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Transparent Methods 
 
Data source 

CPSC2018 The 1st China Physiological Signal Challenge (CPSC) 2018 hosted during the 
7th International Conference on Biomedical Engineering and Biotechnology released a freely 
large multi-label 12-lead ECG database collected from 11 hospitals in China. This database 
comprises 6877 12-lead ECGs lasting between 6 s and 60 s at a sampling rate of 500 Hz. 
These ECGs are labeled with 9 diagnostic classes. Patient characteristics and diagnosis class 
prevalence of the CPSC2018 dataset are shown in Table S1. As shown in Table S1, data 
imbalance and insufficiency problem is severe for cardiac arrhythmias diagnosis. 
 
Data Preprocessing 

The CPSC2018 database comprises multi-label 12-lead ECGs with varying durations 
between 6 s and 60 s. As the deep neural network requires inputs to be of the same length, we 
preprocessed the dataset to make all inputs are of the same length nsteps. We tried different 
values for nsteps, and found that setting nsteps to 15000 (duration of 30 s, sampling rate of 
500 Hz) achieved the best performance. For ECGs with a duration of more than 30 s, they will 
be cropped and the last 30 s ECG data are kept. Otherwise, they will be padded to 30 s with 
zeros. 
 
Data Augmentation 

As shown in Table S1, data imbalance and insufficiency problem is severe for cardiac 
arrhythmias diagnosis. To address this problem, we applied scaling and shifting for data 
augmentation during the training phase. Scaling multiplies the ECG signals by a random factor 
sampled from a normal distribution 𝑁(1, 0.01) to stretch or compress the magnitude. Shifting 
randomly moves the time values a little bit. Data augmentation will introduce noise, but in 
practice, it can help reduce model overfitting and encourage robustness against adversarial 
examples. 
 
Network architecture 

The overview of the proposed network architecture is illustrated in Figure 2. The proposed 
network is developed using 1D CNNs. Similar to the original residual neural network for image 
recognition with 2D CNNs, residual blocks with shortcut connections are utilized in our model 
to make the model training tractable. The model takes the raw ECG signals 𝑥 ∈
ℝ{"#$%&×()}	(optimal value for nsteps is 15000) as input and outputs a multi-label classification 
result 𝑦2 ∈ ℝ(×+. 

As shown in Figure 2, the network consists of 34 layers. 4 stacked residual blocks are 
used to extract deep features. Within each residual block, there are two 1D convolutional 
(Conv1d) layers, two batch normalization (BatchNorm1d) layers, 1 dropout (Dropout) layer, and 
two rectified linear unit (ReLU) activation layers. Conv1d layers are used to automatically 
extract features, BatchNorm1d layers to make the model faster and stable, ReLU layers to 
perform non-linear activation, Dropout layer to reduce overfitting. 1 × 1 convolution is used to 
match the dimensions and skip connections. The features extracted by stacked residual blocks 
are pooled using adaptive max-pooling. The pooling results are sent to the output layer with 



sigmoid as activation function to make predictions. 
 
Evaluation metrics 

For each diagnostic class, we report Precision, Recall, F1 score (F1), area under the 
receiver operating characteristic curve (AUC), accuracy score (ACC). For class 𝑖, the metrics 
are calculated with the following equations: 
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where 𝑇𝑃, , 𝑇𝑁, , 𝐹𝑃, , and 𝐹𝑁,  represent the number of true positive samples, the 
number of true negative samples, the number of false positive samples, and the number of 
false negative samples for class 𝑖 respectively. Class 𝑖 can be one of the 9 classes: SNR, AF, 
IAVB, LBBB, RBBB, PAC, PVC, STD, and STE. 

