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Supplementary Note 1: Improvements to existing methods  
 

This supplementary note contains additional findings that we believe will be useful for the genomics 
community. Some of the results were generated during evaluations involving technology engineers and 
bioinformaticians from genomics companies, including several co-authors, with whom we actively 
exchanged information on what we discovered using the genomic richness of the species in this study. 

 

Haplotype phasing 
For diploid assembly, we refer to the more continuous pseudo-haplotype assembly as the ‘primary’ and 
the other as the ‘alternate’; we used the primary contigs for scaffolding. Most of the contigging and 
scaffolding tools we used were originally designed to handle a haploid representation of the genome. As 
shown in this study, this design can result in errors in and around heterozygous alleles. We found that 
such errors introduced from haplotype differences early in the process propagate to later stages, and are 
not easily corrected. The earlier the haplotypes are sorted in the assembly pipeline, the higher the 
assembly quality metrics especially for highly heterozygous genomes, as seen with both haplotypes of the 
female zebra finch assembly in the following order of increasing metric quality: 1) Collapsing first and 
phasing afterwards (e.g. FALCON-Unzip1); 2) Collapsing first and phasing afterwards using Hi-C (e.g. 
FALCON-Phase2); and 3) Phasing reads before assembling into contigs (e.g. TrioCanu3).  

During curation, we found a pattern of excessive breaks flanking heterozygous sites, which 
contributed to false duplications in the primary assembly. We traced the source and found FALCON often 
unnecessarily broke the contigs at the branching point between runs of homozygosity and pairs of 
heterozygous alleles, reducing the continuity of the assembly. This case is illustrated in types 3 and 4 in 
Extended Data Figure 5a, leaving many homotype duplications at contig boundaries as described in 
Extended Data Figure 5b (left). In response, PacBio fixed the problem in an updated software release 
(smrtanalysis upgrade, April 2018), which doubled to tripled the contig N50 sizes on a number of 
genomes.  

Haplotypes are essentially a chromosome-scale genomic repeat, and so new methods developed 
for repeat separation should also help the haplotype assembly problem. The fundamental challenge is 
distinguishing true genomic variants from errors in the sequencing data, and paralogs from orthologs, and 
then linking those solutions across the length of full chromosomes. There is a need for improved tools that 
can better model the diploid (or polyploid) architecture of the genome by integrating long-range evidence 
from multiple sources, across large repeats, while still preserving haplotype specific variation in the 
genome. 

 

Optical mapping 
Bionano Genomics used our Anna’s hummingbird and Kakapo samples to help develop and test their 2-
enzyme nicking (BspQI and BssSI) and 1-enzyme non-nicking (DLE-1) approaches for hybrid scaffolding4. 
In early 2015, we found that using two sets of nicking enzyme maps together resulted in better scaffolding 
continuity compared to using only one (data not shown). This was because the two enzymes compensate 
each other and eliminate scaffold breaks. Later in 2017, in the development of DLE-1, we found the 
molecule sizes were superior when avoiding unintentional cutting of genomic DNA at label sites. When 
applying them to the same FALCON-Unzip primary contigs, we confirmed the scaffold NG50s were higher 
in the DLE-1 only approach compared to the 2-enzyme hybrid approach (Supplementary Table 3). 
Therefore, we decided to move forward with the latest DLE-1 technology whenever possible. 
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Comparisons of Hi-C data types and scaffolding 
As mentioned in the main text, we tested Hi-C and Chicago libraries on the same Anna’s hummingbird 
sample from three sources (Dovetail Genomics Hi-C v1 and Chicago v1, Phase Genomics v1, and Arima 
Genomics v1) with versions developed as of mid-2016. We mapped back the paired Hi-C reads using 
Juicer5 to the previous reference hummingbird assembly generated with short reads6, and evaluated 
interaction size distribution, duplication rate, and genome coverage. We caution that this mapping 
depends on the structural and base call accuracy of the prior assembly, but all Hi-C datasets were at least 
compared to the same assembly. We found that insert size (linking distance) differed: Arima > Phase > 
Dovetail Hi-C > Dovetail Chicago. Dovetail Hi-C tended to have more paired end reads without an insert, 
which with our feedback they fixed in an upgraded chemistry at the time. Phase Genomics Hi-C had more 
PCR duplicates, which were possible to screen out. Arima had the highest per base coverage for phasing 
(Supplementary Fig. 1), presumably due to using two enzymes instead of one at the time, but the overall 
genome assembly was not distinguishable between the data sets. Based on these analyses, we chose to 
use Arima Hi-C v1 to generate most of the assemblies on other species for this study. We note, though, 
that each company has continued to make improvements, and thus choice of Hi-C data type will need 
continued evaluation. 

 

 

Supplementary Fig. 1 | Read mapping statistics and interaction distance of three Hi-C platforms 
benchmarked on Anna's hummingbird assembly. a, Read % mapped back to the reference; the higher the 
alignable portion of the reads mapped the more useful for assembly. b, The higher the proportion of unique 
mapped reads the more useful for assembly; duplicates do not add new information. c, The higher the 
proportion of long range interactions distances between Hi-C read pairs, greater than the long read lengths 
(~20 kbp for CLR) and spanning contigs, the more useful for chromosomal scale scaffolding. These data sets 
are from v1 chemistries from each company (Dovetail Genomics, Phase Genomics, and Arima Genomics) used 
on the samples from the same Anna’s hummingbird, mapped back to our newly generated FALCON-Unzip 
contigs. Each company has made improvements since, including based on the results of this figure and 
associated data that we provided. 

 

We tested different Hi-C scaffolding algorithms (Phase Genomics Proximo Hi-C; Dovetail Chicago 
HiRise; 3D-DNA7, and SALSA8). We found that with software versions used at the time, SALSA 2.0 resulted 
in the highest NG50 metrics with apparent over-scaffolding when tested on the hummingbird Hi-C data 
sets. With feedback from curation of the hummingbird and other assemblies, we also improved SALSA to 
SALSA2.2, with a feature that breaks mis-joins introduced in prior scaffolding rounds with support from 
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Hi-C interactions. These changes simplified and streamlined downstream visualization of the assemblies. 
As with the Hi-C data types, developers of these algorithms continue to make improvements, including 
with our iterative feedback, and may thus work differently than the versions we tested.  

 

Gap filling 
We attempted to use PBJelly9 on the hummingbird, a tool developed using a previous G10K supported 
assembly of the Assemblathon 2.0 budgerigar genome10 and other genomes to fill in gaps between contigs 
in scaffolds with PacBio CLR reads. However, we found during evaluation that in addition to properly 
filling gaps, PBJelly introduced many base call errors in the gap-filled consensus when using default 
options. The default scaffolding function also introduced mis-joins. Subsequently, we tested Arrow 
(smrtanalysis 5.1.0.26412 version) on these same assemblies, a consensus base caller that also has a gap 
filling function, developed by Pacific BioSciences 
(https://github.com/PacificBiosciences/GenomicConsensus)11. Arrow was more conservative and had 
better consensus quality of the filled gaps (Supplementary Table 4). With this result, we replaced PBJelly 
with Arrow in our initial pipeline. 

 

Polishing 
We initially attempted to use Pilon12 for Illumina SR polishing, and found the best combination of polishing 
to get the highest QV with minimal steps (Supplementary Table 5). However, Pilon was memory 
intensive to run on large genomes. Thus, we switched to FreeBayes13 and bcftools14 for variant calling and 
consensus generation. During our initial FreeBayes polishing, we encountered regions with excessive 
coverage (>4000x). We worked with the original author of FreeBayes (E.G. of this study) and found it was 
hanging on low complexity regions or regions with excessively high coverage. The low complexity issue 
was fixed by changing the coding in the entropy calculation steps; the excessive coverage issue from 
loading reads was fixed by setting an upper limit of the coverage (release v1.3.1). These fixes also resulted 
in optimized memory usage and speed. In all cases of polishing, the reads were mapped to both the 
primary and alternate haplotype assemblies and the better of the two mappings selected as the primary 
to avoid reverting haplotype-specific variants. 

 

Comparative iterative scaffolding 
When using Hi-C scaffolding alone, we found there were a higher number of inversion errors for the 
smaller contigs as reported in Ghurye et al8 (Supplementary Table 3), which can be difficult to orient 
correctly using long-range data alone. Optical mapping with the non-nicking DLE-1 chemistry yielded the 
most accurate scaffolding, but similar to Hi-C, optical mapping had a limited ability to scaffold short 
contigs due to the smaller chance of containing sufficient labeled enzyme sequence sites to confidently 
align the optical cmaps. These small contigs can be difficult to handle in later assembly stages, because 
most scaffolding tools were not designed to place a contig within an existing scaffold gap. 10XG linked 
reads were better at localizing smaller contigs, complementing what optical maps missed. We found a few 
cases where Scaff10X15 mis-joined contigs due to the ambiguity at the contig boundaries near repeats. 
However, because subsequent scaffolding and curation steps can break such errors, and because of the 
difficulty of placing short sequences manually, we kept the linked read scaffolding step before the optical 
map scaffolding step. 

  

https://github.com/PacificBiosciences/GenomicConsensus
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Supplementary Note 2: Species and alternative assemblies  
 

Species were chosen: 1) to compare assemblies of simpler (birds) to more complex and repetitive 
genomes (amphibians and fishes); 2) to include those threatened (platypus) or critically endangered 
(kākāpō) of becoming extinct and having low heterozygosity due to small effective population sizes16; 3) 
to answer specific biological questions (e.g. basis of  vocal learning in birds and bats)17,18; 4) to compare 
with previous assemblies with available genetic-linkage or FISH karyotype maps (zebra finch, 
platypus)6,19; 5) to contribute to collaborative projects with the VGP (e.g. Bat1K20); and 6) to take 
advantage of high quality samples and available funding within the VGP collaboration. The final 
assemblies of six species (four teleost fishes, the skate, the caecilian) submitted to the NCBI/ENA public 
databases (Supplementary Table 10) used slightly different pipelines than our standard approach 
(Extended Data Fig. 3). The two species, the thorny skate and channel bull blenny, that did not meet the 
minimum 1 Mbp NG50 contig size, required manual modifications to the pipeline to do so. Below are brief 
descriptions of the alternative assembly pipelines used for these species. 

 

The two-lined caecilian, aRhiBiv1.1 (GCA_901001135.1) assembly: This assembly mostly follows the 
VGP 1.5 standard pipeline, however, run at the Sanger Institute without having a formal functional 
equivalence evaluation between this setup and the centralized VGP setup. Versions used and differences 
in the pipeline are as follows: FALCON-Unzip1 (v1.2.1), Purge_Haplotigs21 (v1.0.1), Scaff10x15 (v3.0) (ran 
two rounds of Scaff10x followed by one round of break10x15, which differs from the main VGP 1.5 
pipeline), Bionano Solve4 (v3.2.2), SALSA8 (v2.2), Arrow11 (GenomicConsensus 2.2.2), longranger22 
(v2.2.2), freebayes13 (v1.1.0-3-g961e5f3) and bcftools14 consensus (v1.7). Manual curation was applied as 
described in the main text and methods and chromosome-scale scaffolds confirmed by the Hi-C data were 
named in order of size. 

 

The zig-zag eel, fMasArm1.2 (GCA_900634775.2) assembly: FALCON-Unzip1 (v1.8.6) contigs were 
created using a read length cutoff of 6,500 bp. The primary contigs were extended by merging with a 
miniasm23 (0.2-r168) assembly. The contigs were then scaffolded using the 10XG linked read Illumina 
data with Scaff10x15 (v1.0). Further scaffolding was applied using synteny with Lates calcarifer (v3 from 
http://seabass.sanbi.ac.za/) and the cross_genome tool 
(https://sourceforge.net/projects/phusion2/files/cross_genome/). PBJelly9 (PBSuite_15.8.24) was used 
to fill gaps followed by long read polishing with Arrow11 (GenomicConsensus 2.2.1). The assembly was 
polished again using the linked reads by mapping with bwa mem24 (0.7.17-r1188), calling homozygous 
non-reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these 
errors with bcftools14 consensus (v1.7). This assembly was manually curated with incorporating evidence 
from Bionano optical map4 and Arima Hi-C data. This initial fMasArm1.1 (GCA_900634775.1) was 
submitted as scaffolds. An additional run of SALSA8 (v2.0) was applied, followed by another round of 
manual curation to remove heterotypic duplications to produce chromosome-level scaffolds. These 
chromosome-level scaffolds were named based on synteny to a medaka genome assembly and submitted 
as fMasArm1.2 (GCA_900634775.2). 

 

The climbing perch, fAnaTes1.2 (GCA_900324465.2) assembly: An initial PacBio contig assembly was 
made using FALCON-Unzip1 (v1.8.6) with a read length cutoff of 10,000 bp. The primary contigs were then 
scaffolded using the 10XG linked read data with two rounds of Scaff10x15 (v1.0) followed by a round of 
break10x15 to break at mis-joins identified by the 10XG data. PBJelly9 (PBSuite_15.8.24) was used to fill 
gaps followed by long read polishing with Arrow11 (GenomicConsensus 2.2.1). The assembly was polished 
again using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling homozygous non-
reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these errors 
with bcftools14 consensus (v1.7). Manual curation incorporated evidence from Bionano optical map and 



7 

 

Arima Hi-C data, and the initial fAnaTes1.1 (GCA_900324465.1) assembly was submitted as scaffolds. An 
additional run of SALSA8 (v2.0) was applied, followed by another round of manual curation to remove 
heterotype duplications using Purge_Haplotigs21 (v1.0) to produce chromosome-level scaffolds. These 
chromosome-level scaffolds were named based on synteny to a medaka genome assembly and submitted 
as fAnaTes1.2 (GCA_900324465.2). 

