gene models, and assignment of function, name
and type to the final accepted gene set was based on orthology to human genes (or zebrafish in the case
of the climbing perch) and Blast hits to SwissProt or, as a last resort, Blast hits to nr. Gnomon models with
high homology to transposable or retro-transposable elements or models that appear to be single-exon
retrocopies of protein-coding genes were excluded from the final set of models. Most Gnomon models
with base differences with the genomic assembly introduced to correct frameshift-causing indel were
labeled as pseudogenes and annotated without a CDS feature or protein product; but those with a strong
unique hit to the SwissProt database or with a human ortholog were marked coding. Such models may
indicate underlying defects in the assembly and should be considered lower confidence. Titles for these
models are prefixed with “PREDICTED: LOW QUALITY PROTEIN”. The resulting annotated assemblies and
the annotated products for all 17 assemblies were loaded into RefSeq and are publicly available for
download from NCBI Assembly (https://www.ncbi.nlm.nih.gov/assembly/). For each assembly, details of
the evidence used for gene prediction and summary statistics of the annotations are available in the
annotation reports in Supplementary Table 20.

21

Chromosome size estimate from karyotype imaging
Fibroblast cell lines were established from a female native Anna’s hummingbird using enzymatic digestion
on eye tissue following methods previously described73. The cells were accessioned in the San Diego Zoo’s
Frozen Zoo® (Lab# 19594). Metaphase chromosomes were harvested from the fibroblasts following
Kumamoto et al.74. Karyotyping was done using the CytoVision Genus® System by Leica Microsystems.
The karyotype represents the complete complement of a single metaphase cell. The autosomes were
aligned by size and morphology with metacentric/submetacentric pairs presented first. The minute size
of the microchromosomes makes it difficult to determine the exact diploid number with certainty.

The Anna’s hummingbird karyotype image was then processed first into a binary representation.
The rectangular area surrounding each chromosome image was then obtained from the binary
representation. The relative chromosome size ratio was estimated compared to the sum of all rectangular
heights. Each chromosome size estimate was obtained by multiplying this ratio to the given genome size.

The genome size was given in a diploid value, as both alleles are present in the Anna’s
hummingbird karyotype picture. Below is the python code used to generate the karyotype image and
chromosome size estimates:

Import relevant libraries and setup matplotlib

import numpy as np

from skimage.measure import regionprops

from skimage.color import rgba2rgb, rgb2gray

from scipy.ndimage import label

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

import argparse

%matplotlib inline

plt.rcParams['figure.figsize']=20,15

genome size in bases - if image shows multiple alleles, then the size has to be adapted

accordingly

gs = 2119374518

be sure to remove anything from the picture (i.e. labels) that is not to the karyotype

path_img_in = "/Users/pippel/Documents/Calypte_anna_in.png"

path_img_out = "/Users/pippel/Documents/Calypte_anna_out.png"

path_txt_out = "/Users/pippel/Documents/Calypte_anna_out.txt"

loading the image

img = plt.imread(path_img_in)

plt.imshow(img)

converting to binary

threshold = 0.5 #<---------- threshold can/should be adjusted

if img.shape[2] == 4:

 gray = 1-rgb2gray(rgba2rgb(img))

else:

 gray = 1-rgb2gray(img)

binary = (gray>threshold).astype(np.int32)

plt.imshow(binary)

creating labels

labels = label(binary)[0]

plt.imshow(labels)

22

regionprobs on the label image

regions = regionprops(labels)

sizes=sum(r.area for r in regions)

fig, ax = plt.subplots(figsize=(100, 60))

ax.imshow(binary)

plt.rcParams.update({'font.size': 32})

centroid_and_area = np.zeros((len(regions), 3))

c=0

for region in regions:

 x, y = region.centroid

 area = region.area

 minr, minc, maxr, maxc = region.bbox

 # draw rectangle around objects

 rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,\

 fill=False, edgecolor='red', linewidth=2 \

 plt.text(minc, minr, \

 str(np.round(gs*region.area/sizes.sum()/1000000,2)), color='red')

 centroid_and_area[c] = (x, y, gs*region.area/sizes.sum()/1000000)

 c+=1

 ax.add_patch(rect)

save image to image output file

plt.savefig(path_img_out)

save centroid and size estimate to text file

np.savetxt(path_txt_out, centroid_and_area, fmt='%1.3f %1.3f %1.3fM')

23

Weighted read length distributions
All read lengths or molecule lengths were collected for PacBio CLR and Bionano optical maps over 1kb.
The weighted read length distribution was calculated using the read length normalized by the total bases
sequenced in reads of that length.

Pacbio CLR read length distribution: Read length was extracted for all subreads with Samtools14 1.9-
1.10 faidx and filtered for reads over 1kb. Total bases were counted at the end to weight the bases in
the read length of X.

Collect read length for each subreads

samtools faidx $subreads.fasta

length collected per genome at the end

cat *.fasta.fai | awk ‘{print $1”\t”$2”}’ > $genome.len

Remove data < 1kb and change unit to 1kb

awk '$2>1000 {print $2/1000}' $genome.len > $genome.1kb

Get the fraction of a read of length LEN over TOTAL_BP

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb`

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=”PacBio” \

 '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb \

 > $dir/$genome.1kb.weighted

10XG molecule length distribution: 10X Genomics molecule length distribution was estimated using
the molecule_length_mean (m) from the summary.csv produced with longranger22 align.
We ran longranger align on all curated primary assemblies (Supplementary Table 10) except for
the Skate, which we used the longranger align output (m) from the 3rd round of polishing. For the two-
lined caecilian (aRhiBiv1), the largest chromosomes were broken in two scaffolds and lifted over at the
end to bypass the known indexing issue in longranger for large scaffolds. We used the m for length-
weighted mean molecule length and computed the exponential distribution of the molecule length
following 10X Genomics recommendation on https://support.10xgenomics.com/de-novo-
assembly/software/pipelines/latest/output/moleculelen. In brief, when b = 2/m, the function f(x) = b *
exp(-bx), where x is the molecule length.

Bionano raw molecule length distribution: Molecule length was extracted for all .bnx files over 1kb.
Lengths were weighted by total bases. The following code was applied to Opt1 (BspQI), Opt2 (BssSI), and
Opt3 (DLE1) bnx files to extract the molecule length:

name=`basename $file | sed 's/.bnx//g' \

 | awk -F "_" '{print $1"_"$2"_"$3}'`

cat $file | grep -v "#" | grep -v "QX" \

 | awk -v name=$name '{printf "%.0f\t%s\n", $3, name}' \

 >> $name.bnx.len

Remove data < 1kb and change unit to 1kb

awk '$1>1000 {print $1/1000}' $bn >> $genome.1kb

Get the fraction of a read of length LEN over TOTAK_BP, add it to the PacBio results

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb`

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=$PLATFORM \

 '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb \

 >> $dir/$genome.1kb.weighted

https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/output/moleculelen
https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/output/moleculelen

24

Hi-C chromatin interaction length distribution: Interaction distances between any two Hi-C read pairs
were collected using the curated primary assemblies (Supplementary Table 10) as the reference. Hi-C
reads were mapped using Arima mapping pipeline (https://github.com/VGP/vgp-
assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh) as we did for SALSA8 scaffolding.
After the alignment was finished, 10 million interactions to the longest scaffold was extracted using
BEDTools75. As with the other datatypes, the sum of all interaction distances was used to normalize each
distance.