To better evaluate the performance of multi-label classification, we adopt average (AVG) 
score of each metric on 9 classes (1 normal and 8 abnormal). Average F1 score is used to 
select the best-performing model. And the final score is the average over classes: 
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Training and Evaluation 

For model training and evaluation, we applied a 10-fold cross-validation approach. The 
CPSC2018 dataset was randomly divided into 10 folds. At each round, 8 folds out of 10 folds 
are used for training, 1 fold for validation, and 1 fold for testing. The optimal threshold of each 
class is selected to achieve the best F1 score on the validation dataset. Then the selected 
thresholds are applied to the test dataset to produce results. The reported results are the 
average on the test dataset of 10 rounds. Adam optimizer is used as the optimization method 
and cross-entropy as the loss function to train the model. The optimal values for 
hyperparameters of the deep neural network are: the length of ECG input is set to 15000; the 
learning rate is 0.0001; the batch size is 32; the maximum number of epochs is 30; the kernel 
size of 1D CNNs is 15; the dropout rate of dropout layers is 0.2. Besides, our code is publicly 
available at https://github.com/onlyzdd/ecg-diagnosis. 
 
Interpretability 

Although deep learning models can achieve state-of-the-art performance in many 
predictive tasks, deep learning models are usually considered to be black boxes. Due to the 



multi-layer nonlinear structure, the decisions made by deep learning models are not traceable 
by humans. However, understanding the model's behavior when making predictions is as 
crucial as the accuracy of predictions in many applications, especially in clinical practice. To 
address this issue, we adopted the SHAP (SHapley Additive exPlanations) method to interpret 
the model's predictions. SHAP is a game-theoretic approach to explain the model predictions 
and has been applied to tree-based algorithms to enhance clinical interpretability. SHAP 
provides a unified way of interpreting predictions of any machine learning models, and satisfies 
the local accuracy, missingness, and consistency constrains. To be specific, SHAP assigns 
shap values, a unique additive feature importance measure (𝜙,), to each feature for a particular 
prediction: 
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where 𝐹 is the set of all features and 𝑆 is all feature subsets without the 𝑖th feature. 
Model 𝑓.∪{,} is trained with that feature present, while 𝑓. is trained with that feature withheld. 
The difference of predictions of these 2 model 𝑓.∪{,}P𝑥.∪{,}Q − 𝑓.(𝑥#) are compared on the input 
𝑥#, where 𝑥# represents the values of the input features in the set 𝑆. The effect of withholding 
a feature depends on other features in the model, and the preceding differences are computed 
for all possible subsets 𝑆 ⊆ 𝐹\{𝑖}. The shap values are then computed and used as feature 
contributions. To estimate 𝜙,, the SHAP approach approximates the Shapley value by either 
performing Shapley sampling or Shapley quantitative influence. 

The feature importance analysis can be used for patient level interpretation. Because shap 
values are directly additive, we eliminated the time factor and calculated the contribution rate 
of ECG leads towards diagnostic classes via the statistics of shap values. As shown in Figure 
4, we applied the SHAP method to the trained deep learning model to interpret the model's 
behavior at both patient level and population level by utilizing a gradient explainer. 

Patient level interpretation Firstly, we focus on patient-level interpretation to understand 
why the model is making a certain prediction for 12-lead ECG inputs. Given an ECG input 𝑥 ∈
ℝ(3444×() , the model outputs a multi-label classification result 𝑦2 ∈ ℝ(×+ . By applying the 
gradient explainer, a shap values matrix 𝑠𝑣 ∈ ℝ+×(3444×() is generated for each input where 
𝑠𝑣,,6,7  represents the feature contribution of the corresponding ECG input 𝑥6,7  towards the 
diagnostic class 𝑖. If 𝑠𝑣,,6,7 > 0, then 𝑥6,7 contributes positively towards the diagnostic class 𝑖. 
For the top-predicted class 𝑙 = argmax	𝑦2 , the submatrix 𝑠𝑣8  demonstrates why the deep 
learning model predicts 𝑙 given the ECG input 𝑥 and shows the contribution of features. 