 

The channel bull blenny, fCotGob3.1 (GCA_900634415.1) assembly: An initial PacBio Falcon-unzip1 
(falcon-2018.03.12-04.00) assembly was run without Dazzler repeat-masking during overlap detection. 
A separate wtdbg25 (v1.1) assembly was made from the PacBio reads. Contigs from the wtdbg assembly 
were used to guide initial scaffolding of the Falcon contigs using cross_genome, then scaffolded further 
with the 10XG Illumina data and Scaff10x15 (v1.0). The Bionano optical map data was used for two-enzyme 
hybrid scaffolding4 (Solve3.2.2_08222018). The PacBio CLR data was used to gap fill with PBJelly9 
(PBSuite_15.8.24) and polish with Arrow11 (GenomicConsensus 2.2.2). The assembly was polished again 
using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling homozygous non-
reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to correct these errors 
with bcftools14 consensus (v1.7). The assembly failed to meet the VGP contig NG50 goals, so a new strategy 
was tried to improve the assembly. Canu26 v1.6 was used to correct the PacBio reads using a k-mer size of 
k=21. Contigs from a wtdbg25 (v1.1) assembly of the corrected reads were then used to conservatively fill 
gaps in the main assembly where contigs were unambiguously anchored on either side of a gap. Long-
read and short-read polishing was performed as above, to ensure sequence that had been used to fill gaps 
was also polished. Retained haplotigs were identified and removed with Purge_Haplotigs21 (v1.0). Finally, 
the assembly was scaffolded to chromosomes using Arima Hi-C data and SALSA8 (v2.0). Manual curation 
was applied using gEVAL27 as described in the main text and methods to correct mis-joins and improve 
concordance with the Bionano optical map and Arima Hi-C data. This assembly met the VGP metrics, and 
chromosome-scale scaffolds were named based on synteny to a medaka genome assembly. 

 

The eastern happy, fAstCal1.2 (GCA_900246225.3) assembly: First the PacBio raw reads were 
scrubbed to remove chimeric reads and other artifacts using the Dazzler framework 
(https://dazzlerblog.wordpress.com/2017/04/22/1344/). The scrubbed reads were then used to make 
an initial contig assembly with PacBio Falcon-unzip (https://github.com/millanek/FALCON-integrate). A 
separate assembly was created with miniasm23 (0.2-r159), then used to scaffold the Falcon primary 
contigs using cross_genome. The contigs were then scaffolded further using the 10XG Illumina data with 
Scaff10x15 (v1.0). Some contigs in the scaffolds were gap filled with PBJelly9 (PBSuite_15.8.24) and 
polished with Quiver11 (GenomicConsensus 2.2.1). The assembly was manually curated using gEVAL27 to 
correct mis-joins and improve concordance with the Bionano optical map data. The assembly was then 
polished again using the 10XG Illumina data by mapping with bwa mem24 (0.7.17-r1188), calling 
homozygous non-reference variants with freebayes13 (v1.1.0-3-g961e5f3) and editing the reference to 
correct these errors with bcftools14 consensus (v1.7). This assembly was submitted as fAstCal1.1 
(GCA_900246225.1). A further round of curation and verification with gEVAL27 along with integration 
with two genetic maps28,29 allowed assignment of scaffolds to chromosomal linkage groups. This was 
submitted as revised assembly fAstCal1.2 (GCA_900246225.3). 

 

The thorny skate, sAmbRad1.pri (GCA_010909765.1) assembly: Applying the VGP 1.0 pipeline to the 
thorny skate did not result in an assembly that met all the desired VGP metrics, due to the very high repeat 
content in this species, as described in the main text. Therefore, we developed a modified approach that 
handled high repeat genomes better. We used Canu26 v1.7 to assemble the contigs, and purged false 
duplications with Purge_Haplotigs21 instead of the purged FALCON-Unzip1 contigs, because the contig 
NG50 and overall BUSCO30 completeness scores were higher in the Canu contigs (Supplementary Table 
13, compare p1 stats of the vgp_standard_1.5 and vgp_nhgri_1.5). We believe these differences could be 
due to the less aggressive repeat masking of Canu compared to FALCON. The rest of the scaffolding process 

https://dazzlerblog.wordpress.com/2017/04/22/1344/
https://github.com/millanek/FALCON-integrate
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followed the VGP Standard Pipeline 1.5. Two rounds of Arrow11 polishing was applied (t1), with 3 rounds 
of SR polishing (t2~t4) with the 10XG linked reads using longranger22 align (v2.2.2) and freebayes13 
(v1.3.1) --skip-coverage option to skip regions with excessive coverage. Too many false duplications 
were found during curation, and thus the assembly was sent back for further improvements. We applied 
Purge_Dups31 on t4 primary scaffold, by breaking scaffolds at any gaps. Purged primary contigs (u1) were 
re-scaffolded with optical maps (u2) and further scaffolded with 2 rounds of SALSA8 (u3-u4). We 
discovered a linked read library failure and so obtained additional Illumina WGS reads. Using the WGS 
reads, 3 rounds of polishing was performed with bwa mem24 and freebayes. 

 

Supplementary Note 3: Resolving missing genomic regions  
Although the VGP genomes have a greater amount of genomic content assembled relative to the most 
commonly used prior references (e.g. Extended Data Fig. 8), we also noted that some of the VGP genomes 
had a smaller proportion of missing genomic content relative to prior assemblies. We investigated this 
source of the missing regions, and found it was due to repeat content and GC-content. Almost all genome 
assemblers mask out reads with repeat structure before assembly, as it becomes computationally 
expensive or impossible to assemble with repeats present. FALCON masks portions of reads which 
coincide with repetitive regions, and does so in two stages: 1) tandem repeat masking; and 2) masking of 
general repeats/segmental duplications. The masked repetitive regions then do not contribute to the 
overall overlap computation. For large repeats (longer than the read length), this means that the genomic 
region will not be represented in the final assembled contigs. In addition, and not related to repeat 
masking, FALCON also applies a cutoff threshold to limit the minimum length of reads to find overlaps. If 
the limit is set too high, the assembly may miss some genomic regions. After the initial contig phase, the 
repeats as well as smaller reads are brought back into the assembly for Arrow11 polishing and later gap 
filling. However, we found that certain reads with repeats and a given read size were not being 
incorporated into the assembly if they did not have a region to anchor onto in the initial contigs. An 
example were some genes with GC-rich sequence and repeat regions of the Anna’s hummingbird that were 
present on reads shorter than 10,000 bp. These non-repetitive genes were surrounded by GC-rich and 
repeat genomic regions, which may have biased the molecule size of the sequencing library32. These 
shorter and/or repetitive reads were excluded from overlap detection, or ignored due to the shorter 
overlap length with no anchor to bring them into the assembly at later stages. When we reduced the p-
read cut off to 2,000 bp, the NG50 values decreased, but many of the genes on these shorter and repetitive 
reads were incorporated into the assembly. This highlights the need of further investigation and 
improvements in ways to rescue missing regions when applying general length cutoffs during the 
assembly process. 

 

Supplementary Note 4: Assessing overall assembly quality  
 

Below are example measures for the six categories of genome assembly quality proposed in this study 
(Table 1). 

 

Continuity: The current most popular measure of genome assembly continuity is the scaffold N50, and 
secondarily the contig N50, defined as the largest s where scaffolds (or contigs) of length s or greater is 
half or greater the total assembly size. However, the assembly size can be larger or smaller than the true 
genome size depending on the assembly tools and data quality used. Thus, we recommend using NG50 (G 
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for genome), which uses the estimated genome size instead of the assembly size for normalization33. We 
prefer to estimate the genome size from actual sequence data, using k-mers (sequence fragment length of 
k) such as done in GenomeScope34. All high copy k-mers should be included when counting k-mers to 
properly include repeat contents, which is not a default behavior in most k-mer counters for practical 
reasons. For gaps, we recommend using a measure of the rate of gaps per unit of Gbp assembled, as larger 
genomes would otherwise be penalized for containing more gaps.   

The specific metric thresholds we chose for the continuity measures were based on output of the 
achievable short- and long-read based assembly pipelines we assessed. In the B10K-2014 short-read only 
assemblies, protein coding exon sequences are mostly complete, but they often have incomplete exon-
intron gene structure, missing GC-rich regulatory regions, and/or genes with high repeat content. In the 
VGP-2016 to VGP-2020 assemblies, most gene structures have high continuity, but the highly repetitive 
centromeres and telomeres may be incomplete. The thresholds of the finished quality assemblies were 
calculated based on gapless and error-free assembled chromosomes, with complete, non-collapsed 
centromeres, telomeres, and other segmental duplications. 

 

Structural accuracy: To assess structural accuracy without a known truth, we propose mapping the raw 
data types to the final assembly and measure concordance as the NG50 size of reliable blocks. We define 
concordance here as how many of the data types support the assembled structure at each base. In this 
study, we defined reliable blocks with support from at least two of the four sequencing platforms (long 
reads, linked reads, Opt, and Hi-C). This can be extended with additional data types, such as genetic maps 
or FISH karyotypes, when available. In assemblies that only have one or two data types, it is more difficult 
to determine reliability, but one can still consider consensus read data from high-coverage sequencing as 
another measure of both sequence and structural reliability. 

Each supportive region is obtained by mapping back sequencing data to the assembly. Regions 
with excessive coverage or coverage dropouts are usually an indication of an assembly error and thus get 
excluded. Regions with excessive coverage are caused by collapsed bases, where sequences are present 
in the assembly with an unexpected copy number. Coverage dropouts are caused by chimeric junctions. 
To measure these structural metrics, we used an implementation in Asset35, with details described in the 
Supplementary Methods. 

Our third measure of structural accuracy is false duplications. Potential false duplications are 
often reflected in the BUSCO duplication score. But to assess false duplications with species that are highly 
divergent from the available BUSCO database, we also use k-mers. For a k-mer size that is sufficiently long 
to be unique in the genome, and a genome sequenced with high-fidelity reads to a depth of coverage c, a 
complete de novo assembly should recover k-mers from the homozygous (two-copy) regions of the 
genome with roughly c times and k-mers from the heterozygous (single-copy) regions with c/2 times. All 
k-mers in the heterozygous and homozygous regions are expected to be found once in a (pseudo) 
haplotype assembly. Any additional k-mer copy found in the assembly compared with the high-fidelity 
reads are considered to be falsely duplicated36. To identify falsely duplicated k-mers, we used an 
implementation in Merqury37 to count the number of distinct k-mers with additional copies in the 
heterozygous and homozygous regions and report the relative portion compared to the expected k-mers 
with no additional copies (Supplementary Fig. 2). Both approaches (BUSCO and k-mer) showed 
comparable trends, with the k-mer approach having higher sensitivity as it captures false duplications on 
a genome-wide level (Fig. 2f-i). 

Finally, curation of the genome assembly manually assesses structural accuracy of the 
automatically-generated assembly, identifying false chimeric joins (misjoins), missed joins, inversions, 
and other errors. When fixed by a manual or automated process, this increases the structural accuracy of 
an assembly. 

The specific thresholds we chose in each quality category reflects the range of NG50 reliable 
blocks we obtained with the 16 species in this study and the false duplication rate, which is influenced by 
the degree of correct haplotype phasing. For the VGP quality assemblies, we listed a manual curation 
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process, which is valuable and essential as highlighted in this study. We caution that it is subject to 
individual human interpretation and requires specialized expertise. To scale up to 1000s of genomes, the 
curation process would benefit from more automated processes to identify and fix structural errors, 
which is currently an active area of development. More details on each curation step and tested 
improvements are described in our companion paper by Howe et al38. 

 

Base accuracy: There are multiple ways of measuring base-level accuracy, called base pair QV. One 
approach is to align (i.e map) highly accurate reads to the assembled genome and call base errors similarly 
to variant calling. We define “mappable” as all reads that align, excluding low-coverage and excessively 
high-coverage regions (see Supplementary Methods for exact parameters used), where we can rely on 
base error calls. The other, more reliable, way to measure base accuracy is using k-mers found both in the 
assembly and highly accurate unassembled reads. Base error rate inferred directly from k-mers was more 
comprehensive, and thus more accurate than the widely used mapping and variant calling protocols, 
which artificially inflated QV values because they excluded regions that are difficult to map 
(Supplementary Table 17). All k-mers found only in an assembly are likely produced from a base pair 
error. By counting these k-mers and comparing the fraction to all k-mers found in an assembly, we can 
estimate the error rate and calculate the quality value using the k-mer survival rate37. We found k-mer 
based methods include unmappable regions and thus avoid over-estimated QVs from the mapping-based 
approach. We note that both mapping-based and k-mer-based approaches have limitations of measuring 
base accuracy in highly repetitive regions, as the short reads are difficult to map accurately and a k-mer 
with a true error may match by chance with some other true k-mer that belongs elsewhere in the genome. 
This may artificially inflate the QV, especially in those repetitive regions. 

