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Appendix E1 

1. Supplementary Materials and Methods 
The study protocol was approved by the ethical committee of the Geneva State, with a waiver 
concerning the requirement to obtain informed consent. The requirement for informed consent 
was waived because the chest radiographs (CXR) were part of a routine protocol, involving 
neither changes in patient clinical management nor additional diagnostic procedures. 

1.1. Datasets 
1.1.1. Training dataset.— 

We retrospectively reviewed our institutional database for all consecutive patients who 
underwent upright frontal CXR between January and December 2017 using the radiography 
models of two different manufacturers (the most commonly employed in our institution): Philips 
DigitalDiagnost (later called ‘DD’) and Siemens Fluorospot Compact FD (later called ‘FCFD’). 
Overall, 6,528 CXR were retrieved (3,264 CXR from each manufacturer), anonymized, resized 
to a resolution of 512 × 512 pixels (8 bits), and exported into PNG format. CXR were then 
preprocessed to remove symbols added at the image periphery after acquisition (eg, ‘L’ or ‘R’ 
signs) so as to avoid biases when training the generative adversarial network (GAN) model, as 
these acquisition symbols may be unbalanced between the DD and FCFD manufacturers, thus 
biasing the GAN model development. A Sobel filter (24) was applied to generate a region-of-
interest (ROI) created around pixels with normalized gray levels above 0.95, designed to detect 
symbols and build an inpainting mask. The symbols were removed from the mask, and the 
missing surface was interpolated using the biharmonic method (25). To ensure that this 
preprocessing did not modify CXR beyond acquisition symbols, 10% of the training dataset was 
independently reviewed by two radiologists. Additionally, a new dataset of 50 CXR containing a 
pacemaker (not used elsewhere) were similarly preprocessed and reviewed by the same 
radiologists for preprocessing errors. None of the reviewed CXR exhibited errors in central 
regions of the image containing the patient’s body. 

1.1.2. Independent testing dataset #1: identification of manufacturer.— 
We applied the GAN network after its development to upright frontal CXR acquired at our 
institution between July and August 2018, using either the DD or FCFD manufacturer. CXR 
were retrospectively retrieved from our institutional database, anonymized, resized, exported to 
PNG, and preprocessed as for the CXR of the training dataset. In total, 914 CXR were included 
in the testing set (457 CXR acquired using a DD manufacturer and 457 CXR acquired using a 
FCFD manufacturer, with about a quarter of CXR containing abnormal finding for each 
manufacturer). All CXR were reviewed by a radiologist for quality approval before being filtered 
by the GAN, to remove obviously “wrong” CXR (eg, XR incorrectly labeled as CXR in DICOM 
header, and not containing chest). 
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1.1.3 Independent testing dataset #2: diagnostic performance of RF.— 
We applied our GAN network to a dataset of 200 upright frontal CXR from selected patient with 
and without congestive heart failure (CHF), acquired at our institution between January and 
March 2019 using DD or FCFD manufacturer and retrospectively retrieved. This independent 
testing dataset included 100 CXR from DD manufacturer (50% from patients with CHF), and 
100 CXR from FCFD manufacturer (50% from patients with CHF). Patients with CHF were 
identified in our institutional database if a diagnosis code of CHF was included in their hospital 
discharge summary. All patients included were diagnosed with CHF based on clinical 
assessment, CXR findings and elevated serum B-type natriuretic peptide (at a cutoff of 100 ng/L 
as a marker of CHF, similar to Seah et al (2018) (26)), as part of regular patient diagnosis and 
management made during hospitalization. Only one CXR was taken by patients to avoid 
duplicates and bias in machine-learning classification. All CXR were also reviewed by a 
radiologist for quality approval before being filtered by the GAN. This second dataset was used 
to assess changes in CHF identification by ML classifier depending on the nature of RF (see 
“Material and Methods,”) and not a comparison between radiologist versus RF classification 
performance. 