Largest scaffold is $scaffold and is $len long

len=`awk -v l=0 '$2>l {l=$2} END {print l}' $genome.pri.fasta.fai`

scaffold=`awk -v len=$len '$2==len {print $1}' $genome.pri.fasta.fai`

Collect intervals >1kb

bedtools bamtobed -bedpe -i $genome.pri.bam \

 | awk -v scaff=$scaffold '$1==scaff && $4==scaff' \

 | awk '{ if($2<$5) {start=$2;} else {start=$5;} \

 if ($3<$6) end=$6;} else { end=$3 } interval=(end-start); \

 if (interval>1000) {print (interval/1000)}}' > $dir/$genome.1kb

head -n 10000000 $genome.1kb > $genome.1kb.10M

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb.10M`

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=$PLATFORM \

 '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb.10M \

 > $genome.1kb.10M.weighted

Plotting length distribution: For 10XG linked read distances, we made a linked.len file which
contains the genome id and the m in two columns. In R, we read the data and generate the distribution for
plotting.

dat.10x=fread("linked.len", header=T)

result <- data.frame()

for (g in dat.10x$genome) {

 dat_genome1=dat.10x[dat.10x$genome==g,]

 dat_genome1 <- data.frame(Count=seq(from = 1, to = 100000, by = 1),\

 Length=rexp(100000, rate=2/dat_genome1$molecule_length_mean))

 totalbp=sum(as.numeric(dat_genome1$Length))

 print(totalbp)

 head(dat_genome1)

 dat_genome1$Weight=dat_genome1$y/totalbp

 dat_genome1$Platform="Linked_reads"

 dat_genome1$Genome=c(g)

 result <- rbind(result, dat_genome1)

}

For other platforms, the $genome.1kb.weighted files were concatenated with the genome id at the
end in the order we want to display per genomes:

for genome in $(cat genome.list.srt);

do

 awk -v genome=$genome '{print $0"\t"genome}' $genome.1kb.weighted \

 >> all.1kb.weighted

done

https://github.com/VGP/vgp-assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh
https://github.com/VGP/vgp-assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh

25

Collapsed repeat calculations
Collapsed duplications were annotated using a combination of read-depth and repeat masking. The
pipeline is identical to the depth calculation of SDA76, with an updated approach to discretized copy
number annotation using a hidden Markov model. Reads were mapped to each assembly using
Minimap264 and filtering for primary alignments. In the case that a DNA fragment is sequenced by multiple
subreads, only the longest aligned subread was retained. Each genome was divided into 100-base tiling
windows. A window is spanned if an alignment starts within or before the window and ends in or after
the window, and the read-depth is calculated per window as the number of retained reads that span the
window.

The read-depth for diploid copy number is set to the average of all windows. Copy number of a
collapse is calculated using a hidden Markov model that models the copy number as a hidden state with
read-depth as the emitted value. Collapsed repeats were detected as contiguous spans of windows with
copy number at least 4. The number of sequences missing at a collapsed duplication are represented as
the range between the minimum and maximum copy number of windows in a span.

Each genome was repeat masked using a combination of RepeatMasker77 ver. open-4.0.9 and
WindowMasker69 v1.0.0. The following repeat-libraries were used: mPhyDis1, mRhiFer1 : bats;
mLynCan4 : Carnivores; mOrnAna1: monotremes; bTaeGut1, bTaeGut2, bStrHab1, bCalAnn1: birds;
rGopEvg1, aRhiBiv1: Amphibia; fMasArm1, fAnaTes1, fArcCen1, fAstCal1, fCotGob3, fGouWil2,
sAmbRad1: Teleost fish. Gene content was used with either NCBI annotations, or by mapping human
Genbank transcripts using Minimap264 when no gene annotation was available (mPhyDis1, mLynCan4,
mOrnAna1, aRhiBiv1).

The repeat annotation pipeline is available at:

https://github.com/ChaissonLab/SegDupAnnotation/archive/0.9.tar.gz .

BUSCO
BUSCO30 v3.02 was run on all submitted primary assemblies (Supplementary Table 12) to assess gene
content (C: completeness; D: Duplications; F: fragmented; M: missing), as well as on the benchmark
assemblies (Supplementary Table 13) to assess duplications using OrthoDB v9 with vertebrata_odb9
database. Integrated software versions used were Hmmer 3.1b2, ncbi-blast-2.2.30+ and augustus-3.3.
Command line used is as following:

run_BUSCO.py -i asm.fasta -o $out -m genome -l vertebrata_odb9

In addition, we performed lineage specific (-l) BUSCO runs with the closest available lineages, which uses
a gene prediction model trained on human genome annotations (augustus). Specifically, we used
‘laurasiatheria’ for mammals, ‘ave’ for birds, ‘tetrapoda’ for Goode's thornscrub tortoise, and two-lined
caecilian, ‘actinopterygii’ for fishes, and ‘vertebrata’ for the thorny skate (Supplementary Table 12).
Command line used is as following with specific $lineage:

run_BUSCO.py -i asm.fasta -o $out -m genome -l $lineage

When investigating duplications, we further tried BUSCO using species specific models (-sp): ‘human’ for
all mammals and the thorny skate; ‘chicken’ for all birds, Goode's thornscrub tortoise, and two-lined
caecilian; and ‘zebrafish’ for all fishes (Supplementary Table 12-13). Command line used is as following
with -sp set in addition to above example:

run_BUSCO.py -i asm.fasta -o $out -m genome -l $lineage -sp $species

https://github.com/ChaissonLab/SegDupAnnotation/archive/0.9.tar.gz

26

We observed very similar patterns in the duplication levels (Supplementary Table 13), however,
fluctuating slightly in the completeness score (Supplementary Table 12). This could reflect the quality
of the gene models used for training, reference quality used to generate the initial BUSCO gene set, or the
availability of the closest / identical lineage and species. With that, throughout this manuscript, we
decided to use vertebrata_odb9 with the default human lineage to use the same gene set for investigating
relative completeness.

Mis-joins and missed-joins in assemblies
The curated hummingbird assembly was mapped to the target assemblies with MashMap278 using 5 kbp
segments for CLR assemblies. We used 1 kbp segments for SR assemblies to compensate for the shorter
contig sizes. We ran MashMap using the following command line:

For CLR assemblies

mashmap -r $ref -q $qry -t $SLURM_CPUS_PER_TASK -o $out \

 --filter_mode one-to-one --pi 95 -s 5000

For SR assemblies
mashmap -r $ref -q $qry -t $SLURM_CPUS_PER_TASK -o $out \

 --filter_mode one-to-one --pi 95 -s 1000

The number of mis-joins and missed-joins were identified using a custom script available at
https://github.com/jdamas13/assembly_comparison. The assembly_comparison.pl was run using the
command line:

perl assembly_comparison.pl out.map $ref.fai $segment

Note that assembly_comparison.pl requires the more continuous assembly to be the $qry, and the
target assembly being the $ref when running mashmap2. The $segment is adjusted accordingly to the
-s used in MashMap.

From the summary, the number of end-to-end joins (missed-joins), rearrangements, and free-end
joins were collected from the diff.summary using the following script:

echo -e \

"target\tmissed-joins\trearrangements\tfree-

end_breaks\tnum.scaffolds_affected_by_free-end_breaks" > summary.txt

cat $summary | awk '{print $NF}' | tr '\n' '\t' |\

 awk -v summary=$ref '{print summary"\t"$1"\t"$2"\t"$4"\t"$5}' \

 >> summary.txt

The number of mis-joins consist of two error types (Supplementary Fig. 5): 1) rearrangements and
inconsistency between the curated and automated assemblies; and 2) free-end breaks where the
automated assembly has a join not supported by the curated assembly. Missed-joins are contigs or
scaffolds in the automated assembly that are joined in the curated assembly.

Similarly, to generate comparisons between assembly pipeline steps within a species
(Supplementary Table 14), each intermediate assembly was mapped to its predecessor using
Mashmap2 with parameters --pi 95 -s 10000.

https://github.com/jdamas13/assembly_comparison
https://github.com/jdamas13/assembly_comparison

27

Supplementary Fig. 5 | Schematic overview of “Mis-joins” and “Missed-joins”. The curated assemblies
have the error fixed. Black and blue bars are contigs. Red lines indicate boundaries of the differences
between the curated and the target automated assembly.