To assess if all bases in a genome are properly assembled, we propose using k-mers as the truth 
set to get an estimate of k-mer completeness. Reliable k-mers obtained from highly accurate reads are 
obtained by excluding erroneous k-mers from sequencing errors. The fraction of the k-mers found in the 
assembly of these reliable k-mers are indicative for genome completeness. This measure is dependent on 
the base pair QV as well, because k-mers from assembly errors will affect the completeness measure. We 
use the implementation in Merqury37 to obtain the k-mer completeness, reported in Extended Data Table 
1. 

The specific thresholds we chose reflects the level of tolerance one is willing to have for nucleotide 
errors, which can be misinterpreted as biological variation. A Q40 value means an average frequency of 1 
error every 10,000 bp, which means that genes this size or bigger are likely to have at least 1 error. A Q50 
value, 1 error in every 100,000 bp, which is equivalent to a large multi-exon gene, means that most genes 
will be unlikely to contain an error within their coding sequence. The k-mer completeness thresholds are 
a reflection of the k-mer based QV thresholds, and give a sense of the base level accuracy of the genomes 
assembly as a whole. 
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Supplementary Fig. 2 | k-mer spectrum of each submitted assembly, plotted on the 21-mer multiplicity found in the 
Illumina sequencing set from the 10X linked reads. For each species, the first and third column of graphs show the 
overall k-mers found (spectra-asm) in the primary set (red), alternate set (blue), shared in both assemblies (green), and 
missing k-mers in any assembly set (black). Fewer missing k-mers observed (black) indicates the assembly more completely 
represents the genome. The second and fourth columns show the copy number spectrum (spectra-cn) of the primary 
assembly set, colored by the copy numbers found in the assembly: once (red), twice (blue), 3 (green), 4 (purple), >4 
(orange), and missing (black). k-mers in spectra-cn are expected to be found once (red) in a pseudo haplotype assembly; 
thus, k-mers found more than once (blue, green, purple, and orange) originate from falsely duplicated sequences assuming 
no allele-specific duplications exist in the genome. 
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Haplotype phasing: We propose to use phase block NG50 as a measure for haplotype consistency. A 
phase block is expected to match one of the parental haplotype sequences, with no haplotype switches. 
Haplotype consistency is important for gene annotation, because haplotype switches could mix the true 
gene structure, creating an artificially mixed gene that does not exist in nature. Currently, the most reliable 
way to measure phase consistency is by using parental sequences. In this study, we used Merqury37 to 
infer haplotype blocks from haplotype specific k-mers. Accounting for sequencing errors accidentally 
corrupting a true haplotype specific k-mer, we allowed short-range switches to occur up to 0.05% (~100 
times within 20kbp) within a phase block. We expect block sizes to be more dependent on genome 
heterozygosity levels, where less heterozygous genomes will have longer runs of homozygosity (ROH) 
that prevent linking of heterozygous sites when no parental information is used. Heterozygosity will also 
vary across segments of a genome, and thus, one value may not be equally applicable across the genome. 
Therefore, we set smaller block NG50 requirements to cover one gene and its regulatory regions (typically 
10 to 500 kbp) in one phase block, which falls within 1Mbp NG50 in the quality metric (Table 1), 
independent of chromosome sizes except for the “finished” quality. 

Methods for cross linking distant heterozygous sites using Hi-C or Strand-seq are on the 
horizon2,39,40, which will help increase phase block continuity. However, accurate measures of the phase 
blocks are not as well developed without parental data, presumably because the importance of phasing to 
prevent errors has been unappreciated. This measure pertains to not only diploid genomes, but also 
polyploid genomes, which are found in amphibians and fishes. 

 

Functional completeness: Gene-based metrics could be used as an indicator for genome completeness 
and is one of the most important factors when conducting functional studies. However, it is almost 
impossible to have a truth set of all genes, especially for genomes with no reference available. One indirect 
way to measure functional completeness is by using BUSCO genes sets, which are sets of highly conserved 
orthologous genes present in a single copy across vertebrates or other groups of species30. To work 
properly, the sequences of the gene set needs to be complete and error free, but this is not the case for 
many BUSCO genes41. Overall, however, the absence of complete single copy genes in an assembly may be 
evidence of functional incompleteness. 

Transcript mappability with transcriptome data from the same species or even individual is a 
more robust way to measure gene completeness, because a more complete genome is expected to map 
more transcriptome sequences unambiguously (uniquely) to the assembly. In addition to transcripts, one 
can assess functional regulatory genome completeness by mapping epigenetic sequence data, as we have 
done here with ATAC-Seq reads (Fig. 3a-b and 4c-d). 

Considering the thresholds we chose, without BUSCO gene sets being complete, and with natural 
gene losses in some species, there will be an upper limit of less than 100% mapping for some species, and 
this is why we chose 98% in the finished quality category. For our VGP assemblies, we have obtained some 
assemblies with 99.9% BUSCO gene mapping. The thresholds for transcriptome mappability were 
determined based on empirical observations shown here, and align with the BUSCO scores in some 
assemblies. The epigenetic genome mapping scores for the zebra finch assemblies were lower than for 
the transcripts, and this we believe could be due to regulatory regions having a higher GC content, which 
can be harder to sequence and assemble. 

 

Chromosome status: For defining scaffolds as chromosomes, and therefore the percent of the assembly 
assigned to chromosomes, we believe the current best tool besides genetic linkage or FISH karyotype 
mapping is Hi-C mapping. We consider a scaffold as a complete chromosome (albeit with gaps) when there 
is a diagonal signal in the Hi-C mapping plot for that scaffold with no other scaffolds that can be placed in 
that same scaffold. The Hi-C maps prove useful for identifying large-scale structural aberrations in the 
assemblies, including false chromosome fusions. The more uniform the Hi-C signal across the main 
diagonal, the more likely the assembly structure is correct. High-frequency, off-diagonal Hi-C interactions 
are a strong sign of mis-assembly, of which some can be corrected with manual curation. Based on these 
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criteria, one can then estimate the percent of the genome that is assigned to chromosomes. The thresholds 
we set from 75% to 100% chromosome assigned are based on values we generated in this study using 
different assembly approaches. See Lewin et al.42 for an alternate view of naming scaffolds.  

Sex chromosomes are typically a challenge as they are often highly diverged between the 
partners. The sex-specific chromosome (e.g. Y in XY mammals or W in ZW birds and snakes) are often rich 
in highly repetitive heterochromatin. Sex determination mechanisms are highly variable in amphibians, 
reptiles, and fishes, with different sex genes (mostly unknown) defining non-homologous sex pairs. In 
many species, it is unclear whether there is male heterogamety (XY as in mammal) or female 
heterogamety (ZW as in birds). Many reptiles and some fish have no sex chromosomes and determine sex 
by an environmental signal (commonly temperature). Thus, we only require sex chromosomes to be 
assembled and identified in lineages known to have sex chromosomes, and make an effort to sequence 
the heterogametic sex to assemble both sex chromosomes, or one of each sex to have greater confidence. 
Once a pseudo-haplotype assembly is assembled, sex-specific chromosomes can be further determined by 
comparing differences in read depth in males and females when available, identification of known of sex-
specific genes for the relevant clade, synteny with sex chromosomes in closely related species, and the 
coverage pattern of PAR and haploid regions.  

Organelle genomes, as shown here, can require a different set of tools to assemble, but are still 
subject to some of the same metrics. This includes QV, scaffold, contig, gaps, and other values. As shown 
here, obtaining one complete gapless and accurate assembled sequence is possible with mitochondrial 
genomes using a combination of short and long reads, due to the relatively smaller size of its genome.  
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Supplementary Note 5: The Vertebrate Genomes Project  
 

The goal of the Vertebrate Genomes Project (VGP) is to generate at least one high-quality, error-free, near 
gapless, chromosome-level, haplotype phased, and annotated reference genome assembly for all extant 
vertebrate species and to use those genomes to address fundamental questions in evolution, disease, and 
biodiversity conservation. We plan to conduct this international project in phases according to 
phylogenetic scale, from orders (Phase 1) to families (Phase 2), genera (Phase 3), and finally all species 
(Phase 4; Supplementary Fig. 3). Phase 1 serves as a proof of principle project. At the family level, we 
would complete vertebrates in the Phase 1 goal of the Earth BioGenome Project (EBP BioProject ID 
PRJNA533106) for high-quality reference genome assemblies for all eukaryotic families43. At the genus 
level, we would complete the original G10K mission of approximately 10,000 vertebrate species44. At the 
final species level, we would complete the data generation mission of the VGP (BioProject ID 
PRJNA489243) and specific vertebrate taxonomic groups, such as all birds (B10K6,45 BioProject 
PRJNA489244) and all bats (Bat1K20,46 BioProject PRJNA489245). 

For Phase 1, although there are approximately 150 named orders of vertebrates, the criteria for 
taxonomic divisions are not consistently applied among vertebrate classes. Therefore, we sought to use a 
more uniform definition. Based on findings from the Avian Phylogenomics Project47 and mammalian 
phylogenomic studies48, we noted that taxonomists have often delimited orders encompassing species 
that shared a most recent common ancestor 50-70 million years ago (Mya), following the last mass 
extinction event at the Cretaceous-Paleogene transition. Thus, for VGP Phase 1 we aimed to partition 
lineages that have an inferred common ancestor not substantially older than 50 Mya. This definition 
resulted in our current target list of approximately 260 “order level” lineages 
(http://vgpdb.snu.ac.kr/details/).  

When we first began working on the hummingbird assemblies in 2015 and initiated the VGP and 
sequencing of ordinal representative genomes in 2017, there were 66,178 named species gathered from 
various databases, estimated based on the IUCN Red List of Threatened Species and reported in the 
Vertebrate Wikipedia page from 2014 to date (https://en.wikipedia.org/wiki/Vertebrate). This is a 
number that we had initially used in public announcements of the project49. However, we collated 
available lists of vertebrate species, and we obtained 71,657 named species as of January 2019. We believe 
the increased number of species is due to additional species discoveries in the last 10 years, revisions of 
previously defined species (e.g. Northern vs. Southern ostrich), and analyses of genomic relationships50. 
With this list, we have created, for the first time that we are aware of, an all-vertebrate species list 
(http://vgpdb.snu.ac.kr/splist/). We are populating this list with accessions to the high-quality reference 
genomes, including the 17 of this study, as well as draft and medium quality genome assemblies. We hope 
that this list will be useful to the scientific community to track genome assemblies for all vertebrate 
species. 

To conduct the VGP in an efficient and democratic manner, we built a governance and committee 
structure that consists of an executive council and task-specific committees focused on specific issues, 
including permits, sample preparation, genome assembly, genome annotation, comparative genomics, 
and conservation genomics. We developed a scalable assembly pipeline within a cloud environment, 
where working data is hosted on an Amazon S3 bucket (s3://genomeark). The production of the VGP 
assemblies is performed on DNAnexus, which is available for anyone. The entire source code of the 
pipeline to run locally or on the DNAnexus platform is publicly available on github 
(https://github.com/VGP/vgp-assembly). The scaffolding pipeline is also available to run on a generic 
compute architecture using Docker containers (Supplementary Note 7). Intermediate assemblies and 
raw data are available to download from Genome Ark (https://vgp.github.io) until archived in an INSDC 
database (e.g. GenBank). We also built a public website for the VGP 
(https://vertebrategenomesproject.org/), and its parent G10K (https://genome10k.soe.ucsc.edu/), with 
links to associated projects (B10K, Bat1K, and EBP). Our assemblies and raw sequences are deposited in 
international public databases with NCBI and EBI under a VGP BioProject ID PRJNA489243 

http://vgpdb.snu.ac.kr/details/
https://en.wikipedia.org/wiki/Vertebrate)
http://vgpdb.snu.ac.kr/splist/
https://github.com/VGP/vgp-assembly
https://vgp.github.io/
https://vertebrategenomesproject.org/
https://genome10k.soe.ucsc.edu/
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(https://www.ncbi.nlm.nih.gov/bioproject/489243). We currently produce about three genome 
assemblies per week, but will need to scale up to 125 genomes per week to complete all ~70,000 species 
within a 10-year period, assuming the availability of future funding and the development of more 
advanced computational infrastructure. In addition to the 17 genomes released publicly with this 
publication, there are 120 more assemblies in progress (https://docs.google.com/spreadsheets/d/1s5J-
s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing), that are supported by individual 
institutions and scientists (https://genome10k.soe.ucsc.edu/data-use-policies/). 

The challenges for scaling up that we are working on include: 1) Blanket sample permits for 
vertebrates, in different countries; 2) High throughput DNA and library sample preparations for ultra-
high molecular weight DNA (>200kb); 3) An automated metadata tracking system for information flow 
from samples to their genomic data, transcriptomic data, assemblies, and annotations; 4) Increased 
efficiency to perform massively parallel high-quality sequencing; 5) Automated assembly pipeline that 
allows iterative updates, and more efficient assembly compute for hundreds of assemblies 
simultaneously; 6) A more automated curation process and many curators to manually check each 
assembly, make fixes where needed, and provide iterative feedback; 7) A more efficient reference-free 
genome alignment tool that can handle 10,000s of species; and 8) Rapid annotations of genomes in the 
hundreds per week. The VGP is working on all eight fronts, with the plan that at each Phase of the project 
will need more and more advanced tools for increased scaling. Future efforts should also include 
development of tools that can automatically estimate parameters needed to assemble a genome 
accurately with different repeat, heterozygosity, and ploidy levels.  