1.2. Generative Adversarial Network (GAN) Model 
1.2.1. GAN model development.— 

Generative adversarial network (GAN) is a new kind of deep learning algorithm that has recently 
emerged (11,12). GANs are systems of neural networks contesting against each other in a given 
task. Briefly, a generator network tries to produce counterfeit images as close as possible to the 
authentic ones, while a discriminator network tries to differentiate the real images from fake ones 
produced by the generator network. With training, both networks are prone to become more 
efficient, with the generator network producing fake images very close to the real ones. Several 
GAN architectures have been developed to cover a wide range of applications, given that these 
networks can learn to mimic any data distribution kind. They have been used to transform 
images from one source domain to a target domain (13,14), such as generating maps from 
satellite pictures or counterfeit images from a renowned painter based on photography. A 
specific GAN type, called cycle-GAN, has been successfully applied in texture-translation from 
one source image to a target image (15). 

We used a cycle-GAN model adapted from (15) to translate texture information from 
CXR acquired using one manufacturer to the other (eg, from DD to FCFD) and vice-versa (from 
FCFD to DD) (Fig 2). This model is based on two neural networks of the generator type: a 
generator receiving an original CXR from the DD set (native DD or nDD) and modifying it to 
match the FCFD type (fake FCFD or fFCFD) and another generator receiving an original FCFD 
image (native FCFD or nFCFD) and processing it to match the DD type (fake DD or fDD). 
These two generators depend on two other neural networks of the discriminator type: a 
discriminator trained to distinguish between native FCFD images from fake FCFD images, and 
another discriminator trained to distinguish native DD images from fake DD images (Fig 2). The 
generators are optimized based on the corresponding discriminator feedback and trained to 
mislead it (ie, produce fake images similar to the target ones). 

We reconstructed the original images following texture-translation by passing it 
sequentially through the two generators (eg, a DD image is first translated to FCFD texture by 
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the first generator, then back to DD by the second generator). To preserve the cycle-consistency 
of the whole GAN, the generators were trained to minimize the absolute difference between the 
original image and reconstructed image (after passing through the two generators), using a 
reconstruction cost set as the L1 distance between the input and reconstructed images. Here, the 
cost was reinforced by adding a loss component to compare images at the level of small detail or 
texture (ie, high spatial frequency). This loss component was derived from a structural similarity 
index measure (SSIM) (27): Loss (x, xˆ) = ϕ(1 − SSIM (x, xˆ)), where xˆ is the reconstructed 
version of x and ϕ is a parameter between 0 and 1, with a 11 × 11 box for the SSIM computation 
to focus textural details of the images. ϕ parameter is used to moderate the weight of the 
reconstruction loss compared with adversarial loss during backpropagation, and avoid small or 
large values favoring adversarial or reconstruction loss, respectively. Overall, SSIM measures 
the perceptual difference between two CXRs and quantifies image changes caused by texture-
translation based on local gray level statistics. 

The cycle-GAN is thus trained as follows: (i) the discriminator networks accurately 
recognize native CXR from each manufacturer (nDD and nFCFD); (ii) the generator networks 
translate CXR texture to mislead their respective discriminator network so it recognizes fake 
CXR as belonging to the target manufacturer and not to the original one (e.g.; fDD as belonging 
to DD manufacturer instead of its original FCFD one); (iii) the cycle-GAN must, additionally, 
maintain good cycle-consistency while accurately reconstructing fake CXR into their original 
image. 

The whole model was trained on 472 × 472 patches of the input images that were cropped 
at random positions on the original 512 × 512 CXRs at each epoch. This means that two patches 
from the same image vary only at the image borders and catch the entire lung parenchyma, 
enabling regularization of the model at boundaries, with instantaneous random cropping at the 
level of the single training step. The GAN model was trained using 95% of the original training 
data, with the remaining 5% being discarded for validation purposes. The model was 
implemented in Python (Version 3.6.2) using TensorFlow (Version 1.3.0). 