28

Quantifying false duplications with k-mers
All 21-mers were collected from linked reads. The first 23 bp of the first read pair in 10XG reads were
trimmed to remove barcode sequences. For the skate, whole genome short read sequencing data was used
instead for collecting k-mers, as the k-mer histogram was abnormal in the linked reads. Using the k-mer
histogram of the reads as a truth set for the genome, we compared 21-mers collected from the primary
and alternate assemblies.

Overlaying k-mers intersecting with a primary assembly in a read set is informative for inferring
artificial duplications. All k-mers collected from single and two copies of the genome are expected to be
found once in an assembly, assuming all two-copy k-mers are from the homozygous part of the genome
with no haplotype (allele) specific duplication. A cutoff threshold was determined from the k-mer
histogram of the reads as the maximum peak x 1.5 of the k-mers found in the assembly once. All distinct
k-mers found more than once in the assembly within this cutoff of the k-mer counts found in reads are
assembled more than expected. As an example, k-mers found in the assembly once peaked at 57x
(Supplementary Fig. 6). The cutoff is therefore 86 (57 x 1.5). All k-mers found twice (blue), three (green),
four (purple), or more (orange) times under 86x are considered and counted as falsely duplicated k-mers.
Barcode trimming, k-mer counting, copy number spectrum, and false duplication counting was all
performed with Merqury37 spectra-cn.

Supplementary Fig. 6 | Example histogram of the k-mer counts.

Once the k-mers were collected, the histogram (e.g. Supplementary Fig. 6) was prepared with spectra-cn
of the Merqury code and shown in Supplementary Fig. 2:

https://github.com/marbl/merqury/blob/master/eval/spectra-cn.sh

https://github.com/marbl/merqury/blob/master/eval/spectra-cn.sh

29

Which generates histogram of the primary assembly in the following format:

Copies <tab> kmer_multiplicity <tab> Count

Where Copies are copies found in the assembly, kmer_multiplicity is the k-mer multiplicity found

in reads, Count being the number of k-mers at each multiplicity.

The false duplication results were obtained using the following code:
https://github.com/marbl/merqury/blob/master/eval/false_duplications.sh

cutoff=`cat $hist | awk '$1==1 {print $2"\t"$3}' | awk -v max=0 'max<$2 {max=$2; mult=$1

} END {printf "%.0f\n", mult*(1.5)}'`

one_cp=`awk -v cutoff=$cutoff '$1==1 && $2<cutoff {sum+=$NF} END {print sum}' $hist`

two_cp=`awk -v cutoff=$cutoff '$1==2 && $2<cutoff {sum+=$NF} END {print sum}' $hist`

thr_cp=`awk -v cutoff=$cutoff '$1==3 && $2<cutoff {sum+=$NF} END {print sum}' $hist`

fou_cp=`awk -v cutoff=$cutoff '$1==4 && $2<cutoff {sum+=$NF} END {print sum}' $hist`

mor_cp=`awk -v cutoff=$cutoff '$1==">4" && $2<cutoff {sum+=$NF} END {print sum}' $hist`

DUPS_TOTAL=`echo "$one_cp $two_cp $thr_cp $fou_cp $mor_cp" | awk '{dup=$2+$3+$4+$5;

all=dup+$1} END {print $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"dup"\t"all"\t"(100*dup/all)}'`

echo -e "$hist\t$DUPS_TOTAL"

More details on the interpretation of the k-mer histogram can be found in the KAT36 and Merqury37
papers.

Reliable blocks
Regions with support from CLR subreads, linked reads, raw molecule and label information (bnx) of the
optical maps, and Hi-C maps from the same individual were collected. Low or high coverage regions were
excluded, which are indicators of mis-assemblies. To overcome mapping biases, we required at least two
independent platforms to agree for being structurally ‘reliable’. For example, a repeat region longer than
a CLR read may cause abnormal high coverage in CLR and linked reads from mapping biases, even if the
region was well assembled locally. Longer range data such as optical maps and Hi-C interactions can
complement this bias and indicate structural reliance.

Read mapping was performed individually for each platform, and coverage support information
was collected on the primary assembly with Asset35 v1.0.2 (https://github.com/dfguan/asset). Here we
include a brief description of each parameter for each platform as well as codes used to generate
supporting regions. A manuscript for Asset will follow with more detailed information.

Regions with not enough support (hereby “low support”) were merged when less than 100 bp
apart. Cutoff for defining low support differs per platform, as noted below per platforms. Reliable regions
were calculated by excluding these low support regions from the assembly. Because sequencing coverage
naturally drops at the end of scaffolds for optical maps and Hi-C, we included any low support region as
“reliable” that overlaps 1 kbp of each ends in the scaffolds (Supplementary Table 6). All available optical
maps were used, including those not used for hybrid scaffolding (Supplementary Table 9). Below are
the command lines used to obtain these reliable blocks.

https://github.com/marbl/merqury/blob/master/eval/false_duplications.sh
https://github.com/dfguan/asset

30

Gaps in the reference
Gaps and start, end of each scaffold information was obtained with detgaps for the primary assembly.
Scaffold length was obtained with samtools. Length was then converted to region file, asm.bed and 1 kbp

end coordinates was obtained as asm.ends.bed as following:

Get gaps

$asset/bin/detgaps $name.fasta > gaps.bed

Get scaffold length

samtools faidx $name.fasta

Get scaffold region

awk '{print $1"\t0\t"$2}' $name.fasta.fai > asm.bed

Get scaffold ends while ignore scaffolds <2kb

cat asm.bed | \

 awk '($3-$2) > 2000 {print $1"\t0\t1000\n"$1"\t"($3-1000)"\t"$3}' \

 > asm.ends.bed

CLR coverage
CLR reads were aligned to the primary assembly using minimap264 with -x map-pb. Once all .paf files
were collected, ast_pb was run with -M $max, which the maximum threshold was identified from
(sequencing mean coverage) x 2.5. The mean coverage was inferred from the estimated haploid
genome size / total bases. By default, ast_pb only includes read alignments with a minimum of 600
bases. Where r is a read, s the starting and e the ending coordinate of the alignment of r, any read
alignment with r(s+300, e-300) is used to avoid errors at read ends. Regions with a minimum of 10
read alignments were excluded.

Brief help message is as follows:

Usage: aa_pb [options] <PAF_FILE> ...

Options:

 -m INT minimum coverage [10]

 -M INT maximum coverage [400]

 -l INT bases clipped at start and end coordinates of an alignment [300]

 -h help

Command lines used are as follows:

Align each qry subread .fasta file to the reference index

minimap2 -x map-pb -t $cpus $ref.idx $qry > $out.paf

Accumulate coverage and exclude low and high coverage

pafs=`ls *.paf`

max=`echo $mean_cov | awk '{printf "%.0f\n", $1*2.5}'`

$asset/bin/ast_pb -M $max $pafs > pb_M.bed"

Linked read coverage
The aligned.bam file was re-used, which was generated to obtain mapping-based QV estimates using
longranger align. To get the $max threshold, ast_10x was run in two rounds. The first round was
run to get the average molecule coverage. The second round was run with -C $max, which is (average
molecule coverage) x 3.5. Note this is set higher than what was used in CLR coverage as the linked reads
were aligned to both haplotypes, thus here the average molecule coverage is closer to the haploid
coverage.

31

By default, ast_10x requires regions to have at least 0.15 x (average molecule coverage) or 10 molecules,
whichever is higher. Molecules are only considered when the average mapping quality of the reads in it is
over 20, with the inferred molecule size being longer than 1 kbp. A molecule requires shared barcodes
among at least 20 reads, where any two adjacent reads are less than 20 kbp apart. The maximum number
of reads in a barcode is restricted to at most 1 million; however, based on the number of reads in barcodes,
most barcodes meet this filtering criteria.