Related large-scale reference genome efforts have adopted lessons learned from the VGP, 
including the Bat1K20,46 (https://bat1k.com), Bird B10K6,45 (https://b10k.genomics.cn), Global Ant 
Genomics Alliance51 (GAGA; http://antgenomics.dk), Earth BioGenome Project43 (EBP. 
https://www.earthbiogenome.org), Global Invertebrate Genomics Alliance52 (GIGA; http://giga-cos.org), 
Darwin Tree of Life (https://www.darwintreeoflife.org), and human pangenome 
(https://humanpangenome.org) projects, which target all species for particular clades or geographic 
regions of interest, or multiple individuals within a species representing diversity of the extant 
population.  

 

 

 

Supplementary Fig. 3 | Schematic of proposed phases to conduct the VGP. Circles represent phylogenetic 
classification scales, going from smaller to larger numbers of species (arrow). A sequenced species represents 
an order, family, and genera in Phases 1-3. To the left are listed goals and related projects for whose milestones 
will be completed at the completion of specific VGP phases. Redefining species means that within Phase 4 it 
might become possible to use the genome sequence differences to determine when individuals should be 
considered belonging to the same species or their own distinct species50. 

 

https://www.ncbi.nlm.nih.gov/bioproject/489243
https://docs.google.com/spreadsheets/d/1s5J-s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1s5J-s3Tat3U_wQcik_xhVHwH6AAXr5D9AMRu-e22XDw/edit?usp=sharing
https://genome10k.soe.ucsc.edu/data-use-policies/
https://bat1k.ucd.ie/
https://b10k.genomics.cn/
http://antgenomics.dk/
https://www.earthbiogenome.org/
http://giga-cos.org/
https://www.darwintreeoflife.org/
https://humanpangenome.org/
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Supplementary Note 6: Current advances in technologies  
 

After we completed the evaluations on the genomes of the 16 species in this study, as expected, new 
advances in genome sequencing technology and algorithm development have been made. Here we 
provide a prospective on these developments, including how we will potentially incorporate them into a 
Phase 2 VGP pipeline, towards even higher-quality assemblies. 

The 10XG linked read technology we used is no longer available as of mid-2020, but can be 
substituted by three other technologies: TELL-Seq WGS (Universal Sequencing)53; stLFR (BGI)54; and 
CPTv2-seq (Illumina)55. The ONT data generated here were not considered for further benchmarking 
beyond contigs due to practical issues concerning systematic base call errors, consistency, and scalability 
at the time (early 2017)56. However, the technology has since improved in these areas57, and the latest 
r10.3 base calling leads to higher-quality long reads. These could be potentially in place of or in 
combination with the PacBio long reads. PacBio has also recently introduced their next generation reads, 
circular consensus reads (CCS) or HiFi58, which delivers both reasonable read length (20 kbp) and 
excellent read accuracy (99.9%) in a single technology. The higher accuracy may eliminate the need for 
assembly polishing. The VGP infrastructure has been flexibly designed so that we may continually 
evaluate and adapt to new technologies in order to reach our ultimate goal of producing error-free, 
gapless, and complete telomere-to-telomere assemblies. We believe the principles of the pipeline we 
generated will be applicable to new technologies. We are optimistic that, given continuing advances in 
diploid sequencing and assembling technology, finished-quality reference genomes will be achievable at 
reasonable cost for most species of interest within the next decade. 

 

Supplementary Note 7: Assembly pipeline using Docker  
 

An implementation of the pipeline has been developed to run on generic architecture using WDL 
workflows (https://github.com/openwdl/wdl/blob/master/versions/1.0/SPEC.md) and Docker 
containers (https://www.docker.com/). We intend for this to be a portable and modular implementation, 
which diverges from the main workflow as little as possible. 

WDL (Workflow Description Language) is a standard which enables the description of workflows 
in both human- and machine-readable ways. Workflows are composed of tasks; tasks have defined inputs 
and outputs, a script to perform the work, hardware requirements, and an environment in which to be 
run. Docker is a virtualization tool that we use to provide the environment for tasks. A Docker container 
is a lightweight image of a filesystem that can contain specific tool versions. It uses a layered filesystem, 
where multiple snapshots can inherit from a single base image. 

The design of the VGP's WDL workflow implementation aims to replicate current functionality 
while minimizing changes to the main codebase. The main codebase is designed to run in an HPC 
environment and uses CEA-HPC Modules (https://github.com/cea-hpc/modules) to manage use of 
specific tool versions. The WDL implementation replicates this environment in the Docker images, so as 
to reduce modification to the existing scripts. There is a base Docker image which includes the modules 
infrastructure, common libraries, and tools used in multiple tasks. Task-level Docker images extend from 
this and add task-specific code. Slurm submission scripts from the original pipeline were rewritten and 
translated into WDL tasks. Operative bash scripts (the entry points Slurm uses) are copied into the task 
images and are invoked directly where possible. 

Scaffolding and QC tasks have been implemented in WDL/Docker: Contigging+purging, linked 
read scaffolding, optical map scaffolding, Hi-C scaffolding, BUSCO30, and Merqury37. Each task can be run 
independently, and the whole scaffolding suite can be run via a single workflow. For information on 
running the workflow, see the manual here: 
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https://github.com/VGP/vgp-assembly/blob/master/wdl_pipeline/WDL_Manual.md  

https://github.com/VGP/vgp-assembly/blob/master/wdl_pipeline/WDL_Manual.md
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Supplementary Methods 

Quality control and contamination screening 
Before assembly of the sequence and scaffold data, a quality control screening for poor sequencing 
reactions or contamination with foreign genome data was performed using Mash. When running Mash59, 
21-mers were used to generate sketches with sketch size of 10,000 and compared among each sequencing 
runs. For example, using this approach, we detected two outlier libraries in the initial Canada lynx PacBio 
data that did not cluster with the other sequencing runs (Supplementary Figure 4). Further investigation 
determined that these files had been mis-tracked and the data originated from an unrelated sequencing 
project on rice, so the rice runs were removed prior to assembly. 

 

 

Supplementary Fig. 4 | Mash maps to detect poor quality data and foreign species contamination. 
Raw read data of PacBio CLR (top left 4 and the bottom right) and linked reads (darker brown area) are 
aligned to each other. Based on sequence similarity and coverage, the top two (top left corner) SMRT cells 
were identified as outliers. The higher the similarity and coverage, the darker the color. 
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Binning 10XG linked reads and Hi-C reads 
For the trio based assembly, linked reads and Hi-C reads were binned using an “exclusion” criteria. Unlike 
trio-binning3, here we excluded any read-pair having at least one parental specific k-mer when assigning 
to a bin. This allowed short reads to remain in both maternal and paternal bins, which originate from the 
homozygous part of the genome. This process uses meryl-lookup in Meryl37 v1.0: 

 

meryl-lookup -memory 2 -exclude -mers pat.meryl -sequence $read1 -sequence2 $read2 -r2 

mat.R2.fastq.gz | pigz -c > mat.R1.fastq.gz 

meryl-lookup -memory 2 -exclude -mers mat.meryl -sequence $read1 -sequence2 $read2 -r2 

pat.R2.fastq.gz | pigz -c > pat.R1.fastq.gz  

 

An implemented version is available on Merqury: 

https://github.com/marbl/merqury/blob/master/trio/exclude_reads.sh 

 

 

ENSEMBL annotation pipeline 
The Ensembl gene annotation system60 was used to generate annotation for the high-quality assemblies. 
Annotation was created primarily through alignment of transcriptomic data to the genome, with gap 
filling via protein-to-genome alignments of a select set of vertebrate proteins from UniProt61 and, for 
mammal species, coordinate mapping of GENCODE62 human reference annotations via a pairwise whole 
genome alignment. 

The transcriptomic data consisted primarily of short-read RNASeq data sourced from the public 
archives, which included data for most species generated by the VGP for this study. This included PacBio 
Iso-Seq and Nanopore long-read transcriptome data. Short-read data were initially mapped via bwa 
mem24 and then locally re-aligned in a splice-aware manner via Exonerate63. Transcripts were then 
inferred based on the strongest intron/exon signals for likely genic loci on a per tissue basis. Long-read 
data were mapped to the genome using Minimap264 with the recommended settings for Iso-Seq and 
Nanopore data. Due to the high error rate of the Nanopore data, post mapping error correction was 
employed to maximize the number of usable mappings. Intron/exon boundaries that were non-canonical 
or deemed low frequency (five or fewer observations across all mappings at a locus) were replaced with 
high frequency boundary coordinates (greater than five observations) within a 50bp edit distance. High 
frequency boundary observations were determined both from canonical boundary observations from the 
Nanopore mapping themselves and also from the alignments of the short-read data. A similar strategy 
was employed to remove likely artificial gaps of 200bp or less from exons described by the Nanopore data. 
In these cases, low frequency potential gaps between two adjoining exons were filled in based on high 
frequency observations of single exons with the same terminal boundary coordinates. For each transcript 
model generated from either short- or long-read data, the longest open reading frame was assessed via a 
BLAST65 of UniProt vertebrate proteins that had experimental evidence of existence at either the protein 
level or the transcript level. 

For gap filling, where the transcriptomic data were absent or fragmented, homology-based 
methods were employed. Splice-aware protein-to-genome alignments were carried out via GenBlastG66. 
Annotation mapping from human was carried out via a pairwise alignment using LastZ67 
(https://etda.libraries.psu.edu/catalog/7971) and subsequent exon coordinate mapping and transcript 
reconstruction via both in-house software and CESAR68 v2.0. 

At each locus, low quality transcript models (in particular those with evidence of a fragmented 
ORF) were removed, and the data collapsed and consolidated into a final gene model plus its associated 
non-redundant transcript set. ORF likelihood was determined by aligning the ORF translation against 
known vertebrate proteins. Priority was given to models derived from transcriptomic data. For loci where 

https://github.com/marbl/merqury/blob/master/trio/exclude_reads.sh
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the transcriptomic data was not available or highly fragmented, homology data took precedence, with 
preference given to longer transcripts that had strong intron support from the short-read data. Summary 
statistics of the annotations are available in the annotation reports in Supplementary Table 20. 

 

 

NCBI annotation pipeline 
The NCBI Eukaryotic Genome Annotation Pipeline was used to annotate genes, transcripts, and proteins 
on the primary assembly of the 17 assemblies, submitted between September 2018 and April 2020, and 
the product of the annotations were added to the RefSeq collection. The genome sequences were masked 
using Windowmasker69. RNA-Seq reads were retrieved from SRA for the species, or for the family, in the 
case of lynx, kakapo, Anna’s hummingbird, Goode's thornscrub, blunt snouted clingfish and thorny skate 
for which no or insufficient amount of RNA-Seq data was not yet available at the species level. Depending 
on the species, between 385 million and 10 billion RNA-Seq reads, ESTs, and RefSeq and GenBank 
transcripts for the species or closely related species were aligned to the masked genome using BLAST65 
followed by Splign70. PacBio IsoSeq for lynx, kakapo, Anna’s hummingbird, zebra finch and Oxford 
Nanopore Technologies transcriptomics reads for kakapo were aligned to these species’ respective 
assemblies using minimap264. In addition, human RefSeq proteins and GenBank and RefSeq proteins for 
related organisms were aligned to the genome using Blast and ProSplign. The gene models’ structures and 
boundaries were obtained with Gnomon(NCBI eukaryotic gene prediction tool. Available at: 
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/gnomon/) by “chaining” the alignments into 
preliminary models. Partial open reading frames on these chained alignments (missing either a start or a 
stop) were joined and filled if adjacent and in compatible frames, or extended by the ab initio module of 
Gnomon using a hidden Markov model trained on the species, if the coding propensity of the region was 
sufficiently high, or called non-coding. tRNAs were predicted with tRNAscan-SE:1.2371 and small non-
coding RNAs were predicted by searching the RFAM 12.0 HMMs for eukaryotes using cmsearch from the 
Infernal package72. 

Gene and transcript models were then evaluated at each locus, and one of overlapping gene 
models was chosen in this order of precedence: same-species curated RefSeq models, RFAM models, 
Gnomon models, and finally tRNA models. Among Gnomon models, if multiple fully-supported transcript 
variants were predicted for a gene, only the models supported in their entirety by a single long alignment 
(e.g., a full-length mRNA) or by RNA-Seq reads from a single BioSample were selected. Poorly supported 
Gnomon models conflicting with better-supported models annotated on the opposite strand were 
excluded from the final set of models. Further filtering of gene models, and assignment of function, name 
and type to the final accepted gene set was based on orthology to human genes (or zebrafish in the case 
of the climbing perch) and Blast hits to SwissProt or, as a last resort, Blast hits to nr. Gnomon models with 
high homology to transposable or retro-transposable elements or models that appear to be single-exon 
retrocopies of protein-coding genes were excluded from the final set of models. Most Gnomon models 
with base differences with the genomic assembly introduced to correct frameshift-causing indel were 
labeled as pseudogenes and annotated without a CDS feature or protein product; but those with a strong 
unique hit to the SwissProt database or with a human ortholog were marked coding. Such models may 
indicate underlying defects in the assembly and should be considered lower confidence. Titles for these 
models are prefixed with “PREDICTED: LOW QUALITY PROTEIN”. The resulting annotated assemblies and 
the annotated products for all 17 assemblies were loaded into RefSeq and are publicly available for 
download from NCBI Assembly (https://www.ncbi.nlm.nih.gov/assembly/). For each assembly, details of 
the evidence used for gene prediction and summary statistics of the annotations are available in the 
annotation reports in Supplementary Table 20.  
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Chromosome size estimate from karyotype imaging 
Fibroblast cell lines were established from a female native Anna’s hummingbird using enzymatic digestion 
on eye tissue following methods previously described73. The cells were accessioned in the San Diego Zoo’s 
Frozen Zoo® (Lab# 19594). Metaphase chromosomes were harvested from the fibroblasts following 
Kumamoto et al.74. Karyotyping was done using the CytoVision Genus® System by Leica Microsystems. 
The karyotype represents the complete complement of a single metaphase cell. The autosomes were 
aligned by size and morphology with metacentric/submetacentric pairs presented first. The minute size 
of the microchromosomes makes it difficult to determine the exact diploid number with certainty. 