Population level interpretation While patient level interpretation explains the model's 
behavior on a specific ECG input, population level interpretation shows the contribution of ECG 
leads towards each kind of cardiac arrhythmias over the entire dataset. As shown in Figure 4, 
population level interpretation is the summarization of patient level interpretation. Given the 
population of 𝐷 patients and the shap values matrix 𝑠𝑣𝑠 ∈ ℝ9×+×(3444×(), the contribution 𝑐,,7 
of lead 𝑘 for diagnostic class 𝑖 is defined as the sum of shap values: 
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The normalized contribution rate 𝑟,,7 of lead 𝑘 towards class 𝑖 is calculated as: 
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And the average contribution rate 𝑟̅7 of lead 𝑘 in 12-lead ECG model is: 
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The normalized contribution rate 𝑟,,7  shows which leads are playing an important role in 
diagnosing a particular cardiac arrhythmia 𝑖. The average contribution rate 𝑟̅7  reflects the 
importance of each lead and implies possible feature interactions in the deep model. 
  



Supplemental Figures and Tables 
Figure S1. An example of 12-lead ECG with AF. Related to Figure 5. 
Figure S2. Multi-label confusion matrices of the best validation model predictions and ground 
truth. Related to Table 1. 
Figure S3. Examples of patient level interpretation. Related to Figure 4. 
Figure S4. Failed cases when the model makes incorrect predictions Related to Figure 4. 
Table S1. Patient characteristics and diagnostic class prevalence on the CPSC2018 dataset. 
Related to Figure 5. 
  



Figure S1. An example of 12-lead ECG with AF. Related to Figure 5. 

 
 
  



Figure S2. Multi-label confusion matrices of the best validation model predictions and ground 
truth. Related to Table 1. 

 

  



Figure S3. Examples of patient level interpretation. Related to Figure 4. 

 
  



Figure S4. Failed cases when the model makes incorrect predictions (Ground truth	→	incorrect 
prediction). In this figure, (a) The ECG shows mild ST elevations in V1-V3 with ST depressions 
in II, III, and aVF, consistent with poor oxygenation of the cardiac muscles. The mild ST 
elevations in V1-V3 were not picked up by the model; (b) Both IAVB and RBBB are seen in this 
example. In the figure provided, the model selected RBBB as the predominant diagnosis; (c) 
There is a clear PVC in the second QRS in the rhythm. The p-waves are not consistent with 
PAC. There is some artifact in the ECG (usually due to patient movement) which could be 
leading to incorrect classification; (d) This example shows LBBB (confirmed by deep S wave in 
V1 and monophasic R wave in V6) with STE (V1-V4). As previous examples showed, ECG 
interpretation is complex and multiple diagnoses may exist in a single study. Related to Figure 
4.  

 
  



Table S1. Patient characteristics and diagnostic class prevalence on the CPSC2018 dataset. 
Related to Figure 5. 

Class Count (%) Male (%) Age Duration 
SNR 918 (13.35%) 363 (39.54%) 41.56 (18.45) 15.43 (7.64) 
AF 1221 (17.75%) 692 (56.67%) 71.47 (12.53) 15.07 (8.73) 

IAVB 722 (10.50%) 490 (67.87%) 66.97 (15.67) 14.42 (7.08) 
LBBB 236 (3.43%) 117 (49.58%) 70.48 (12.55) 15.10 (8.10) 
RBBB 1857 (27.00%) 1203 (64.78%) 62.84 (17.07) 14.73 (9.00) 
PAC 616 (8.96%) 328 (53.25%) 66.56 (17.71) 19.30 (12.39) 
PVC 700 (10.18%) 357 (51.00%) 58.37 (17.90) 20.84 (15.39) 
STD 869 (12.64%) 252 (29.00%) 54.61 (17.49) 15.65 (9.79) 
STE 220 (3.20%) 180 (81.82%) 52.32 (19.77) 17.31 (10.74) 

Mean and standard deviation are reported for age and ECG duration (s). 
 