1.3. Evaluation of Texture-Transfer Using GAN 
To assess the quality of the CXR texture-translation between the two manufacturers performed 
by the GAN model, we used two generator networks of the GAN to produce fDD and fFCFD 
images from CXR of the independent testing set. Thus, we obtained 2 × 457 fake CXR of each 
type (fDD and fFCFD), paired with 2 × 457 original CXR of each type (nFCFD and nDD, 
respectively). 

As a global measure of the GAN model accuracy, the structural similarity index (SSIM) 
was computed for all images of the testing set as the general indicator of cycle-consistency of the 
GAN, along with its corresponding 95% CI. A SSIM of 1 implies a perfect reconstruction of the 
image back to its origin after passing through the GAN, with this value decreasing to-1 when the 
original and reconstructed images are opposite (ie, negative covariance), whereas random 
correlation provides values closer to 0. As the GAN translates texture, we expect changes 
between the manufacturers to occur mostly at high spatial frequencies, with the objects’ global 
structures (eg, thorax shape) hardly altered. 
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1.3.1. Radiomics features extraction.— 
We used an original and fake CXR of the independent testing set to compare the RF 
reproducibility before and after GAN-translation. To that end, we first automatically segmented 
lung parenchyma of each CXR, then extracted 92 RF from the lung parenchyma of each CXR, 
and finally compared the ability of the GAN texture-translation to reduce the RF difference 
between the two manufacturers (ie, DD and FCFD). The lung parenchyma segmentation was 
first performed by using an open-source pretrained deep-learning model (28). All segmentations 
were visually inspected by a senior resident in radiology (4 years of experience). RF were then 
extracted from the lung parenchyma using a sliding-window method with pyradiomics (Version 
1.2.0 (16),). The 92 RF extracted are default features available in pyradiomics (ie, without image 
filtering), with the exception of shape features (16). 

1.3.2. Radiomics features reproducibility.— 
To test for a reduction in the intermanufacturer RF variability, before and after GAN texture-
translation, we computed the concordance correlation coefficient (CCC), as defined by Lin (17), 
for each RF and each image type (nDD, nFCFD, fDD, and fFCFD). As the GAN should translate 
texture from one manufacturer to the other, we hypothesized that CCC would be increased when 
comparing one native CXR type with its opposite fake one (ie, nDD versus fDD; nFCFD versus 
fFCFD), as compared with the CCC between native images alone (ie, nDD versus nFCFD) or 
fake images alone (ie, fDD versus fFCFD). We have, thus, computed the CCC for each RF, such 
as between nDD and nFCFD, between nDD and fDD, and between nFCFD and fFCFD. Similar 
to (18), RF with CCC of 0.85 or greater were considered as reproducible. We also reported the 
percentage of RF with CCC ≥ ,0.80, ≥ 0.85, and ≥ 0.90 for each RF class, for nDD versus 
nFCFD, nDD versus fDD, and nFCFD versus fFCFD, similar to (18). 

1.3.3. Machine-learning classification of a radiographic model.— 
As the GAN is likely to reduce the intermanufacturer RF difference, we hypothesized that 
machine learning (ML) classifiers trained to recognize the manufacturer, as based on RF 
extracted from native CXR, would be misled when trying to identify the manufacturer of fake 
CXR. We, thus, trained five common ML classifiers to identify the manufacturer of native CXR, 
using the 92 RF previously extracted. We trained Support Vector Machine (SVM), Linear 
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression 
(LogReg), and Random Forest (RFo) classifiers in scikit-learn (Version 0.19.0 (29);), with 
default parameters for each classifier. We then assessed the performance of these five ML 
classifiers in distinguishing the manufacturer for four comparisons using 10-fold cross-
validation: 1) nDD versus nFCFD; 2) fDD versus fFCFD; 3) nDD versus fFCFD; 4) and fDD 
versus nFCFD. Correct manufacturer recognition was defined as the original manufacturer for 
native CXR, and as the target manufacturer for fake CXR (eg, FCFD class for original DD image 
translated to FCFD by the GAN). Thus, if ML classifiers identified fake CXR as belonging to the 
target manufacturer class, they would be misled by the GAN-texture-translation. We compared 
the accuracy of each ML model as to distinguishing nDD versus nFCFD, nDD versus fFCFD, 
fDD versus nFCFD, and fDD versus fFCFD. 