 

The Anna’s hummingbird karyotype image was then processed first into a binary representation. 
The rectangular area surrounding each chromosome image was then obtained from the binary 
representation. The relative chromosome size ratio was estimated compared to the sum of all rectangular 
heights. Each chromosome size estimate was obtained by multiplying this ratio to the given genome size. 

 

The genome size was given in a diploid value, as both alleles are present in the Anna’s 
hummingbird karyotype picture. Below is the python code used to generate the karyotype image and 
chromosome size estimates: 

 

# Import relevant libraries and setup matplotlib 

import numpy as np 

from skimage.measure import regionprops 

from skimage.color import rgba2rgb, rgb2gray 

from scipy.ndimage import label 

import matplotlib.pyplot as plt 

import matplotlib.patches as mpatches 

import argparse 

%matplotlib inline 

 

plt.rcParams['figure.figsize']=20,15 

 

# genome size in bases - if image shows multiple alleles, then the size has to be adapted 

accordingly 

gs = 2119374518 

 

# be sure to remove anything from the picture (i.e. labels) that is not to the karyotype  

path_img_in = "/Users/pippel/Documents/Calypte_anna_in.png" 

path_img_out = "/Users/pippel/Documents/Calypte_anna_out.png" 

path_txt_out = "/Users/pippel/Documents/Calypte_anna_out.txt" 

 

# loading the image 

img = plt.imread(path_img_in) 

plt.imshow(img) 

 

# converting to binary 

threshold = 0.5  #<---------- threshold can/should be adjusted  

if img.shape[2] == 4: 

    gray = 1-rgb2gray(rgba2rgb(img)) 

else: 

    gray = 1-rgb2gray(img) 

 

binary = (gray>threshold).astype(np.int32) 

plt.imshow(binary) 

 

# creating labels 

labels = label(binary)[0] 

 

plt.imshow(labels) 
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# regionprobs on the label image 

regions = regionprops(labels) 

 

sizes=sum(r.area for r in regions) 

 

fig, ax = plt.subplots(figsize=(100, 60)) 

ax.imshow(binary) 

 

plt.rcParams.update({'font.size': 32}) 

 

centroid_and_area = np.zeros((len(regions), 3)) 

c=0 

for region in regions: 

    x, y = region.centroid 

    area = region.area 

    minr, minc, maxr, maxc = region.bbox 

    # draw rectangle around objects 

    rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,\ 

     fill=False, edgecolor='red', linewidth=2 \ 

     plt.text(minc, minr,                     \ 

     str(np.round(gs*region.area/sizes.sum()/1000000,2)), color='red') 

    centroid_and_area[c] = (x, y, gs*region.area/sizes.sum()/1000000) 

    c+=1 

    ax.add_patch(rect) 

 

# save image to image output file  

plt.savefig(path_img_out)  

 

# save centroid and size estimate to text file  

np.savetxt(path_txt_out, centroid_and_area, fmt='%1.3f %1.3f %1.3fM') 
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Weighted read length distributions 
All read lengths or molecule lengths were collected for PacBio CLR and Bionano optical maps over 1kb. 
The weighted read length distribution was calculated using the read length normalized by the total bases 
sequenced in reads of that length. 

 

Pacbio CLR read length distribution: Read length was extracted for all subreads with Samtools14 1.9-
1.10 faidx and filtered for reads over 1kb. Total bases were counted at the end to weight the bases in 
the read length of X. 

 

# Collect read length for each subreads 

samtools faidx $subreads.fasta 

 

# length collected per genome at the end 

cat *.fasta.fai | awk ‘{print $1”\t”$2”}’ > $genome.len 

 

# Remove data < 1kb and change unit to 1kb 

awk '$2>1000 {print $2/1000}' $genome.len > $genome.1kb 

 

# Get the fraction of a read of length LEN over TOTAL_BP 

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb` 

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=”PacBio” \ 

 '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb \ 

  > $dir/$genome.1kb.weighted 

 

10XG molecule length distribution: 10X Genomics molecule length distribution was estimated using 
the molecule_length_mean (m) from the summary.csv produced with longranger22 align. 
We ran longranger align on all curated primary assemblies (Supplementary Table 10) except for 
the Skate, which we used the longranger align output (m) from the 3rd round of polishing. For the two-
lined caecilian (aRhiBiv1), the largest chromosomes were broken in two scaffolds and lifted over at the 
end to bypass the known indexing issue in longranger for large scaffolds. We used the m for length-
weighted mean molecule length and computed the exponential distribution of the molecule length 
following 10X Genomics recommendation on https://support.10xgenomics.com/de-novo-
assembly/software/pipelines/latest/output/moleculelen. In brief, when b = 2/m, the function f(x) = b * 
exp(-bx), where x is the molecule length. 

 

Bionano raw molecule length distribution: Molecule length was extracted for all .bnx files over 1kb. 
Lengths were weighted by total bases. The following code was applied to Opt1 (BspQI), Opt2 (BssSI), and 
Opt3 (DLE1) bnx files to extract the molecule length: 

 

name=`basename $file | sed 's/.bnx//g' \ 

       | awk -F "_" '{print $1"_"$2"_"$3}'` 

cat $file | grep -v "#" | grep -v "QX" \ 

   | awk -v name=$name '{printf "%.0f\t%s\n", $3, name}' \ 

    >> $name.bnx.len 

 

# Remove data < 1kb and change unit to 1kb 

awk '$1>1000 {print $1/1000}' $bn >> $genome.1kb 

 

# Get the fraction of a read of length LEN over TOTAK_BP, add it to the PacBio results 

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb` 

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=$PLATFORM         \ 

  '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb \ 

  >> $dir/$genome.1kb.weighted 

https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/output/moleculelen
https://support.10xgenomics.com/de-novo-assembly/software/pipelines/latest/output/moleculelen
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Hi-C chromatin interaction length distribution: Interaction distances between any two Hi-C read pairs 
were collected using the curated primary assemblies (Supplementary Table 10) as the reference. Hi-C 
reads were mapped using Arima mapping pipeline (https://github.com/VGP/vgp-
assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh) as we did for SALSA8 scaffolding. 
After the alignment was finished, 10 million interactions to the longest scaffold was extracted using 
BEDTools75. As with the other datatypes, the sum of all interaction distances was used to normalize each 
distance. 

 

# Largest scaffold is $scaffold and is $len long 

len=`awk -v l=0 '$2>l {l=$2} END {print l}' $genome.pri.fasta.fai` 

scaffold=`awk -v len=$len '$2==len {print $1}' $genome.pri.fasta.fai` 

 

# Collect intervals >1kb 

bedtools bamtobed -bedpe -i $genome.pri.bam \ 

  | awk -v scaff=$scaffold '$1==scaff && $4==scaff' \ 

  | awk '{ if($2<$5) {start=$2;} else {start=$5;} \ 

     if ($3<$6) end=$6;} else { end=$3 } interval=(end-start); \ 

     if (interval>1000) {print (interval/1000)}}' > $dir/$genome.1kb 

head -n 10000000 $genome.1kb > $genome.1kb.10M 

TOTAL_BP=`awk -v sum=0 '{sum+=$1} END {print sum}' $genome.1kb.10M` 

awk -v TOTAL_BP=$TOTAL_BP -v PLATFORM=$PLATFORM \ 

  '{print $1"\t"($1/TOTAL_BP)"\t"PLATFORM}' $genome.1kb.10M \ 

  > $genome.1kb.10M.weighted 

 

Plotting length distribution: For 10XG linked read distances, we made a linked.len file which 
contains the genome id and the m in two columns. In R, we read the data and generate the distribution for 
plotting. 

 

dat.10x=fread("linked.len", header=T) 

result <- data.frame() 

for (g in dat.10x$genome) { 

  dat_genome1=dat.10x[dat.10x$genome==g,] 

  dat_genome1 <- data.frame(Count=seq(from = 1, to = 100000, by = 1),\ 

     Length=rexp(100000, rate=2/dat_genome1$molecule_length_mean)) 

  totalbp=sum(as.numeric(dat_genome1$Length)) 

  print(totalbp) 

  head(dat_genome1) 

  dat_genome1$Weight=dat_genome1$y/totalbp 

  dat_genome1$Platform="Linked_reads" 

  dat_genome1$Genome=c(g) 

  result <- rbind(result, dat_genome1) 

} 

 

For other platforms, the $genome.1kb.weighted files were concatenated with the genome id at the 
end in the order we want to display per genomes: 

 

for genome in $(cat genome.list.srt); 

do 

  awk -v genome=$genome '{print $0"\t"genome}' $genome.1kb.weighted \ 

    >> all.1kb.weighted 

done 

 

  

https://github.com/VGP/vgp-assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh
https://github.com/VGP/vgp-assembly/blob/master/pipeline/salsa/arima_mapping_pipeline.sh
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Collapsed repeat calculations 
Collapsed duplications were annotated using a combination of read-depth and repeat masking. The 
pipeline is identical to the depth calculation of SDA76, with an updated approach to discretized copy 
number annotation using a hidden Markov model. Reads were mapped to each assembly using 
Minimap264 and filtering for primary alignments. In the case that a DNA fragment is sequenced by multiple 
subreads, only the longest aligned subread was retained. Each genome was divided into 100-base tiling 
windows. A window is spanned if an alignment starts within or before the window and ends in or after 
the window, and the read-depth is calculated per window as the number of retained reads that span the 
window. 

The read-depth for diploid copy number is set to the average of all windows. Copy number of a 
collapse is calculated using a hidden Markov model that models the copy number as a hidden state with 
read-depth as the emitted value. Collapsed repeats were detected as contiguous spans of windows with 
copy number at least 4. The number of sequences missing at a collapsed duplication are represented as 
the range between the minimum and maximum copy number of windows in a span. 

Each genome was repeat masked using a combination of RepeatMasker77 ver. open-4.0.9 and 
WindowMasker69 v1.0.0. The following repeat-libraries were used: mPhyDis1, mRhiFer1 : bats; 
mLynCan4 : Carnivores; mOrnAna1: monotremes; bTaeGut1, bTaeGut2, bStrHab1, bCalAnn1: birds; 
rGopEvg1, aRhiBiv1: Amphibia; fMasArm1, fAnaTes1, fArcCen1, fAstCal1, fCotGob3, fGouWil2, 
sAmbRad1: Teleost fish.  Gene content was used with either NCBI annotations, or by mapping human 
Genbank transcripts using Minimap264 when no gene annotation was available (mPhyDis1, mLynCan4, 
mOrnAna1, aRhiBiv1).  

The repeat annotation pipeline is available at: 

https://github.com/ChaissonLab/SegDupAnnotation/archive/0.9.tar.gz . 

 

BUSCO 
BUSCO30 v3.02 was run on all submitted primary assemblies (Supplementary Table 12) to assess gene 
content (C: completeness; D: Duplications; F: fragmented; M: missing), as well as on the benchmark 
assemblies (Supplementary Table 13) to assess duplications using OrthoDB v9 with vertebrata_odb9 
database. Integrated software versions used were Hmmer 3.1b2, ncbi-blast-2.2.30+ and augustus-3.3. 
Command line used is as following: 

 

run_BUSCO.py -i asm.fasta -o $out -m genome -l vertebrata_odb9 

 

In addition, we performed lineage specific (-l) BUSCO runs with the closest available lineages, which uses 
a gene prediction model trained on human genome annotations (augustus). Specifically, we used 
‘laurasiatheria’ for mammals, ‘ave’ for birds, ‘tetrapoda’ for Goode's thornscrub tortoise, and two-lined 
caecilian, ‘actinopterygii’ for fishes, and ‘vertebrata’ for the thorny skate (Supplementary Table 12). 
Command line used is as following with specific $lineage: 

 

run_BUSCO.py -i asm.fasta -o $out -m genome -l $lineage 

 

When investigating duplications, we further tried BUSCO using species specific models (-sp): ‘human’ for 
all mammals and the thorny skate; ‘chicken’ for all birds, Goode's thornscrub tortoise, and two-lined 
caecilian; and ‘zebrafish’ for all fishes (Supplementary Table 12-13). Command line used is as following 
with -sp set in addition to above example: 

 

run_BUSCO.py -i asm.fasta -o $out -m genome -l $lineage -sp $species 

https://github.com/ChaissonLab/SegDupAnnotation/archive/0.9.tar.gz
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We observed very similar patterns in the duplication levels (Supplementary Table 13), however, 
fluctuating slightly in the completeness score (Supplementary Table 12). This could reflect the quality 
of the gene models used for training, reference quality used to generate the initial BUSCO gene set, or the 
availability of the closest / identical lineage and species. With that, throughout this manuscript, we 
decided to use vertebrata_odb9 with the default human lineage to use the same gene set for investigating 
relative completeness. 