Brief help message is as follows:

Usage: aa_10x [options] <GAP_BED> <BAM_FILEs> ...

Options:

 -x BOOL use longranger bam [False]

 -b INT minimum number of reads for each barcode [20]

 -B INT maximum number of reads for each barcode [1M]

 -c INT minimum molecule coverage. This or -r will be used, whichever is higher. [10]

 -r FLOAT minimum coverage ratio to the average coverage [.15]

 -C INT maximum coverage [inf]

 -q INT minimum average read mapping quality for each molecule [20]

 -l INT minimum length for a molecule [1000]

 -S INT maximum distance allowed between two adjacent reads with identical barcode to

be grouped as a molecule [20000]

 -a INT minimum number of barcodes for each molecule [5]

 -h help

Command lines used are as follows:

First round: accumulate molecule coverage to get the mean

$asset/bin/ast_10x -x gaps.bed aligned.bam > 10x.bed

Avg. molecule coverage and max cutoff

mean_cov=`awk '{sum+=$1*$2; total+=$2} END {printf "%.0f\n", sum/total}' TX.stat`

max=`echo $mean_cov | awk '{printf "%.0f\n", $1*3.5}'`

Second round

$asset/bin/ast_10x -x -C $cutoff $gaps aligned.bam > 10x_C.bed

Optical map raw molecule (bnx) coverage
The curated primary assembly was first converted to in-silico reference cmaps for each label (Opt.1, 2,
and 3) to align available bnx maps accordingly. The bnx were merged prior to alignment when multiple
bnx were available from the same sequencing platform (Irys or Saphyr) and label. The bnx was aligned
using RefAligner (Solve 3.3_10252018) from Bionano Solve4 3.3 using non-haplotype option of the
sequencing platform (Irys or Saphyr), as we align bnx from both haplotypes to a pseudo-haplotype
assembly. Molecule coverage was obtained with ast_bion_bnx using default options, which requires
regions to have at least 10 molecule coverage or 0.5 x (average molecule coverage), whichever is higher.
When multiple bnx files were used, all molecule coverage was gathered using the union function of Asset.

Brief help message is as follows:

Usage: ast_bion_bnx [options] <REF_CMAP> <QUERY_CMAP> <XMAP> <KEY_FN>

Options:

 -m INT minimum molecule coverage [10]

 -M INT maximum molecule coverage [inf]

 -r INT minimum coverage ratio to mean coverage [.5]

 -s FLOAT minimum alignment confidence [0.0]

 -O STR output directory [.]

 -h help

32

Command lines used are as follows:

Convert primary reference assembly fasta to cmap

perl $solve_dir/HybridScaffold/10252018/scripts/fa2cmap_multi_color.pl -e $enzyme 1 -i

$ref -o $output_dir/fa2cmap

Merge if multiple bnx are available from the same platform and label, prefix is for

example mLynCan4_Saphyr_BspQI

$tools/bionano/Solve3.3_10252018/RefAligner/7915.7989rel/RefAligner -if $prefix.list -

merge -o $prefix -bnx -stdout -stderr

Align bnx to the reference cmap

python $solve_dir/Pipeline/10252018/align_bnx_to_cmap.py --prefix $enzyme --mol

$query_map --ref $ref_cmap --ra $solve_dir/RefAligner/7915.7989rel/ --nthreads $cpus -

-output $output_dir/align --optArgs

$solve_dir/RefAligner/7915.7989rel/optArguments_nonhaplotype_"$platform".xml --

pipeline $solve_dir/Pipeline/10252018/

Convert to support regions of this .bnx.

$rmap_fn, $qmap_fn, $xmap_fn, and $key_fn are the output files

of the above fa2cmap

$asset/bin/ast_bion_bnx $rmap_fn $qmap_fn $xmap_fn $key_fn \

 > $output_dir/bionano_"$tech"_"$enzyme".bed \

 2>ast_bion_bnx_"$tech"_"$enzyme".log

Merge support regions when multiple enzymes were used

$asset/bin/union bnx_*/bionano_*.bed > bn.bed

Hi-C interaction coverage
The $genome.pri.bam was re-used which was generated to plot the weighted length distribution of
the Hi-C interactions. Coverage information was obtained using ast_hic with default options, which
excludes regions with less than seven interactions. An interaction is inferred from the distance of a read
pair, using the starting coordinates of each read while excluding N-base gaps. Only interactions less than
15 kbp were considered in coverage to avoid noisy long-range interactions for inferring structural
reliability.

Brief help message is as follows:

Usage: aa_hic [options] <GAP_BED> <BAM_FILEs>

Options:

 -c INT minimum coverage [7]

 -C INT maximum coverage [inf]

 -q INT minimum alignment quality [0]

 -L INT maximum insertion length, gap excluded [15000]

 -h help

Command lines used is as follows:

Convert alignments to support information

$asset/bin/ast_hic gaps.bed *.bam > hic.bed

Merging supportive regions
Once all the support information for each platform is generated, low and high coverage regions are
merged and good supporting regions of each platform are obtained using BEDTools75 2.92.2 with the
following command lines:

33

Get too-low and too-high coverage low support regions by merging blocks less than

100bp away

bedtools subtract -a asm.bed -b ${platform}.bed | bedtools merge -d 100 -i - >

$platform.low_high.bed

Trim off regions overlapping 1kb

bedtools subtract -a $platform.low_high.bed -b asm.ends.bed -A >

$platform.low_high.trim1k.bed

Get supporting region, using the low_high.bed to exclude <100bp blocks in between

other blocks

bedtools subtract -a asm.bed -b $platform.low_high.bed > $platform.support.bed

In the last step, we accumulate the supporting evidence of all platforms and obtain supporting regions
where >= 2 platforms agree using the following:

Accumulate supports

$asset/bin/acc gaps.bed */*.support.bed > acc.bed 2> acc.log

Merge to get reliable blocks

awk '$4>1' acc.bed | bedtools merge -i - > acc.gt2.mrg.bed

Get low support regions by merging blocks <100bp apart

bedtools subtract -a asm.bed -b acc.gt2.mrg.bed | bedtools merge -d 100 -i - >

low_support.bed

Get the final support region as reliable blocks

bedtools subtract -a asm.bed -b low_support.bed > reliable.bed

Exclude low supports in <1kb scaffold boundaries for excluding end-scaffold effects

bedtools subtract -A -a low_support.bed -b asm.ends.bed > low_support.trim1k.bed

The scripts used here are available on:

https://github.com/VGP/vgp-assembly/tree/master/pipeline/asset.

https://github.com/VGP/vgp-assembly/tree/master/pipeline/asset

34

Telomere motifs
Telomeric 6-mer motif AATCCC and its reverse complement TTAGGG were searched in the curated
assemblies using a custom script. Once the motif sites were collected, regions of enriched telomeric motif
signals in 1 kbp windows were collected over threshold S, corrected with the k-mer survival rate. The
corrected threshold becomes S x identity^k, where identity is the approximate base accuracy, which we
set to 99.9%. Because the spacing of enriched telomeric motifs varies across species and assembly quality,
we collected windows using various thresholds from 10% to 25%. Windows were merged when they
were closer than 100 bp in chromosome-assigned scaffolds, and reported in Supplementary Table 7.
Number of windows within the beginning or ending scaffold coordinates were collected using BEDTools75.
Scaffold ends with windows found at a 15% threshold within 1 kbp end coordinates are reported in
Supplementary Table 6. The following code was used to generate the data:

Find telomere motifs, outputs pri.telomere

$VGP_PIPELINE/telomere/find_telomere.sh pri.fasta

Find windows using variable $thresholds

java -cp $VGP_PIPELINE/telomere/telomere.jar FindTelomereWindows pri.telomere 99.9