1.3.4. Radiological classification of a radiographic model.— 
Given that CXR characteristics are likely to depend on image acquisition and processing specific 
to each manufacturer, we hypothesized that experienced radiologists would accurately 
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distinguish the manufacturer when reviewing native CXR (i.e., not translated by the GAN). As 
the GAN architecture has been suggested to translate image characteristics from one type to the 
other (15), we additionally hypothesized that radiologists would recognize the fake CXR as 
belonging to the target manufacturer rather than to the original one (eg, DD image translated to 
FCFD manufacturer (ie, fFCFD) would be recognized as FCFD ones). Taken together, the 
radiologist would accurately identify the manufacturer of native CXR, yet be misled by the GAN 
translation in recognizing the manufacturer of fake CXR. 

To test these hypotheses, we asked two radiologists to review native and fake CXR and 
identify the manufacturer of each one (DD versus FCFD). Most of the CXR showed no active 
disease, and radiologists were instructed to focus on identifying manufacturer only. The 
radiologists were first trained to recognize native DD and FCFD images (training bloc) by 
reviewing 240 CXR (four blocks of 60 CXR, with 50% of each manufacturer type, randomly 
taken from the testing set). They were then asked to recognize the manufacturer (DD versus 
FCFD) of 240 native and fake CXR (similarly taken from the testing set and nonoverlapping 
with those of the training bloc), in four counterbalanced blocs of 60 images (test blocs), with an 
equal proportion of each image type (nDD, nFCFD, fDD, and fFCFD). The two radiologists 
were board-certified radiologist (12 and 19 years of experience) working as attending thoracic 
radiologist at our University Hospital and were not involved in GAN model development. In 
these test blocs, the radiologists read CXR together to reach a consensus about manufacturer type 
and were blinded to the type and proportion of native and fake CXR. They were merely asked to 
identify the manufacturer type, regardless of whether the image was processed or not by the 
GAN. As for ML classifiers, correct manufacturer recognition was defined as the original 
manufacturer for native CXR and the target manufacturer for fake CXR. Indeed, if radiologists 
identified the fake CXR as belonging to the target manufacturer type, they would be misled by 
the GAN. 

For practical reasons, it was not possible to cross-validate the accuracies of the 
radiologists. Therefore, confusion matrices and permutation testing were applied to ensure our 
results were not observed by chance. Permutation testing was performed for each above-
mentioned comparison by randomly permuting 10,000 CXR labels and computing a 
classification score for each iteration, thereby obtaining a permutation distribution. The P value 
returned from this permutation testing approximates the probability that a true classification 
score would be obtained by chance. As for ML classifiers, we compared the accuracy of 
radiologists as to distinguishing nDD versus nFCFD, nDD versus fFCFD, fDD versus nFCFD, 
and fDD versus fFCFD. 
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Table E1. Concordance Correlation Coefficient between manufacturer before and 
after texture-translation for all radiomic features 

 before after texture-translation 
RF class RF name nDD vs nFCFD nDD vs fDD nFCFD vs fFCFD 