 

Mis-joins and missed-joins in assemblies 
The curated hummingbird assembly was mapped to the target assemblies with MashMap278 using 5 kbp 
segments for CLR assemblies. We used 1 kbp segments for SR assemblies to compensate for the shorter 
contig sizes. We ran MashMap using the following command line: 

 

# For CLR assemblies 

mashmap -r $ref -q $qry -t $SLURM_CPUS_PER_TASK -o $out \ 

  --filter_mode one-to-one --pi 95 -s 5000 

 

# For SR assemblies 
mashmap -r $ref -q $qry -t $SLURM_CPUS_PER_TASK -o $out \ 

  --filter_mode one-to-one --pi 95 -s 1000 

 

The number of mis-joins and missed-joins were identified using a custom script available at 
https://github.com/jdamas13/assembly_comparison. The assembly_comparison.pl was run using the 
command line: 

 

perl assembly_comparison.pl out.map $ref.fai $segment 

 

Note that assembly_comparison.pl requires the more continuous assembly to be the $qry, and the 
target assembly being the $ref when running mashmap2. The $segment is adjusted accordingly to the 
-s used in MashMap. 

From the summary, the number of end-to-end joins (missed-joins), rearrangements, and free-end 
joins were collected from the diff.summary using the following script: 

 

echo -e \ 

"target\tmissed-joins\trearrangements\tfree-

end_breaks\tnum.scaffolds_affected_by_free-end_breaks" > summary.txt 

cat $summary | awk '{print $NF}' | tr '\n' '\t' |\ 

 awk -v summary=$ref '{print summary"\t"$1"\t"$2"\t"$4"\t"$5}' \ 

 >> summary.txt 

 

The number of mis-joins consist of two error types (Supplementary Fig. 5): 1) rearrangements and 
inconsistency between the curated and automated assemblies; and 2) free-end breaks where the 
automated assembly has a join not supported by the curated assembly. Missed-joins are contigs or 
scaffolds in the automated assembly that are joined in the curated assembly.  

Similarly, to generate comparisons between assembly pipeline steps within a species 
(Supplementary Table 14), each intermediate assembly was mapped to its predecessor using 
Mashmap2 with parameters --pi 95 -s 10000. 

 

https://github.com/jdamas13/assembly_comparison
https://github.com/jdamas13/assembly_comparison
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Supplementary Fig. 5 | Schematic overview of “Mis-joins” and “Missed-joins”. The curated assemblies 
have the error fixed. Black and blue bars are contigs. Red lines indicate boundaries of the differences 
between the curated and the target automated assembly. 
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Quantifying false duplications with k-mers 
All 21-mers were collected from linked reads. The first 23 bp of the first read pair in 10XG reads were 
trimmed to remove barcode sequences. For the skate, whole genome short read sequencing data was used 
instead for collecting k-mers, as the k-mer histogram was abnormal in the  linked reads. Using the k-mer 
histogram of the reads as a truth set for the genome, we compared 21-mers collected from the primary 
and alternate assemblies. 

 

Overlaying k-mers intersecting with a primary assembly in a read set is informative for inferring 
artificial duplications. All k-mers collected from single and two copies of the genome are expected to be 
found once in an assembly, assuming all two-copy k-mers are from the homozygous part of the genome 
with no haplotype (allele) specific duplication. A cutoff threshold was determined from the k-mer 
histogram of the reads as the maximum peak x 1.5 of the k-mers found in the assembly once. All distinct 
k-mers found more than once in the assembly within this cutoff of the k-mer counts found in reads are 
assembled more than expected. As an example, k-mers found in the assembly once peaked at 57x 
(Supplementary Fig. 6). The cutoff is therefore 86 (57 x 1.5). All k-mers found twice (blue), three (green), 
four (purple), or more (orange) times under 86x are considered and counted as falsely duplicated k-mers. 
Barcode trimming, k-mer counting, copy number spectrum, and false duplication counting was all 
performed with Merqury37 spectra-cn. 

 

Supplementary Fig. 6 | Example histogram of the k-mer counts. 

 

Once the k-mers were collected, the histogram (e.g. Supplementary Fig. 6) was prepared with spectra-cn 
of the Merqury code and shown in Supplementary Fig. 2: 

https://github.com/marbl/merqury/blob/master/eval/spectra-cn.sh 

 

https://github.com/marbl/merqury/blob/master/eval/spectra-cn.sh
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Which generates histogram of the primary assembly in the following format: 

Copies <tab> kmer_multiplicity <tab> Count 

Where Copies are copies found in the assembly, kmer_multiplicity is the k-mer multiplicity found 

in reads, Count being the number of k-mers at each multiplicity. 

 

The false duplication results were obtained using the following code: 
https://github.com/marbl/merqury/blob/master/eval/false_duplications.sh 

 

cutoff=`cat $hist  | awk '$1==1 {print $2"\t"$3}' | awk -v max=0 'max<$2 {max=$2; mult=$1 

} END {printf "%.0f\n", mult*(1.5)}'` 

one_cp=`awk -v cutoff=$cutoff '$1==1 && $2<cutoff {sum+=$NF} END {print sum}' $hist` 

two_cp=`awk -v cutoff=$cutoff '$1==2 && $2<cutoff {sum+=$NF} END {print sum}' $hist` 

thr_cp=`awk -v cutoff=$cutoff '$1==3 && $2<cutoff {sum+=$NF} END {print sum}' $hist` 

fou_cp=`awk -v cutoff=$cutoff '$1==4 && $2<cutoff {sum+=$NF} END {print sum}' $hist` 

mor_cp=`awk -v cutoff=$cutoff '$1==">4" && $2<cutoff {sum+=$NF} END {print sum}' $hist` 

DUPS_TOTAL=`echo "$one_cp $two_cp $thr_cp $fou_cp $mor_cp" | awk '{dup=$2+$3+$4+$5; 

all=dup+$1} END {print $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"dup"\t"all"\t"(100*dup/all)}'` 

echo -e "$hist\t$DUPS_TOTAL" 

 

More details on the interpretation of the k-mer histogram can be found in the KAT36 and Merqury37 
papers. 

 

 

 

Reliable blocks 
Regions with support from CLR subreads, linked reads, raw molecule and label information (bnx) of the 
optical maps, and Hi-C maps from the same individual were collected. Low or high coverage regions were 
excluded, which are indicators of mis-assemblies. To overcome mapping biases, we required at least two 
independent platforms to agree for being structurally ‘reliable’. For example, a repeat region longer than 
a CLR read may cause abnormal high coverage in CLR and linked reads from mapping biases, even if the 
region was well assembled locally. Longer range data such as optical maps and Hi-C interactions can 
complement this bias and indicate structural reliance. 

 

Read mapping was performed individually for each platform, and coverage support information 
was collected on the primary assembly with Asset35 v1.0.2 (https://github.com/dfguan/asset). Here we 
include a brief description of each parameter for each platform as well as codes used to generate 
supporting regions. A manuscript for Asset will follow with more detailed information. 

 

Regions with not enough support (hereby “low support”) were merged when less than 100 bp 
apart. Cutoff for defining low support differs per platform, as noted below per platforms. Reliable regions 
were calculated by excluding these low support regions from the assembly. Because sequencing coverage 
naturally drops at the end of scaffolds for optical maps and Hi-C, we included any low support region as 
“reliable” that overlaps 1 kbp of each ends in the scaffolds (Supplementary Table 6). All available optical 
maps were used, including those not used for hybrid scaffolding (Supplementary Table 9). Below are 
the command lines used to obtain these reliable blocks. 

 

https://github.com/marbl/merqury/blob/master/eval/false_duplications.sh
https://github.com/dfguan/asset
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Gaps in the reference 
Gaps and start, end of each scaffold information was obtained with detgaps for the primary assembly. 
Scaffold length was obtained with samtools. Length was then converted to region file, asm.bed and 1 kbp 

end coordinates was obtained as asm.ends.bed as following: 

 

# Get gaps 

$asset/bin/detgaps $name.fasta > gaps.bed 

 

# Get scaffold length 

samtools faidx $name.fasta 

 

# Get scaffold region 

awk '{print $1"\t0\t"$2}' $name.fasta.fai > asm.bed 

 

# Get scaffold ends while ignore scaffolds <2kb 

cat asm.bed | \ 

 awk '($3-$2) > 2000 {print $1"\t0\t1000\n"$1"\t"($3-1000)"\t"$3}' \ 

 > asm.ends.bed 

 

CLR coverage 
CLR reads were aligned to the primary assembly using minimap264 with -x map-pb. Once all .paf files 
were collected, ast_pb was run with -M $max, which the maximum threshold was identified from 
(sequencing mean coverage) x 2.5. The mean coverage was inferred from the estimated haploid 
genome size / total bases. By default, ast_pb only includes read alignments with a minimum of 600 
bases. Where r is a read, s the starting and e the ending coordinate of the alignment of r, any read 
alignment with r(s+300, e-300) is used to avoid errors at read ends. Regions with a minimum of 10 
read alignments were excluded. 

 

Brief help message is as follows: 

Usage: aa_pb [options] <PAF_FILE> ... 

Options: 

  -m INT minimum coverage [10] 

  -M INT maximum coverage [400] 

  -l INT bases clipped at start and end coordinates of an alignment [300] 

  -h  help 

 

Command lines used are as follows: 

# Align each qry subread .fasta file to the reference index 

minimap2 -x map-pb -t $cpus $ref.idx $qry > $out.paf 

 

# Accumulate coverage and exclude low and high coverage 

pafs=`ls *.paf` 

max=`echo $mean_cov | awk '{printf "%.0f\n", $1*2.5}'` 

$asset/bin/ast_pb -M $max $pafs > pb_M.bed" 

 

Linked read coverage 
The aligned.bam file was re-used, which was generated to obtain mapping-based QV estimates using 
longranger align. To get the $max threshold, ast_10x was run in two rounds. The first round was 
run to get the average molecule coverage. The second round was run with -C $max, which is (average 
molecule coverage) x 3.5. Note this is set higher than what was used in CLR coverage as the linked reads 
were aligned to both haplotypes, thus here the average molecule coverage is closer to the haploid 
coverage. 
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By default, ast_10x requires regions to have at least 0.15 x (average molecule coverage) or 10 molecules, 
whichever is higher. Molecules are only considered when the average mapping quality of the reads in it is 
over 20, with the inferred molecule size being longer than 1 kbp. A molecule requires shared barcodes 
among at least 20 reads, where any two adjacent reads are less than 20 kbp apart. The maximum number 
of reads in a barcode is restricted to at most 1 million; however, based on the number of reads in barcodes, 
most barcodes meet this filtering criteria. 

 

Brief help message is as follows: 

Usage: aa_10x [options] <GAP_BED> <BAM_FILEs> ... 

Options: 

  -x BOOL use longranger bam [False] 

  -b INT  minimum number of reads for each barcode [20] 

  -B INT  maximum number of reads for each barcode [1M] 

  -c INT minimum molecule coverage. This or -r will be used, whichever is higher. [10] 

  -r FLOAT minimum coverage ratio to the average coverage [.15] 

  -C INT maximum coverage [inf] 

  -q INT minimum average read mapping quality for each molecule [20] 

  -l INT minimum length for a molecule [1000] 

 -S INT maximum distance allowed between two adjacent reads with identical barcode to 

be grouped as a molecule [20000] 

  -a INT minimum number of barcodes for each molecule [5] 

  -h     help 

 

Command lines used are as follows: 

# First round: accumulate molecule coverage to get the mean 

$asset/bin/ast_10x -x gaps.bed aligned.bam > 10x.bed 

 

# Avg. molecule coverage and max cutoff 

mean_cov=`awk '{sum+=$1*$2; total+=$2} END {printf "%.0f\n", sum/total}' TX.stat` 

max=`echo $mean_cov | awk '{printf "%.0f\n", $1*3.5}'` 

 

# Second round 

$asset/bin/ast_10x -x -C $cutoff $gaps aligned.bam > 10x_C.bed 

 

Optical map raw molecule (bnx) coverage 
The curated primary assembly was first converted to in-silico reference cmaps for each label (Opt.1, 2, 
and 3) to align available bnx maps accordingly. The bnx were merged prior to alignment when multiple 
bnx were available from the same sequencing platform (Irys or Saphyr) and label. The bnx was aligned 
using RefAligner (Solve 3.3_10252018) from Bionano Solve4 3.3 using non-haplotype option of the 
sequencing platform (Irys or Saphyr), as we align bnx from both haplotypes to a pseudo-haplotype 
assembly. Molecule coverage was obtained with ast_bion_bnx using default options, which requires 
regions to have at least 10 molecule coverage or 0.5 x (average molecule coverage), whichever is higher. 
When multiple bnx files were used, all molecule coverage was gathered using the union function of Asset. 

 

Brief help message is as follows: 

Usage: ast_bion_bnx [options] <REF_CMAP> <QUERY_CMAP> <XMAP> <KEY_FN> 

Options: 

  -m INT   minimum molecule coverage [10] 

  -M INT   maximum molecule coverage [inf] 

  -r INT   minimum coverage ratio to mean coverage [.5] 

  -s FLOAT minimum alignment confidence [0.0] 

  -O STR   output directory [.] 