$threshold > pri.windows.$threshold

Merge telomere windows when 100bp apart

cat pri.windows.$threshold | awk '{print $2"\t"$(NF-2)"\t"$(NF-1)}' | sed 's/>//g' |

bedtools merge -d 100 > pri.windows.$threshold.bed

Get scaffold ends with variable $ends

cat pri.lens | awk -v ends=$ends '{if ($2>(ends*2)) {print $1"\t0\t"ends"\n"$1"\t"($NF-

ends)"\t"$NF} else {print $1"\t0\t"$NF}}' > asm.ends.bed

Get windows intersecting ends

bedtools intersect -wa -a pri.windows.$threshold.bed -b asm.ends.bed >

pri.windows.$threshold.$ends.ends.bed

Get unique scaffold ends with a window

bedtools intersect -u -a asm.ends.bed -b pri.windows.$threshold.bed >>

pri.windows.$threshold.$ends.ends.u.bed

The full telomere motif finding script used is available on:

https://github.com/VGP/vgp-assembly/tree/master/pipeline/telomere/

https://github.com/VGP/vgp-assembly/tree/master/pipeline/telomere/

35

Base pair accuracy (QV) estimate
We generated base level accuracy estimates (QVs) from the widely used mapping based approach as well
as the newly developed k-mer based approach (Extended Data Table 1 and Supplementary Table 17).

Mapping based approach
Longranger22 v2.2.2 was used for generating reference index and alignments. The reference index was
generated on the combined primary and alternate assemblies with longranger mkref, and 10XG

linked reads were aligned with longranger align.

longranger-2.2.2/longranger mkref $ref.fasta

longranger-2.2.2/longranger align \

--id=$genome \

--fastq=/data/rhiea/genome10k/$genome/genomic_data/10x/ \

--sample=$genome \

--reference=refdata-$ref \

--jobmode=slurm \

--maxjobs=500 \

--jobinterval=5000 \

--disable-ui \

--nopreflight

For reference assembly size larger than 4G, the following memory options were applied as Longranger
was tuned for human genomes with --override=$pipeline/longranger/override_4G.json
option.

The override_4G.json looks as following:

{

"ALIGNER_CS.ALIGNER._LINKED_READS_ALIGNER.BARCODE_AWARE_ALIGNER": { "chunk.mem_gb": 48

},

"ALIGNER_CS.ALIGNER._LINKED_READS_ALIGNER.MERGE_POS_BAM": { "join.mem_gb": 48 },

"ALIGNER_CS.ALIGNER._REPORTER.FILTER_BARCODES": { "join.mem_gb": 48 },

"ALIGNER_CS.ALIGNER._REPORTER.REPORT_LENGTH_MASS": { "chunk.mem_gb": 32 }

}

From the summary.csv that longranger align outputs, the mean coverage was obtained. Then, variants
were called with freebayes13 1.3.1 from the possorted_bam.bam file, which are indicative of base-pair
errors as we align reads from the same individual. This is the same step used for finding target bases to
polish. We use --skip-coverage (mean_cov*12) to avoid variant calls in regions with excessive coverage
depth, as the mapping results in this region is not reliable for variant calling. Basic filtering was applied
on the called variants, to filter out (1) low quality (>1) sites, (2) select target sites called as homozygous-
like variants (all reads support base change to one allele), and (3) heterozygous-like variant calls when
both suggestive alleles do not match the reference. In the latter case, the longest allele was chosen.

(https://github.com/VGP/vgp-assembly/tree/master/pipeline/freebayes-polish)

Variant call

freebayes --bam $bam --skip-coverage $((mean_cov*12)) -f $fasta | bcftools view --no-

version -Ou > bcf/$.bcf

Filtering

bcftools view -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Oz --threads=$threads $sample.bcf >

$sample.changes.vcf.gz

https://github.com/VGP/vgp-assembly/tree/master/pipeline/freebayes-polish

36

Collect number of bases affected (NUM_VAR)

bcftools view -H -Ov $genome.changes.vcf.gz | awk -F "\t" '{print $4"\t"$5}' | awk

'{lenA=length($1); lenB=length($2); if (lenA < lenB) {sum+=lenB-lenA} else if (lenA >

lenB) { sum+=lenA-lenB } else {sum+=lenA}} END {print sum}' > $genome.numvar

NUM_VAR=`cat $genome.numvar`

echo "Total num. bases subject to change: $NUM_VAR"

Mappable region was obtained by excluding low (<3x) and high (mean_cov x 12) coverage.

(https://github.com/VGP/vgp-assembly/tree/master/pipeline/qv)

Num. of bases in mappable region (NUM_BP)

l_filter=3

h_filter=$((mean_cov*12))

samtools view -F 0x100 -u $bam | bedtools genomecov -ibam - -split > aligned.genomecov

awk -v l=$l_filter -v h=$h_filter '{if ($1=="genome" && $2>l && $2<h) {numbp += $3}} END

{print numbp}' aligned.genomecov > $genome.numbp

NUM_BP=`cat $genome.numbp`

QV calculation

QV=`echo "$NUM_VAR $NUM_BP" | awk '{print (-10*log($1/$2)/log(10))}'`

echo "QV of this genome $genome: $QV"

Number of bases affected (NUM_VAR) and bases in mappable regions (NUM_BP) are obtained per primary
and alternate assemblies at the end, according to the reference sequence name.

K-mer based approach
Similarly to the mapping based approach, the number of k-mers associated with base errors (similar to
NUM_VAR in mapping based approach) and total number of k-mers in the assembly (NUM_BP,
respectively) are obtained and used for QV calculation. This assumes all k-mers occurring in the genome
are observed in the short reads, and any k-mers not found in the short reads but in the assembly is
considered to have originated from base error(s). More details regarding implementation is described in
the Merqury paper37. This approach is independent from mapping, and is able to estimate QV across all
assembled bases.

Once the k-mers were obtained as described in the Quantifying false duplications with k-mers section,
Merqury spectra-cn was run using the following commands:

merqury.sh $read.meryl $pri.fasta $alt.fasta $out

Which generates spectra-asm and spectra-cn histograms shown in Supplementary Fig. 2 as well as QV
stats.

https://github.com/VGP/vgp-assembly/tree/master/pipeline/qv

37

RNA-seq and ATAC-seq Mappability
RNAseq data from 44 zebra finch brain tissues (11 distinct regions, 4 adult male individuals) were
trimmed for adaptors using fastq-mcf as part of the ea-utils package79 1.05 and mapped to the Sanger
(TaeGut3.2.4) and VGP (bTaeGut1) genomic assemblies using STAR80 v2.7.1a with default options. Reads
were considered uniquely mapped if they matched only one location in the assembly, while multi-mapped
(<20) or mapped to many (>20) were also counted. Total mapped was a summary of these categories.
Mapping reports were summarized using MultiQC81 v1.7 and compiled in R for significance testing. The
following command lines were used:

STAR

--runMode alignReads \

--runThreadN 8 \

--genomeDir ${REFERENCE} \

--readFilesIn ${TRIMDIR}/${SAMPLE}_R1_trimmed.fastq.gz

${TRIMDIR}/${SAMPLE}_R2_trimmed.fastq.gz \

--readFilesCommand zcat \

--outFileNamePrefix ${OUTPUT}/vgp_${SAMPLE} \

--outSAMtype BAM SortedByCoordinate

ATAC-seq libraries from 12 zebra finch brain tissues (4 distinct regions, 3 male birds per region) were
prepared using the Omni-ATAC-seq method
(https://protocolexchange.researchsquare.com/article/nprot-6107/v1) and were sequenced on the
Illumina NextSeq 500 with 75 bp paired end reads. The reads were then trimmed with Trim Galore82
v0.6.5. Next, the reads were aligned to each assembly using Bowtie283 v2.4.1. The average of each mapping
statistic summary log (mapped zero times, mapped exactly 1 time and mapped multiple times) were
calculated for each assembly. The following command lines were used:

Trimming adapters

trim_galore --paired --nextera myRead_R1.fastq myRead_R2.fastq

Assembly alignment

bowtie2 -x genome_assembly.fa --sensitive -1 my_reads_trimmed_1.fq.gz -2

my_reads_trimmed_2.fq.gz -S my_reads_trimmed.sam 2> my_reads_trimmed.log

Mapping statistics for both RNA-seq and ATAC-seq on each assembly were tested for significant difference
in means using a paired two sample t-test (alpha=0.05).

