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Appendix E1 

MRI Scan Acquisition 
For the 100 patients included in the supervised learning group, scans were performed with one of 
our 1.5--T or 3T scanners (Vida, Avanto, Skyra, Verio or Prisma Fit; Siemens, Erlangen, 
Germany). Patients were placed in a supine position with arm in mild external rotation. Axial 
imaging extended from the acromioclavicular joint to below the axillary pouch. Dedicated 
shoulder array coils were used for imaging. For the 50 patients included in the transfer learning 
and the 35 patients included in the measurement group, scans were performed on one of our 1.5-
T or 3-T scanners (Aera, Skyra or Prisma Fit, Siemens). 

Segmentation Model 
Padding in convolutions were incorporated to obtain the same size of input image and 
segmentation mask. Random horizontal flipping of the images was used for data augmentation to 
generalize on left- and right-sided images. As the number of slices changes between acquisitions, 
we selected either the center 32 slices from volumes that have more than 32 slices or mirrored 
the slices at the volume borders to obtain 32 slices from volumes that have less than 32 slices. 
This way we were able to train a single three-dimensional (3D) convolutional neural network 
(CNN) accepting a volume with 32 slices. Weights of the loss function for the specific class were 
calculated using the training set by dividing the total number of voxels with the number of voxels 
for that particular class. By random sampling, the sample was partitioned into four groups of 25 
patients. Each group served as a validation set to assess the accuracy obtained from the other 
training set groups. 

Transfer Learning Model 
Two-dimensional (2D) slices from Dixon-based images and segmentation masks were 
interpolated using bicubic splines of third order to match the voxel size of proton density images, 
and they were center cropped to a size of 320 × 320 prior to model training. During transfer 
learning from 3D CNN, from each MR image we extracted four interleaved volumes of 32 slices 
after mirroring the slices at the volume borders to obtain 128 slices. Postprocessing details 
defined in the previous section were employed. Additional image postprocessing was used to 
bring the voxel size and dimension of the segmentation masks to the original water-only Dixon-
based images. 

Hardware Specifications 
Experiments for both 2D and 3D CNNs based on U-Net architecture were performed on a server 
using an NVIDIA (Santa Clara, Calif) 16GB Tesla P100 GPU card. 

Source Code 
The source code for this study is available at: 
https://github.com/denizlab/Shoulder_Segmentation 
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3D Models Production and Measurements 
Using the software 3DSlicer (v4.11.0) we created 3D volume surface rendered models with the 
volume intensity: (a) For the glenoid, the model was obtained with a range of 1.00 to 1.01 of 
volume intensity, and (b) for the humeral head, the model was obtained with a range of 2.99 to 
3.00 of volume intensity. 

Two musculoskeletal radiologists assessed normal anatomy by measuring the humeral 
head width and diameter and the glenoid width, diameter, and height on the fully automated and 
the semiautomated 3D models at the first measurement session. They also estimated the glenoid 
bone loss (GBL) percentage on patients with an anterior shoulder instability history. These 
measurements were repeated by reader 1 during a second session 2 weeks after the first session. 

Statistical Analysis 
The level of agreement was assessed in terms of the absolute value of the differences. Reader 
agreement was assessed using the data from the first reading session for reader 1 to avoid 
confounding the difference between readers with any change in the performance of reader 1 over 
time (due to learning that often occurs when a task is performed repeatedly over a short period of 
time). We also report 95% confidence intervals (CIs) for the differences between the fully and 
semiautomated models in terms of the mean error between the diameter measurements 
performed by the two readers. The 95% CIs in these cases imply that there is a 95% confidence 
that the true mean error of the fully automated diameter measurements is captured within the 
interval. 

CNNs Training Time 
For the 2D CNN, the mean time for training each epoch was 5 minutes and 13 seconds, while for 
fully automated segmentation mask generation it was 1.28 seconds. For the 3D CNN, the mean 
time for training each epoch was 7 minutes and 13 seconds, while for fully automated 
segmentation mask generation was 1.12 seconds. 

Outliers Overview 
Four cases were outliers in both 2D and 3D CNNs. They presented with different causal factors, 
including field inhomogeneity, bone marrow heterogeneity, and a combination of motion artifact 
and field inhomogeneity. 

Treatment Selection Agreement 
Comparing how the GBL percentage measurements performed by reader 1 during the first and 
second sessions would impact treatment selection, the intrareader agreement to select the same 
treatment was 95.8% (23 of 24) for the fully automated models and 100% (24 of 24) for the 
semiautomated models. When comparing the GBL measurement treatment impact for readers 1 
and 2 during the first session, the interreader agreement to select the same treatment was 95.8% 
(23 of 24) for the fully-automated models, and 95.8% (23 of 24) for the semiautomated models. 
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Table E1 

Outliers 
Causal factors 2D CNN (n = 100)* 3D CNN (n = 100)* 
Total 8 (8%) 9 (9%) 
Bone marrow edema 2 (2%) 1 (1%) 
Bone marrow heterogeneity 3 (3%) 3 (3%) 
Image artifacts   
 Motion 1 (1%) … 
 Field inhomogeneity 1 (1%) 1 (1%) 
 Motion + field inhomogeneity 1 (1%) 1 (1%) 
 Partial volume effects … 2 (2%) 

Note.— CNN = convolutional neural network, 3D = three-dimensional, 2D = two-dimensional. 

*For each dataset, n is the number of patients enrolled in each task. 
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