  -h       help 
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Command lines used are as follows: 

# Convert primary reference assembly fasta to cmap 

perl $solve_dir/HybridScaffold/10252018/scripts/fa2cmap_multi_color.pl -e $enzyme 1 -i 

$ref -o $output_dir/fa2cmap 

 

# Merge if multiple bnx are available from the same platform and label, prefix is for 

example mLynCan4_Saphyr_BspQI 

$tools/bionano/Solve3.3_10252018/RefAligner/7915.7989rel/RefAligner -if $prefix.list -

merge -o $prefix -bnx -stdout -stderr 

 

# Align bnx to the reference cmap 

python $solve_dir/Pipeline/10252018/align_bnx_to_cmap.py --prefix $enzyme --mol 

$query_map --ref $ref_cmap --ra $solve_dir/RefAligner/7915.7989rel/ --nthreads $cpus -

-output $output_dir/align --optArgs 

$solve_dir/RefAligner/7915.7989rel/optArguments_nonhaplotype_"$platform".xml --

pipeline $solve_dir/Pipeline/10252018/ 

 

# Convert to support regions of this .bnx. 

# $rmap_fn, $qmap_fn, $xmap_fn, and $key_fn are the output files 

# of the above fa2cmap 

$asset/bin/ast_bion_bnx $rmap_fn $qmap_fn $xmap_fn $key_fn \ 

  > $output_dir/bionano_"$tech"_"$enzyme".bed \ 

  2>ast_bion_bnx_"$tech"_"$enzyme".log 

 

# Merge support regions when multiple enzymes were used 

$asset/bin/union bnx_*/bionano_*.bed > bn.bed 

 

Hi-C interaction coverage 
The $genome.pri.bam was re-used which was generated to plot the weighted length distribution of 
the Hi-C interactions. Coverage information was obtained using ast_hic with default options, which 
excludes regions with less than seven interactions. An interaction is inferred from the distance of a read 
pair, using the starting coordinates of each read while excluding N-base gaps. Only interactions less than 
15 kbp were considered in coverage to avoid noisy long-range interactions for inferring structural 
reliability. 

 

Brief help message is as follows: 

Usage: aa_hic [options] <GAP_BED> <BAM_FILEs> 

Options: 

  -c INT minimum coverage [7] 

  -C INT maximum coverage [inf] 

  -q INT minimum alignment quality [0] 

  -L INT maximum insertion length, gap excluded [15000] 

  -h     help 

 

Command lines used is as follows: 

# Convert alignments to support information 

$asset/bin/ast_hic gaps.bed *.bam > hic.bed 

 

Merging supportive regions 
Once all the support information for each platform is generated, low and high coverage regions are 
merged and good supporting regions of each platform are obtained using BEDTools75 2.92.2 with the 
following command lines: 
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# Get too-low and too-high coverage low support regions by merging blocks less than 

100bp away 

bedtools subtract -a asm.bed -b ${platform}.bed | bedtools merge -d 100 -i - > 

$platform.low_high.bed 

 

# Trim off regions overlapping 1kb 

bedtools subtract -a $platform.low_high.bed -b asm.ends.bed -A > 

$platform.low_high.trim1k.bed 

 

# Get supporting region, using the low_high.bed to exclude <100bp blocks in between 

other blocks 

bedtools subtract -a asm.bed -b $platform.low_high.bed > $platform.support.bed 

 

In the last step, we accumulate the supporting evidence of all platforms and obtain supporting regions 
where >= 2 platforms agree using the following: 

 

# Accumulate supports 

$asset/bin/acc gaps.bed */*.support.bed > acc.bed 2> acc.log 

 

# Merge to get reliable blocks 

awk '$4>1' acc.bed | bedtools merge -i - > acc.gt2.mrg.bed 

 

# Get low support regions by merging blocks <100bp apart 

bedtools subtract -a asm.bed -b acc.gt2.mrg.bed | bedtools merge -d 100 -i - > 

low_support.bed 

 

# Get the final support region as reliable blocks 

bedtools subtract -a asm.bed -b low_support.bed > reliable.bed 

 

# Exclude low supports in <1kb scaffold boundaries for excluding end-scaffold effects 

bedtools subtract -A -a low_support.bed -b asm.ends.bed > low_support.trim1k.bed 

 

The scripts used here are available on: 

https://github.com/VGP/vgp-assembly/tree/master/pipeline/asset. 

 

 

  

https://github.com/VGP/vgp-assembly/tree/master/pipeline/asset
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Telomere motifs 
Telomeric 6-mer motif AATCCC and its reverse complement TTAGGG were searched in the curated 
assemblies using a custom script. Once the motif sites were collected, regions of enriched telomeric motif 
signals in 1 kbp windows were collected over threshold S, corrected with the k-mer survival rate. The 
corrected threshold becomes S x identity^k, where identity is the approximate base accuracy, which we 
set to 99.9%. Because the spacing of enriched telomeric motifs varies across species and assembly quality, 
we collected windows using various thresholds from 10% to 25%. Windows were merged when they 
were closer than 100 bp in chromosome-assigned scaffolds, and reported in Supplementary Table 7. 
Number of windows within the beginning or ending scaffold coordinates were collected using BEDTools75. 
Scaffold ends with windows found at a 15% threshold within 1 kbp end coordinates are reported in 
Supplementary Table 6. The following code was used to generate the data: 

 

# Find telomere motifs, outputs pri.telomere 

$VGP_PIPELINE/telomere/find_telomere.sh pri.fasta 

 

# Find windows using variable $thresholds 

java -cp $VGP_PIPELINE/telomere/telomere.jar FindTelomereWindows pri.telomere 99.9 

$threshold > pri.windows.$threshold 

 

# Merge telomere windows when 100bp apart 

cat pri.windows.$threshold | awk '{print $2"\t"$(NF-2)"\t"$(NF-1)}' | sed 's/>//g' | 

bedtools merge -d 100  > pri.windows.$threshold.bed 

 

# Get scaffold ends with variable $ends 

cat pri.lens | awk -v ends=$ends '{if ($2>(ends*2)) {print $1"\t0\t"ends"\n"$1"\t"($NF-

ends)"\t"$NF} else {print $1"\t0\t"$NF}}' > asm.ends.bed 

 

# Get windows intersecting ends 

bedtools intersect -wa -a pri.windows.$threshold.bed -b asm.ends.bed > 

pri.windows.$threshold.$ends.ends.bed 

 

# Get unique scaffold ends with a window 

bedtools intersect -u -a asm.ends.bed -b pri.windows.$threshold.bed >> 

pri.windows.$threshold.$ends.ends.u.bed 

 

The full telomere motif finding script used is available on: 

https://github.com/VGP/vgp-assembly/tree/master/pipeline/telomere/ 

 

 

  

https://github.com/VGP/vgp-assembly/tree/master/pipeline/telomere/
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Base pair accuracy (QV) estimate 
We generated base level accuracy estimates (QVs) from the widely used mapping based approach as well 
as the newly developed k-mer based approach (Extended Data Table 1 and Supplementary Table 17). 

 

Mapping based approach 
Longranger22 v2.2.2 was used for generating reference index and alignments. The reference index was 
generated on the combined primary and alternate assemblies with longranger mkref, and 10XG 

linked reads were aligned with longranger align. 

 

longranger-2.2.2/longranger mkref $ref.fasta 

longranger-2.2.2/longranger align \ 

--id=$genome \ 

--fastq=/data/rhiea/genome10k/$genome/genomic_data/10x/ \ 

--sample=$genome \ 

--reference=refdata-$ref \ 

--jobmode=slurm \ 

--maxjobs=500 \ 

--jobinterval=5000 \ 

--disable-ui \ 

--nopreflight 

 

For reference assembly size larger than 4G, the following memory options were applied as Longranger 
was tuned for human genomes with --override=$pipeline/longranger/override_4G.json 
option. 

 

The override_4G.json looks as following: 

{ 

"ALIGNER_CS.ALIGNER._LINKED_READS_ALIGNER.BARCODE_AWARE_ALIGNER": { "chunk.mem_gb": 48 

}, 

"ALIGNER_CS.ALIGNER._LINKED_READS_ALIGNER.MERGE_POS_BAM": { "join.mem_gb": 48 }, 

"ALIGNER_CS.ALIGNER._REPORTER.FILTER_BARCODES": { "join.mem_gb": 48 }, 

"ALIGNER_CS.ALIGNER._REPORTER.REPORT_LENGTH_MASS": { "chunk.mem_gb": 32 } 

} 

 

From the summary.csv that longranger align outputs, the mean coverage was obtained. Then, variants 
were called with freebayes13 1.3.1 from the possorted_bam.bam file, which are indicative of base-pair 
errors as we align reads from the same individual. This is the same step used for finding target bases to 
polish. We use --skip-coverage (mean_cov*12) to avoid variant calls in regions with excessive coverage 
depth, as the mapping results in this region is not reliable for variant calling. Basic filtering was applied 
on the called variants, to  filter out (1) low quality (>1) sites,  (2) select target sites called as homozygous-
like variants (all reads support base change to one allele), and (3) heterozygous-like variant calls when 
both suggestive alleles do not match the reference. In the latter case, the longest allele was chosen. 

(https://github.com/VGP/vgp-assembly/tree/master/pipeline/freebayes-polish) 

 

# Variant call 

freebayes --bam $bam --skip-coverage $((mean_cov*12)) -f $fasta | bcftools view --no-

version -Ou > bcf/$.bcf 

 

# Filtering 

bcftools view -i 'QUAL>1 && (GT="AA" || GT="Aa")' -Oz --threads=$threads $sample.bcf > 

$sample.changes.vcf.gz 

 

https://github.com/VGP/vgp-assembly/tree/master/pipeline/freebayes-polish
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# Collect number of bases affected (NUM_VAR) 

bcftools view -H -Ov $genome.changes.vcf.gz | awk -F "\t" '{print $4"\t"$5}' | awk 

'{lenA=length($1); lenB=length($2); if (lenA < lenB ) {sum+=lenB-lenA} else if ( lenA > 

lenB ) { sum+=lenA-lenB } else {sum+=lenA}} END {print sum}' > $genome.numvar 

NUM_VAR=`cat $genome.numvar` 

echo "Total num. bases subject to change: $NUM_VAR" 

 

Mappable region was obtained by excluding low (<3x) and high (mean_cov x 12) coverage. 

(https://github.com/VGP/vgp-assembly/tree/master/pipeline/qv) 

 

# Num. of bases in mappable region (NUM_BP) 

l_filter=3 

h_filter=$((mean_cov*12)) 

samtools view -F 0x100 -u $bam | bedtools genomecov -ibam - -split > aligned.genomecov 

awk -v l=$l_filter -v h=$h_filter '{if ($1=="genome" && $2>l && $2<h) {numbp += $3}} END 

{print numbp}' aligned.genomecov > $genome.numbp 

NUM_BP=`cat $genome.numbp` 

 

# QV calculation 

QV=`echo "$NUM_VAR $NUM_BP" | awk '{print (-10*log($1/$2)/log(10))}'` 

echo "QV of this genome $genome: $QV" 

 

Number of bases affected (NUM_VAR) and bases in mappable regions (NUM_BP) are obtained per primary 
and alternate assemblies at the end, according to the reference sequence name. 

 

 

K-mer based approach 
Similarly to the mapping based approach, the number of k-mers associated with base errors (similar to 
NUM_VAR in mapping based approach) and total number of k-mers in the assembly (NUM_BP, 
respectively) are obtained and used for QV calculation. This assumes all k-mers occurring in the genome 
are observed in the short reads, and any k-mers not found in the short reads but in the assembly is 
considered to have originated from base error(s). More details regarding implementation is described in 
the Merqury paper37. This approach is independent from mapping, and is able to estimate QV across all 
assembled bases. 

 

Once the k-mers were obtained as described in the Quantifying false duplications with k-mers section, 
Merqury spectra-cn was run using the following commands: 

 

merqury.sh $read.meryl $pri.fasta $alt.fasta $out 

 

Which generates spectra-asm and spectra-cn histograms shown in Supplementary Fig. 2 as well as QV 
stats. 