38

False gene annotation in previous assemblies

We detected evidence of erroneous coding sequences in previous assemblies of the zebra finch, platypus,
and climbing perch for the genes which are related to specific complex traits84,85 or, included in the BUSCO
gene set30. To identify the erroneous annotations, such as false duplications or truncated sequences due
to missamblies, we collected exon sequences from the VGP annotation of the genes and performed blastn
v2.6.0+ searches86 against both the previous and VGP assembly, with options -task blastn, -perc_identity
90, and -evalue 0.00001 (Supplementary table 21). Among the hits found from the blast search, we
defined false duplications of an exon when duplicated hits within the same scaffold were found on the
previous assembly only. Also, we detected truncated exons, where the length of the blast hit was shorter
than the length of query exon. For visualization, we used Gene Structure Display Server v2.0+87 and
manually modified the display in order to handle small discrepancies between elements. For the intuitive
visualization of platypus’ vitellogenin-2 gene, we visualized only the scaffolds with more than three blast
hits of the previous assembly.

GC-content and missing sequences in prior assemblies
We investigated GC-content of protein coding genes and flanking sequences of 17 VGP genomes
(mLynCan4, mPhyDis1, mOrnAna1, mRhiFer1, bStrHab1, bTaeGut2, bCalAnn1, bTaeGut1, aRhiBiv1,
rGopEvg1, fArcCen1, fCotGob3.1, fMasArm1.2, fAnaTes1.2, fAstCal1.2, fGouWil2.1, and sAmbRad1). All
assemblies and annotation files were downloaded from NCBI RefSeq88. We manually annotated UTR exons
at the start or end of each transcript that did not overlap with CDS regions. For each gene, the longest
transcript was selected as a representative transcript. We excluded genes located within the 30kbp of the
end of scaffolds, genes with less than four coding exons, or the genes flagged as “partial” from our
downstream analysis. Introns more than 25 bp were classified according to their position: 5’ or 3’UTR
intron - in 5’ or 3’UTR, first intron; between the first and next coding exon, internal intron; between
internal coding exons, last intron; and between the internal and last coding exon. After excluding coding
exons under 10bp, we calculated average GC-content of non-overlapping 100bp windows in the upstream
and downstream 30 kbp regions and of the UTRs, coding exons, introns for each species with BEDtools75
nuc (v2.26).

Genome alignments were made among the VGP primary, VGP alternate, and prior assemblies with
Cactus89 for zebra finch, Anna’s hummingbird, platypus, and climbing perch90,91 in order to estimate the
ratio of previously missing sequences. We extracted VGP genomic regions that were not aligned with the
prior assemblies by using halLiftover92 and BEDtools75 subtract. Ratio of missing sequences was
estimated for the UTRs, exons, introns and non-overlapping 100bp windows in the flanking 2 kbp
upstream and downstream sequences by calculating the ratio of overlaps with the regions that were not
aligned with the prior assemblies, with BEDtools43 intersect and groupby.

We investigated zebra finch genes whose 5’ upstream sequences were previously missing. We
downloaded NCBI remap alignment (https://www.ncbi.nlm.nih.gov/genome/tools/remap) between the
VGP (bTaeGut1_v1.p) and prior assembly (Taeniopygia_guttata-3.2.4). The VGP genomic regions that
were not already mapped to the prior assembly were extracted by BEDtools75 subtract. The CpG island
prediction result of unmasked VGP zebra finch assembly was downloaded from UCSC genome browser.
We overlapped coordinates of unmapped regions, +-2kbp upstream region of each gene, CpG islands, and
ATAC-seq peaks by using BEDtools intersect. To cross-check the absence of GC-rich upstream sequences
of DRD1B and ER81 in the prior assembly, we performed BlastN86 against the VGP and prior assembly
using the following parameters: -task blastn -dust no -evalue 0.000001 and confirmed that no hits were
found against the prior assembly. We remapped the coordinates of previous DRD1B and ER81 transcripts
to the VGP assembly by NCBI Remap and confirmed that the structure of previous genes were disrupted
by the missing sequences. BEDtools makewindows and nuc were used to calculate GC-content in non-
overlapping windows of 100 bp size across the VGP assembly and visualized in integrative genomics
viewer93.

https://www.ncbi.nlm.nih.gov/genome/tools/remap

39

Chromosome evolution analyses
As the species divergence were too high to generate a complete genome-to-genome alignment, we
estimated chromosome orthology between species by using BUSCO30 genes. We used the BUSCO gene
annotations generated using the vertebrata_odb9 database for the 16 VGP species (mLynCan4, mRhiFer1,
mPhyDis1, mOrnAna1, bCalAnn1, bTaeGut1, bStrHab1, rGopEvg1, aRhiBiv1, fGouWil2, fAstCal1,
fArcCen1, fCotGob3, fMasArm1, fAnaTes1, and sAmbRad1), and additionally performed the same BUSCO
analysis on the primary assembly of the human genome reference (GRCh38.p12). We used ChrOrthLink
(https://github.com/chulbioinfo/chrorthlink) to identify and visualize shared ‘complete singleton BUSCO
genes’, which defines 1:1 orthologous chromosomal regions in all species. Among the total gene set, we
identified 1,147 vertebrate BUSCO genes that were present and highly conserved as single copy in all 16
VGP species and human assemblies. The transcription start position of each gene was used to link
orthologous chromosomes between different species and visualized using genoPlotR94 v3.5.3 (Fig. 5a).
We also calculated the average number of chromosomes that have orthologous segments between human
or skate to all other lineages (Supplementary Table 22). All input data and scripts are available on
github: https://github.com/chulbioinfo/chrorthlink.

For the analysis of chromosome evolution, we used the four mammalian genomes reported in this
work (greater horseshoe bat, pale spear-nosed bat, Canada lynx, and platypus), four bat genomes from
our Bat 1K companion study20 (velvety free-tailed bat, greater mouse-eared bat, Kuhl’s pipistrelle, and
Egyptian fruit bat), the human genome (GRChg38.p12), and the chicken genome (galGal6a) as an outgroup
for all mammals. Pairwise alignments of the chicken genome, and each VGP assembly listed above to the
human genome were generated using LastZ67 (v1.04) using the following parameters: C = 0 E = 30 H =
2000 K = 3000 L = 2200 O = 400. The pairwise alignments were converted into the UCSC chain and net
formats with axtChain (parameters: -minScore = 1000 -verbose = 0 -linearGap = medium for mammals or -
linearGap = loose for chicken) followed by chainAntiRepeat, chainSort, chainPreNet, chainNet and
netSyntenic, all with default parameters95. The Bat 1K genomes were aligned to the human genome with
LastZ using the following parameters: K = 2400, L = 3000, Y = 9400, H = 2000. After building chains, we
applied RepeatFiller96, which detects novel alignments between repetitive regions. After RepeatFiller, we
applied chainCleaner97 with parameters -LRfoldThreshold= 2.5 -doPairs -LRfoldThresholdPairs = 10 -
maxPairDistance = 10000 -maxSuspectScore = 100000 -minBrokenChainScore = 75000 to improve
alignment specificity. Pairwise alignment chains were converted into alignment nets using a modified
version of chainNet95 that computes real scores of partial nets97. Next, pairwise synteny blocks were
defined using maf2synteny98 at 100, 300, and 500 kbp resolutions.

