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1. Appendix E1: Training Procedure 
The deep learning (DL) model, described in the Materials and Methods Section, was a 
preactivation Resnet-34 network, where the batch normalization layers were replaced with group 
normalization layers (21–23). It was trained using the full-field digital mammography (FFDM) 
dataset (see Table 1) by use of the Adam optimizer (1) with a learning rate of 10−4 and a weight 
decay of 10−3. Weight decay not was applied to the parameters belonging to the normalization 
layers. The input was resized to 416 × 320 pixels and the pixel intensity values were normalized 
so that the grayscale window denoted in the Digital Imaging and Communications in Medicine 
(DICOM) header ranged from 0.0 to 1.0. No additional preprocessing was performed. Training 
was performed using mixed precision (2) and gradient checkpointing (3) with batch sizes of 256 
distributed across two NVIDIA GTX 1080 Ti graphics processing units (Santa Clara, CA). Each 
batch was sampled such that the probability of selecting a BI-RADS B or BI-RADS C sample 
was four times that of selecting a BI-RADS A or BI-RADS D sample, which roughly 
corresponds to the distribution of densities observed nationally in the United States (4). 
Horizontal and vertical flipping were employed for data augmentation. To obtain more frequent 
information on the training progress, epochs were capped at 100k samples compared with a total 
training set size of over 672k samples. The model was trained for 100 such epochs. Results are 
reported for the epoch that had the lowest cross entropy loss on the validation set, which 
occurred after 93 epochs. 

Training from scratch on the synthetic 2D mammography (SM) datasets was performed 
following the same procedure as for the base model. For training from scratch, the size of an 
epoch was set to the number of training samples. 

Appendix E2: Adaptation Methods 
Three methods were employed to adapt the DL model from FFDM to SM and from Site 1 to Site 
2: 1) vector calibration, 2) matrix calibration, and 3) fine-tuning. 

The two calibration methods were originally proposed by Guo et al for the task for 
calibration and have been repurposed here for adaptation (25). In both methods, a linear operator 
is applied to the logits produced by the existing model. The parameters associated with the linear 
operator are learned as part of the adaptation process as described below. The updated 
probabilities predicted by the model are, then, given by: 

( ) ,p Az bσ= +  

where z is the logits, A and b are the weights and bias associated with the linear operator, σ  is 
the softmax operator, and p is the updated probabilities that an image belongs to each of the BI-
RADS breast density categories. For vector calibration, A must be a diagonal matrix, while for 
matrix calibration, no restrictions are placed on A. The parameters for the vector and matrix 
calibration methods were chosen by minimizing a cross-entropy loss function by use of the 
BFGS optimization method (https://scipy.org, version 1.1.0). The parameters were initialized 
such that the linear layer corresponded to the identity transformation. Training was stopped when 
the 2-norm of the gradient was less than 10−6 or when the number of iterations exceeded 500. 



 

Page 2 of 3 

For the fine-tuning method, no new layers or weights are introduced. Instead, a small 
portion of the network is retrained. In our case, only the last fully-connected layer is updated. For 
all layers, the model weights were initialized with the weights resulting from training on the 
FFDM dataset. Retraining the last fully-connected layer for the fine-tuning method was 
performed by use of the Adam optimizer with a learning rate of 10−4 and weight decay of 10−5. 
The batch size was set to 64. The fully-connected layer was trained from random initialization 
for 100 epochs and results were reported for the epoch with the lowest validation cross entropy 
loss. For fine-tuning, the size of an epoch was set to the number of training samples. 