 

 

  

https://github.com/VGP/vgp-assembly/tree/master/pipeline/qv
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RNA-seq and ATAC-seq Mappability 
RNAseq data from 44 zebra finch brain tissues (11 distinct regions, 4 adult male individuals) were 
trimmed for adaptors using fastq-mcf as part of the ea-utils package79 1.05 and mapped to the Sanger 
(TaeGut3.2.4) and VGP (bTaeGut1) genomic assemblies using STAR80 v2.7.1a with default options. Reads 
were considered uniquely mapped if they matched only one location in the assembly, while multi-mapped 
(<20) or mapped to many (>20) were also counted. Total mapped was a summary of these categories. 
Mapping reports were summarized using MultiQC81 v1.7 and compiled in R for significance testing. The 
following command lines were used: 

 

STAR  

--runMode alignReads \ 

--runThreadN 8 \ 

--genomeDir ${REFERENCE} \ 

--readFilesIn ${TRIMDIR}/${SAMPLE}_R1_trimmed.fastq.gz 

${TRIMDIR}/${SAMPLE}_R2_trimmed.fastq.gz \ 

--readFilesCommand zcat \ 

--outFileNamePrefix ${OUTPUT}/vgp_${SAMPLE} \ 

--outSAMtype BAM SortedByCoordinate 

 

ATAC-seq libraries from 12 zebra finch brain tissues (4 distinct regions, 3 male birds per region) were 
prepared using the Omni-ATAC-seq method 
(https://protocolexchange.researchsquare.com/article/nprot-6107/v1) and were sequenced on the 
Illumina NextSeq 500 with 75 bp paired end reads. The reads were then trimmed with Trim Galore82 
v0.6.5. Next, the reads were aligned to each assembly using Bowtie283 v2.4.1. The average of each mapping 
statistic summary log (mapped zero times, mapped exactly 1 time and mapped multiple times) were 
calculated for each assembly. The following command lines were used: 

 

# Trimming adapters 

trim_galore --paired --nextera myRead_R1.fastq myRead_R2.fastq 

 

# Assembly alignment  

bowtie2 -x genome_assembly.fa --sensitive -1 my_reads_trimmed_1.fq.gz -2 

my_reads_trimmed_2.fq.gz -S my_reads_trimmed.sam 2> my_reads_trimmed.log 

 

Mapping statistics for both RNA-seq and ATAC-seq on each assembly were tested for significant difference 
in means using a paired two sample t-test (alpha=0.05). 
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False gene annotation in previous assemblies 

We detected evidence of erroneous coding sequences in previous assemblies of the zebra finch, platypus, 
and climbing perch for the genes which are related to specific complex traits84,85 or, included in the BUSCO 
gene set30. To identify the erroneous annotations, such as false duplications or truncated sequences due 
to missamblies, we collected exon sequences from the VGP annotation of the genes and performed blastn 
v2.6.0+ searches86 against both the previous and VGP assembly, with options -task blastn, -perc_identity 
90, and -evalue 0.00001 (Supplementary table 21). Among the hits found from the blast search, we 
defined false duplications of an exon when duplicated hits within the same scaffold were found on the 
previous assembly only. Also, we detected truncated exons, where the length of the blast hit was shorter 
than the length of query exon. For visualization, we used Gene Structure Display Server v2.0+87 and 
manually modified the display in order to handle small discrepancies between elements. For the intuitive 
visualization of platypus’ vitellogenin-2 gene, we visualized only the scaffolds with more than three blast 
hits of the previous assembly. 

  

GC-content and missing sequences in prior assemblies  
We investigated GC-content of protein coding genes and flanking sequences of 17 VGP genomes 
(mLynCan4, mPhyDis1, mOrnAna1, mRhiFer1, bStrHab1, bTaeGut2, bCalAnn1, bTaeGut1, aRhiBiv1, 
rGopEvg1, fArcCen1, fCotGob3.1, fMasArm1.2, fAnaTes1.2, fAstCal1.2, fGouWil2.1, and sAmbRad1). All 
assemblies and annotation files were downloaded from NCBI RefSeq88. We manually annotated UTR exons 
at the start or end of each transcript that did not overlap with CDS regions. For each gene, the longest 
transcript was selected as a representative transcript. We excluded genes located within the 30kbp of the 
end of scaffolds, genes with less than four coding exons, or the genes flagged as “partial” from our 
downstream analysis. Introns more than 25 bp were classified according to their position: 5’ or 3’UTR 
intron - in 5’ or 3’UTR, first intron; between the first and next coding exon, internal intron; between 
internal coding exons, last intron; and between the internal and last coding exon. After excluding coding 
exons under 10bp, we calculated average GC-content of non-overlapping 100bp windows in the upstream 
and downstream 30 kbp regions and of the UTRs, coding exons, introns for each species with BEDtools75 
nuc (v2.26). 

Genome alignments were made among the VGP primary, VGP alternate, and prior assemblies with 
Cactus89 for zebra finch, Anna’s hummingbird, platypus, and climbing perch90,91 in order to estimate the 
ratio of previously missing sequences. We extracted VGP genomic regions that were not aligned with the 
prior assemblies by using halLiftover92 and BEDtools75 subtract. Ratio of missing sequences was 
estimated for the UTRs, exons, introns and non-overlapping 100bp windows in the flanking 2 kbp 
upstream and downstream sequences by calculating the ratio of overlaps with the regions that were not 
aligned with the prior assemblies, with BEDtools43 intersect and groupby. 

We investigated zebra finch genes whose 5’ upstream sequences were previously missing. We 
downloaded NCBI remap alignment (https://www.ncbi.nlm.nih.gov/genome/tools/remap) between the 
VGP (bTaeGut1_v1.p) and prior assembly (Taeniopygia_guttata-3.2.4). The VGP genomic regions that 
were not already mapped to the prior assembly were extracted by BEDtools75 subtract. The CpG island 
prediction result of unmasked VGP zebra finch assembly was downloaded from UCSC genome browser. 
We overlapped coordinates of unmapped regions, +-2kbp upstream region of each gene, CpG islands, and 
ATAC-seq peaks by using BEDtools intersect. To cross-check the absence of GC-rich upstream sequences 
of DRD1B and ER81 in the prior assembly, we performed BlastN86 against the VGP and prior assembly 
using the following parameters: -task blastn -dust no -evalue 0.000001 and confirmed that no hits were 
found against the prior assembly. We remapped the coordinates of previous DRD1B and ER81 transcripts 
to the VGP assembly by NCBI Remap and confirmed that the structure of previous genes were disrupted 
by the missing sequences. BEDtools makewindows and nuc were used to calculate GC-content in non-
overlapping windows of 100 bp size across the VGP assembly and visualized in integrative genomics 
viewer93.  

https://www.ncbi.nlm.nih.gov/genome/tools/remap
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Chromosome evolution analyses 
As the species divergence were too high to generate a complete genome-to-genome alignment, we 
estimated chromosome orthology between species by using BUSCO30 genes. We used the BUSCO gene 
annotations generated using the vertebrata_odb9 database for the 16 VGP species (mLynCan4, mRhiFer1, 
mPhyDis1, mOrnAna1, bCalAnn1, bTaeGut1, bStrHab1, rGopEvg1, aRhiBiv1, fGouWil2, fAstCal1, 
fArcCen1, fCotGob3, fMasArm1, fAnaTes1, and sAmbRad1), and additionally performed the same BUSCO 
analysis on the primary assembly of the human genome reference (GRCh38.p12). We used ChrOrthLink 
(https://github.com/chulbioinfo/chrorthlink) to identify and visualize shared ‘complete singleton BUSCO 
genes’, which defines 1:1 orthologous chromosomal regions in all species. Among the total gene set, we 
identified 1,147 vertebrate BUSCO genes that were present and highly conserved as single copy in all 16 
VGP species and human assemblies. The transcription start position of each gene was used to link 
orthologous chromosomes between different species and visualized using genoPlotR94 v3.5.3 (Fig. 5a). 
We also calculated the average number of chromosomes that have orthologous segments between human 
or skate to all other lineages (Supplementary Table 22). All input data and scripts are available on 
github: https://github.com/chulbioinfo/chrorthlink. 

For the analysis of chromosome evolution, we used the four mammalian genomes reported in this 
work (greater horseshoe bat, pale spear-nosed bat, Canada lynx, and platypus), four bat genomes from 
our Bat 1K companion study20 (velvety free-tailed bat, greater mouse-eared bat, Kuhl’s pipistrelle, and 
Egyptian fruit bat), the human genome (GRChg38.p12), and the chicken genome (galGal6a) as an outgroup 
for all mammals. Pairwise alignments of the chicken genome, and each VGP assembly listed above to the 
human genome were generated using LastZ67 (v1.04) using the following parameters: C = 0 E = 30 H = 
2000 K = 3000 L = 2200 O = 400. The pairwise alignments were converted into the UCSC chain and net 
formats with axtChain (parameters: -minScore = 1000 -verbose = 0 -linearGap = medium for mammals or -
linearGap = loose for chicken) followed by chainAntiRepeat, chainSort, chainPreNet, chainNet and 
netSyntenic, all with default parameters95. The Bat 1K genomes were aligned to the human genome with 
LastZ using the following parameters: K = 2400, L = 3000, Y = 9400, H = 2000. After building chains, we 
applied RepeatFiller96, which detects novel alignments between repetitive regions. After RepeatFiller, we 
applied chainCleaner97 with parameters -LRfoldThreshold= 2.5 -doPairs -LRfoldThresholdPairs = 10 -
maxPairDistance = 10000 -maxSuspectScore = 100000 -minBrokenChainScore = 75000 to improve 
alignment specificity. Pairwise alignment chains were converted into alignment nets using a modified 
version of chainNet95 that computes real scores of partial nets97. Next, pairwise synteny blocks were 
defined using maf2synteny98 at 100, 300, and 500 kbp resolutions.  

Evolutionary breakpoint regions (EBRs) were detected and classified on the basis of where on the 
phylogeny the breakpoint occurred using a statistical approach described in Farre et al. (2016)99. Using 
this approach, we identified, at 300 Kbp resolution of syntenic fragments, a total of 698 uniquely classified 
evolutionary breakpoint regions (EBRs), 80 reuse EBRs and 243 EBRs with uncertain classification. We 

manually curated EBRs with a unique phylogenetic classification (N = 698) by (a) removing EBRs that 

were defined as ≤1 Mbp to avoid misclassified EBRs due to lack of alignment (N = 61); (b) merging 

those EBRs that were spaced ≤150 apart to avoid alignment bias in repeat-rich regions (N = 47); (c) 

separating those EBRs re-classified as reuse in the previous step (N = 14); (d) excluding all breakpoints 
that did not span reliable blocks (as we defined in the Reliable blocks section) of the VGP genome 
assemblies by comparing the EBR coordinates with the computed reliable blocks (N = 27);  and, (e) 
separating non-specific chiropteran EBRs by comparison to other laurasiatherian genomes (cattle, goat, 
pig, horse, cat, and dog; N = 27). The curated dataset comprised 522 EBRs. The rate of chromosome 
rearrangement (EBRs/My) between ancestral nodes and species was calculated using the number of EBRs 
detected for each phylogenetic branch divided by the estimated length of each branch (in My) of the 
phylogeny. Branch length was obtained from TimeTree100. The t statistic for each branch was obtained by 
calculating the difference between the rearrangement rate on the branch and the mean rate across all of 

https://github.com/chulbioinfo/chrorthlink
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the branches, and then normalizing for the standard error. P values were corrected by false discovery rate 
using the p.adjust function from the R package (https://www.R-project.org). 

The coordinates of each chiropteran EBR were uploaded into the UCSC Genome Browser, and all 
annotated genes within and immediately flanking (± 150 Kp) the boundaries of the breakpoint as defined 
in the human genome (RefSeq Annotation Release 109) were identified. The example genes with 
rearrangements that we studied in detail mapped to an orthologous positions on human chromosome 
15q25.1, and a chiropteran interchromosomal EBR that mapped to an orthologous position on human 
chromosome 6p22.1. To verify the specificity of this STARD5 gene rearrangement, we compared all 
isoforms of the STARD5 protein annotated in the genomes of the bats and human using Clustal Omega101. 
Furthermore, to investigate if the greater horseshoe bat transcripts would encode a functional protein, 
we used evidence from RNA sequencing, available as RNA tracks in the NCBI genome data viewer102. 

For the chiropteran interchromosomal EBR, we first improved the definition of the breakpoint 
boundaries by visual inspection of the pairwise whole-genome alignments. In each non-human species, 
the presence or absence of the 12 genes annotated within and flanking this locus in the human genome 
was determined by performing: (a) direct search of orthologs of the human genes in the RefSeq 
annotations for each of the bat species; (b) blast search of the human genes, mRNA and proteins in each 
of the bat species genomes, including both primary and alternate assemblies for the VGP genomes; and 
(c) projection of the Bat1K coding gene annotation of the greater horseshoe bat20 to each of the other bat 
genomes using TOGA (Kirilenko et al, in preparation; https://github.com/hillerlab/TOGA). In brief, TOGA 
uses machine learning to infer orthologous genes between related species and accurately distinguish 
orthologs, paralogs and processed pseudogenes. TOGA takes as input pairwise genome alignment chains 
between a designated reference (here greater horseshoe bat) and query genome (the other five bat 
species), coding transcript annotations for the reference species and a file linking genes to transcripts 
isoforms. Then, for each gene, TOGA identifies the chain(s) that aligns the putative ortholog in the query 
using features capturing synteny and the amount of aligning exonic and intronic sequence; it identifies 
the exon/intron structure by aligning the reference gene to the orthologous query locus using CESAR68 
v2.0 in multi-exon mode. The gene annotations used for direct ortholog search were: RefSeq Annotation 
Release 100 for velvety free-tailed bat, greater mouse-eared bat, Kuhl’s pipistrelle and greater horseshoe 
bat; RefSeq Annotation Release 101 for Egyptian fruit bat and pale spear-nosed bat; and, RefSeq 
Annotation Release 102 for Canada lynx. Genes and mRNA molecule searches were performed with NCBI 
discontiguous MegaBlast86 using the following parameters: blastn -task ‘dc-megablast’ -evalue ‘1e-50’ -
template_type ‘coding’ -template_length ‘18’. Protein searches were performed using NCBI tblastn86 with 
default parameters. 

  

https://www.r-project.org/
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