Evolutionary breakpoint regions (EBRs) were detected and classified on the basis of where on the
phylogeny the breakpoint occurred using a statistical approach described in Farre et al. (2016)99. Using
this approach, we identified, at 300 Kbp resolution of syntenic fragments, a total of 698 uniquely classified
evolutionary breakpoint regions (EBRs), 80 reuse EBRs and 243 EBRs with uncertain classification. We

manually curated EBRs with a unique phylogenetic classification (N = 698) by (a) removing EBRs that

were defined as ≤1 Mbp to avoid misclassified EBRs due to lack of alignment (N = 61); (b) merging

those EBRs that were spaced ≤150 apart to avoid alignment bias in repeat-rich regions (N = 47); (c)

separating those EBRs re-classified as reuse in the previous step (N = 14); (d) excluding all breakpoints
that did not span reliable blocks (as we defined in the Reliable blocks section) of the VGP genome
assemblies by comparing the EBR coordinates with the computed reliable blocks (N = 27); and, (e)
separating non-specific chiropteran EBRs by comparison to other laurasiatherian genomes (cattle, goat,
pig, horse, cat, and dog; N = 27). The curated dataset comprised 522 EBRs. The rate of chromosome
rearrangement (EBRs/My) between ancestral nodes and species was calculated using the number of EBRs
detected for each phylogenetic branch divided by the estimated length of each branch (in My) of the
phylogeny. Branch length was obtained from TimeTree100. The t statistic for each branch was obtained by
calculating the difference between the rearrangement rate on the branch and the mean rate across all of

https://github.com/chulbioinfo/chrorthlink

40

the branches, and then normalizing for the standard error. P values were corrected by false discovery rate
using the p.adjust function from the R package (https://www.R-project.org).

The coordinates of each chiropteran EBR were uploaded into the UCSC Genome Browser, and all
annotated genes within and immediately flanking (± 150 Kp) the boundaries of the breakpoint as defined
in the human genome (RefSeq Annotation Release 109) were identified. The example genes with
rearrangements that we studied in detail mapped to an orthologous positions on human chromosome
15q25.1, and a chiropteran interchromosomal EBR that mapped to an orthologous position on human
chromosome 6p22.1. To verify the specificity of this STARD5 gene rearrangement, we compared all
isoforms of the STARD5 protein annotated in the genomes of the bats and human using Clustal Omega101.
Furthermore, to investigate if the greater horseshoe bat transcripts would encode a functional protein,
we used evidence from RNA sequencing, available as RNA tracks in the NCBI genome data viewer102.

For the chiropteran interchromosomal EBR, we first improved the definition of the breakpoint
boundaries by visual inspection of the pairwise whole-genome alignments. In each non-human species,
the presence or absence of the 12 genes annotated within and flanking this locus in the human genome
was determined by performing: (a) direct search of orthologs of the human genes in the RefSeq
annotations for each of the bat species; (b) blast search of the human genes, mRNA and proteins in each
of the bat species genomes, including both primary and alternate assemblies for the VGP genomes; and
(c) projection of the Bat1K coding gene annotation of the greater horseshoe bat20 to each of the other bat
genomes using TOGA (Kirilenko et al, in preparation; https://github.com/hillerlab/TOGA). In brief, TOGA
uses machine learning to infer orthologous genes between related species and accurately distinguish
orthologs, paralogs and processed pseudogenes. TOGA takes as input pairwise genome alignment chains
between a designated reference (here greater horseshoe bat) and query genome (the other five bat
species), coding transcript annotations for the reference species and a file linking genes to transcripts
isoforms. Then, for each gene, TOGA identifies the chain(s) that aligns the putative ortholog in the query
using features capturing synteny and the amount of aligning exonic and intronic sequence; it identifies
the exon/intron structure by aligning the reference gene to the orthologous query locus using CESAR68
v2.0 in multi-exon mode. The gene annotations used for direct ortholog search were: RefSeq Annotation
Release 100 for velvety free-tailed bat, greater mouse-eared bat, Kuhl’s pipistrelle and greater horseshoe
bat; RefSeq Annotation Release 101 for Egyptian fruit bat and pale spear-nosed bat; and, RefSeq
Annotation Release 102 for Canada lynx. Genes and mRNA molecule searches were performed with NCBI
discontiguous MegaBlast86 using the following parameters: blastn -task ‘dc-megablast’ -evalue ‘1e-50’ -
template_type ‘coding’ -template_length ‘18’. Protein searches were performed using NCBI tblastn86 with
default parameters.

https://www.r-project.org/

41

Supplementary References
1. Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat.

Methods 13, 1050–1054 (2016).
2. Kronenberg, Z. N. et al. Extended haplotype phasing of de novo genome assemblies with FALCON-

Phase. Nat. Commun. (2020) doi:10.1038/s41467-020-20536-y.
3. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol.

(2018) doi:10.1038/nbt.4277.
4. Bionano Genomics, Inc. Bionano Software Downloads.

https://bionanogenomics.com/support/software-downloads/.
5. Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C

Experiments. Cell Syst. 3, 95–98 (2016).
6. Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation.

Science 346, 1311–1320 (2014).
7. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-

length scaffolds. Science 356, 92–95 (2017).
8. Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLOS

Comput. Biol. 15, e1007273 (2019).
9. English, A. C. et al. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read

Sequencing Technology. PLOS ONE 7, e47768 (2012).
10. Bradnam, K. R. et al. Assemblathon 2: evaluating de novo methods of genome assembly in three

vertebrate species. GigaScience 2, 10 (2013).
11. Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing

data. Nat. Methods 10, 563–569 (2013).
12. Walker, B. J. et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and

Genome Assembly Improvement. PLOS ONE 9, e112963 (2014).
13. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing.

http://arxiv.org/abs/1207.3907 (2012).
14. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079

(2009).
15. Ning, Z. & Harry, E. Scaff10X. https://github.com/wtsi-hpag/Scaff10X.
16. Dussex, N. et al. Population genomics reveals the impact of long-term small population size in the

critically endangered kākāpō. Prep. (2020).
17. Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).
18. Vernes, S. C. & Wilkinson, G. S. Behaviour, biology and evolution of vocal learning in bats. Philos.

Trans. R. Soc. B Biol. Sci. 375, 20190061 (2020).
19. Warren, W. C. et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature

453, 175–183 (2008).
20. Jebb, D. et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583, 578–

584 (2020).
21. Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-

gen diploid genome assemblies. BMC Bioinformatics 19, 460 (2018).
22. Bishara, A. et al. Read clouds uncover variation in complex regions of the human genome. Genome

Res. 25, 1570–1580 (2015).
23. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics 32, 2103–2110 (2016).
24. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

ArXiv13033997 Q-Bio (2013).
25. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158

(2020).
26. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and

repeat separation. Genome Res. gr.215087.116 (2017) doi:10.1101/gr.215087.116.
27. Chow, W. et al. gEVAL - a web-based browser for evaluating genome assemblies. Bioinforma. Oxf.

42

Engl. 32, 2508–2510 (2016).
28. O’Quin, C. T., Drilea, A. C., Conte, M. A. & Kocher, T. D. Mapping of pigmentation QTL on an anchored

genome assembly of the cichlid fish, Metriaclima zebra. BMC Genomics 14, 287 (2013).
29. Albertson, R. C. et al. Genetic basis of continuous variation in the levels and modular inheritance of

pigmentation in cichlid fishes. Mol. Ecol. 23, 5135–5150 (2014).
30. Waterhouse, R. M. et al. BUSCO Applications from Quality Assessments to Gene Prediction and

Phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
31. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies.