First-order 10Percentile 0.41 0.65 0.57 
90Percentile 0.35 0.68 0.52 
Energy 0.42 0.69 0.53 
Entropy 0.40 0.97 0.96 
InterquartileRange 0.23 0.98 0.97 
Kurtosis 0.44 0.98 0.98 
Maximum 0.33 0.72 0.27 
MeanAbsoluteDeviation 0.23 0.98 0.97 
Mean 0.37 0.65 0.59 
Median 0.35 0.65 0.58 
Minimum 0.42 0.66 0.50 
Range 0.35 0.98 0.97 
RobustMeanAbsoluteDeviation 0.22 0.98 0.97 
RootMeanSquared 0.36 0.65 0.58 
Skewness 0.38 0.97 0.97 
TotalEnergy 0.42 0.69 0.53 
Uniformity 0.41 0.95 0.95 
Variance 0.32 0.98 0.97 

GLCM Autocorrelation 0.37 0.98 0.97 
ClusterProminence 0.39 0.97 0.96 
ClusterShade 0.39 0.97 0.96 
ClusterTendency 0.31 0.98 0.97 
Contrast 0.26 0.95 0.98 
Correlation 0.31 0.81 0.88 
DifferenceAverage 0.15 0.92 0.95 
DifferenceEntropy 0.25 0.91 0.94 
DifferenceVariance 0.26 0.97 0.98 
Id 0.31 0.88 0.91 
Idm 0.32 0.88 0.91 
Idmn 0.36 0.81 0.87 
Idn 0.43 0.80 0.85 
Imc1 0.42 0.80 0.85 
Imc2 0.36 0.83 0.87 
InverseVariance 0.36 0.90 0.94 
JointAverage 0.43 0.98 0.97 
JointEnergy 0.34 0.89 0.90 
JointEntropy 0.38 0.95 0.96 
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MaximumProbability 0.36 0.88 0.88 
SumAverage 0.43 0.98 0.97 
SumEntropy 0.40 0.97 0.96 
SumSquares 0.30 0.98 0.97 

GLDM DependenceEntropy 0.30 0.90 0.91 
DependenceNonUniformity 0.41 0.89 0.92 
DependenceNonUniformityNormalized 0.37 0.89 0.92 
DependenceVariance 0.35 0.84 0.85 
GrayLevelNonUniformity 0.37 0.96 0.96 
GrayLevelVariance 0.32 0.98 0.97 
HighGrayLevelEmphasis 0.37 0.98 0.97 
LargeDependenceEmphasis 0.32 0.85 0.86 
LargeDependenceHighGrayLevelEmphasis 0.30 0.92 0.91 
LargeDependenceLowGrayLevelEmphasis 0.17 0.84 0.83 
LowGrayLevelEmphasis 0.26 0.91 0.91 
SmallDependenceEmphasis 0.32 0.89 0.92 
SmallDependenceHighGrayLevelEmphasis 0.34 0.97 0.97 
SmallDependenceLowGrayLevelEmphasis 0.42 0.90 0.91 

GLRLM GrayLevelNonUniformity 0.22 0.96 0.95 
GrayLevelNonUniformityNormalized 0.41 0.96 0.95 
GrayLevelVariance 0.31 0.98 0.97 
HighGrayLevelRunEmphasis 0.38 0.98 0.97 
LongRunEmphasis 0.30 0.83 0.84 
LongRunHighGrayLevelEmphasis 0.15 0.96 0.95 
LongRunLowGrayLevelEmphasis 0.28 0.85 0.86 
LowGrayLevelRunEmphasis 0.31 0.91 0.92 
RunEntropy 0.24 0.92 0.92 
RunLengthNonUniformity 0.38 0.88 0.91 
RunLengthNonUniformityNormalized 0.33 0.87 0.90 
RunPercentage 0.32 0.86 0.88 
RunVariance 0.29 0.82 0.83 
ShortRunEmphasis 0.32 0.87 0.89 
ShortRunHighGrayLevelEmphasis 0.38 0.98 0.97 
ShortRunLowGrayLevelEmphasis 0.29 0.93 0.93 