Appendix E3: Density Distributions 
The similarity between the DL model and radiologist density distributions is evaluated by use of 
several statistical techniques. Statistical significance for the difference between the radiologist 
and DL model density distributions is computed using a Pearson’s χ2 test. The similarity 
between the two distributions is also estimated using the Kullback-Liebler (KL) divergence 
where the radiologist distribution serves as the reference distribution. The 95% confidence 
intervals (CI) and variance of the KL divergence are estimated via bootstrapping (26). 
Significance for the relative similarity of two pairs of distributions, eg, the radiologist and DL 
model density distributions before and after adaptation, is estimated by comparing the KL 
divergences between the two pairs using a two-sided two-sample t test. Statements involving 
directional information, eg, “slightly underestimates,” are evaluated based on a one-sided 
Wilcoxon signed-rank test. 

The comparisons between the DL model and radiologist density distributions for the 
same dataset are summarized in Table E1. Comparisons of the relative similarity of the two 
distributions before and after adaptation (matrix calibration, 500 images) are also provided. 

Appendix E4: Consistency of Image-level Predictions 
The examination-level predictions of the DL model are obtained by averaging the predicted 
probabilities for the four BI-RADS breast density categories across all images in the 
examination. To better understand the consistency of the image-level predictions, the most 
probable BI-RADS breast density category for every image in an examination was considered 
for all examinations in the FFDM test set. Typically, the breast density predictions for different 
views within an examination were consistent. For example, the predictions were the same for all 
four views 79.5% (10546 of 13262) of the time. In almost all other cases, two BI-RADS breast 
density classes were predicted for the four views (20.5%, 2715 of 13272). In all but one case, the 
two predicted classes were neighboring density classes (eg, A and B). There was only one case 
where three distinct density predictions were made and no cases where four distinct predictions 
were made. In the case where three distinct density predictions were made, a prior surgery had 
removed most of the breast tissue from the right breast. 
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Table E1: A summary of the Breast Imaging Reporting and Data System (BI-
RADS) breast density distributions of the DL model and the original reporting 
radiologists. Similarity between the distributions is characterized by the Kullback-
Liebler (KL) divergence and Pearson’s χ2 test. Comparisons of the similarity 
before and after adaptation are calculated by comparing the KL divergences 
using a two-sided t test.  

Radiologist Distribution DL Model Distribution KL Divergence P value 
FFDM A: 9.3%, B: 52.0%, C: 

34.6%, D: 4.0% 
A: 8.5%, B: 52.2%, C: 
36.1%, D: 3.2% 

0.0015 [0.0011, 0.0018] < 0.001 

Site 1 SM (Before) A: 8.9%, B: 49.6%, C: 
35.9%, D: 5.6% 

A: 10.4%, B: 57.8%, C: 
28.9%, D: 3.0% 

0.02 [0.00, 0.03] 0.01 

Site 1 SM (After) 
 

A: 5.9%, B: 53.7%, C: 
35.9%, D: 4.4% 

0.008 [-0.005, 0.015] 0.24 
(before vs after: 0.13) 

Site 2 SM (Before) A: 15.3%, B: 42.2%, C: 
30.2%, D: 12.3% 

A: 5.7%, B: 48.8%, C: 
36.4, D: 9.4% 

0.056 [0.041, 0.068] < 0.001 

Site 2 SM (After) 
 

A: 16.9%, B: 43.3%, C: 
29.4%, D: 10.4% 

0.0026 [0.0011, 0.0035] 0.047 
(before vs after: < 0.001) 

Statistical significance was also calculated for other comparisons related to the density distributions. For the Site 1 
SM test set, the DL model slightly underestimates the breast density relative to the radiologists (P < .001). For the 
Site 2 SM test set, the DL model did not underestimate the breast density (P = .99). The density distribution for the 
DL model for Site 2 is more similar to the radiologist distributions for Site 1 compared with the radiologist density 
distribution for Site 2 (Site 1 FFDM: KL = 0.03 [95% CI: 0.02, 0.05], P = .03; Site 1 SM: KL = 0.02 [95% CI:-0.02, 
0.03], P = .01). This suggests that the model could have learned a prior density distribution from the Site 1 FFDM 
dataset that may not be optimal for Site 2 where patient demographics are different. 
 