Bioinformatics 36, 2896–2898 (2020).
32. Yunis, J. J. & Hoffman, W. R. Nuclear Enzymes, Fragile Sites, and Cancer. J. Gerontol. 44, 37–44

(1989).
33. Earl, D. et al. Assemblathon 1: a competitive assessment of de novo short read assembly methods.

Genome Res. 21, 2224–2241 (2011).
34. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads.

Bioinformatics 33, 2202–2204 (2017).
35. Guan, D. Asset. https://github.com/dfguan/asset.
36. Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: a K-mer analysis

toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2017).
37. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and

phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).
38. Howe, K. et al. Significantly improving the quality of genome assemblies through curation.

GigaScience 10, (2021).
39. Ghareghani, M. et al. Strand-seq enables reliable separation of long reads by chromosome via

expectation maximization. Bioinformatics 34, i115–i123 (2018).
40. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol.

1–4 (2020) doi:10.1038/s41587-020-0711-0.
41. Korlach, J. et al. De novo PacBio long-read and phased avian genome assemblies correct and add to

reference genes generated with intermediate and short reads. GigaScience 6, 1–16 (2017).
42. Lewin, H. A., Graves, J. A. M., Ryder, O. A., Graphodatsky, A. S. & O’Brien, S. J. Precision nomenclature

for the new genomics. GigaScience 8, (2019).
43. Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl. Acad. Sci.

U. S. A. 115, 4325–4333 (2018).
44. Koepfli, K.-P., Paten, B., Genome 10K Community of Scientists & O’Brien, S. J. The Genome 10K

Project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111 (2015).
45. Zhang, G. et al. Genomics: Bird sequencing project takes off. Nature 522, 34 (2015).
46. Teeling, E. C. et al. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level

Genomes for All Living Bat Species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).
47. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds.

Science 346, 1320–1331 (2014).
48. Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on

mammal diversification. Science 334, 521–524 (2011).
49. A reference standard for genome biology. Nat. Biotechnol. 36, 1121–1121 (2018).
50. Jarvis, E. D. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered

with Sequencing All Genomes of a Vertebrate Class. Annu. Rev. Anim. Biosci. 4, 45–59 (2016).
51. Boomsma, J. J. Forum The Global Ant Genomics Alliance (GAGA). 7 (2017).
52. Lopez, J. V., Kamel, B., Medina, M., Collins, T. & Baums, I. B. Multiple Facets of Marine Invertebrate

Conservation Genomics. Annu. Rev. Anim. Biosci. 7, 473–497 (2019).
53. Chen, Z. et al. Ultra-low input single tube linked-read library method enables short-read second-

generation sequencing systems to generate highly accurate and economical long-range sequencing
information routinely. Genome Res. gr.260380.119 (2020) doi:10.1101/gr.260380.119.

54. Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long
DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly.

43

Genome Res. 29, 798–808 (2019).
55. Zhang, F. et al. Haplotype phasing of whole human genomes using bead-based barcode partitioning

in a single tube. Nat. Biotechnol. 35, 852–857 (2017).
56. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat.

Biotechnol. 36, 338–345 (2018).
57. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of

eleven human genomes. Nat. Biotechnol. 1–10 (2020) doi:10.1038/s41587-020-0503-6.
58. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection

and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
59. Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome

Biol. 17, 132 (2016).
60. Aken, B. L. et al. The Ensembl gene annotation system. Database J. Biol. Databases Curation 2016,

(2016).
61. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–

D515 (2019).
62. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids

Res. 47, D766–D773 (2019).
63. Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison.

BMC Bioinformatics 6, 31 (2005).
64. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinforma. Oxf. Engl. 34, 3094–3100

(2018).
65. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J.

Mol. Biol. 215, 403–410 (1990).
66. She, R. et al. genBlastG: using BLAST searches to build homologous gene models. Bioinforma. Oxf.

Engl. 27, 2141–2143 (2011).
67. Harris, R. S. Improved Pairwise Alignment of Genomic DNA. (2007).
68. Sharma, V., Schwede, P. & Hiller, M. CESAR 2.0 substantially improves speed and accuracy of

comparative gene annotation. Bioinforma. Oxf. Engl. 33, 3985–3987 (2017).
69. Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. WindowMasker: window-based masker for

sequenced genomes. Bioinforma. Oxf. Engl. 22, 134–141 (2006).
70. Kapustin, Y., Souvorov, A., Tatusova, T. & Lipman, D. Splign: algorithms for computing spliced

alignments with identification of paralogs. Biol. Direct 3, 20 (2008).
71. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in

genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
72. Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130-

137 (2015).
73. Houck, M. L., Ryder, O. A., Váhala, J., Kock, R. A. & Oosterhuis, J. E. Diploid chromosome number and

chromosomal variation in the white rhinoceros (Ceratotherium simum). J. Hered. 85, 30–34 (1994).
74. Kumamoto, A. T., Charter, S. J., Houck, M. L. & Frahm, M. Chromosomes of Damaliscus (Artiodactyla,

Bovidae): simple and complex centric fusion rearrangements. Chromosome Res. Int. J. Mol. Supramol.
Evol. Asp. Chromosome Biol. 4, 614–621 (1996).

75. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics 26, 841–842 (2010).

76. Vollger, M. R. et al. Long-read sequence and assembly of segmental duplications. Nat. Methods 16,
88–94 (2019).

77. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic
sequences. Curr. Protoc. Bioinforma. Chapter 4, Unit 4.10 (2009).

78. Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing
whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).

79. Aronesty, E. Comparison of Sequencing Utility Programs. Open Bioinforma. J. 7, (2013).
80. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
81. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple

44

tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
82. Krueger, F. Trim galore. Wrapper Tool Cutadapt FastQC Consistently Apply Qual. Adapt. Trimming

FastQ Files 516, 517 (2015).
83. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359

(2012).
84. Zebra Finch Expression Brain Atlas. http://www.zebrafinchatlas.org/.
85. Robinson, R. For mammals, loss of yolk and gain of milk went hand in hand. PLoS Biol. 6, e77 (2008).
86. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
87. Hu, B. et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinforma. Oxf. Engl. 31, 1296–

1297 (2015).
88. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic

expansion, and functional annotation. Nucleic Acids Res. 44, D733-745 (2016).
89. Paten, B. et al. Cactus: Algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–

1528 (2011).
90. Kim, J. et al. False gene and chromosome losses affected by assembly and sequence errors. Prep.

(2021).
91. Ko, B. J. et al. Widespread false gene gains caused by duplication errors in genome assemblies. Prep.

(2021).
92. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and

analyzing multiple genome alignments. Bioinforma. Oxf. Engl. 29, 1341–1342 (2013).
93. Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).
94. Guy, L., Kultima, J. R. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in

R. Bioinforma. Oxf. Engl. 26, 2334–2335 (2010).
95. Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution’s cauldron: duplication,

deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. U. S. A. 100,
11484–11489 (2003).

96. Osipova, E., Hecker, N. & Hiller, M. RepeatFiller newly identifies megabases of aligning repetitive
sequences and improves annotations of conserved non-exonic elements. GigaScience 8, (2019).

97. Suarez, H. G., Langer, B. E., Ladde, P. & Hiller, M. chainCleaner improves genome alignment
specificity and sensitivity. Bioinforma. Oxf. Engl. 33, 1596–1603 (2017).

98. Kolmogorov, M., Raney, B., Paten, B. & Pham, S. Ragout-a reference-assisted assembly tool for
bacterial genomes. Bioinforma. Oxf. Engl. 30, i302-309 (2014).

99. Farré, M. et al. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles.
Genome Biol. Evol. 8, 2442–2451 (2016).

100. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees,
and Divergence Times. Mol. Biol. Evol. 34, 1812–1819 (2017).

101. Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein
sequences. Protein Sci. Publ. Protein Soc. 27, 135–145 (2018).

102. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res. 46, D8–D13 (2018).

	Towards complete and error-free genome assemblies of all vertebrate species