GLSZM GrayLevelNonUniformity 0.47 0.83 0.87 
GrayLevelNonUniformityNormalized 0.38 0.96 0.95 
GrayLevelVariance 0.29 0.98 0.97 
HighGrayLevelZoneEmphasis 0.39 0.98 0.97 
LargeAreaEmphasis 0.38 0.73 0.74 
LargeAreaHighGrayLevelEmphasis 0.23 0.78 0.76 
LargeAreaLowGrayLevelEmphasis 0.36 0.68 0.70 
LowGrayLevelZoneEmphasis 0.38 0.92 0.93 
SizeZoneNonUniformity 0.33 0.89 0.93 
SizeZoneNonUniformityNormalized 0.24 0.88 0.92 
SmallAreaEmphasis 0.15 0.88 0.91 
SmallAreaHighGrayLevelEmphasis 0.39 0.98 0.97 
SmallAreaLowGrayLevelEmphasis 0.33 0.94 0.93 
ZoneEntropy 0.36 0.86 0.88 
ZonePercentage 0.31 0.89 0.92 
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ZoneVariance 0.38 0.71 0.71 
NGTDM Busyness 0.37 0.93 0.92 

Coarseness 0.35 0.84 0.86 
Complexity 0.20 0.96 0.97 
Contrast 0.36 0.94 0.96 
Strength 0.33 0.97 0.94 

The table displays the Concordance Correlation Coefficient of all radiomic features, for the comparison between 
manufacturers before and after texture-translation. nDD: native DD images, nFCFD: native FCFD images, fDD: 
fake DD images, fFCFD: fake FCFD images. First-order = first order features, GLCM = gray level co-occurrence 
matrix, GLRLM = gray level run length matrix, GLSZM = gray level size zone matrix, NGTDM = neighboring gray 
tone difference matrix, GLDM = gray level dependence matrix. 

Table E2: Manufacturer classification accuracy by machine-learning algorithms 
and radiologists 

A. Machine-Learning Classifier 
Classifier nDD vs nFCFD fDD vs nFCFD nDD vs fFCFD fDD vs fFCFD 
SVM 97.8 ± 2.1 97.5 ± 1.6 97.0 ± 2.3 96.6 ± 2.0 
LogReg 98.8 ± 1.2 98.0 ± 1.5 95.6 ± 2.3 95.9 ± 1.9 
LDA 99.3 ± 0.6 99.1 ± 0.9 96.2 ± 2.3 95.9 ± 2.7 
QDA 93.5 ± 3.6 93.8 ± 3.0 92.5 ± 4.4 92.9 ± 3.7 
RFo 95.6 ± 1.9 96.3 ± 1.4 95.8 ± 2.2 96.5 ± 1.4 
B. Radiologists 
Classifier nDD vs nFCFD fDD vs nFCFD nDD vs fFCFD fDD vs fFCFD 
Radiologists 85.0 88.3 74.6 77.9 

A. Manufacturer classification using several machine-learning (ML) classifiers. Each of the five ML classifiers is 
trained to identify the manufacturer (DD versus FCFD) using native images alone, based on radiomics features. 
These five ML classifiers are then tested using new and independent testing sets, with both native and fake CXR. 
Correct classification of native images (nDD and nFCFD) suggests the identification of the original manufacturer 
type (DD and FCFD, respectively). As ML classifiers accurately learn to identify the manufacturer using native 
images, if GAN correctly translates the texture from one manufacturer to the other, the correct identification of the 
manufacturer for fake images means the identification of the translated manufacturer type (eg, original FCFD image 
translated to DD [ie, fDD] would be recognized as DD type). Significance level testing is assessed by positive 
ranked Wilcoxon using 10-fold cross-validation. B. Manufacturer (DD or FCFD) classification by experienced 
radiologists. As for ML classifiers, correct identification of the manufacturer for native images (nDD and nFCFD) 
means the identification of the original constructor, while the correct identification of the manufacturer for fake 
images (fDD and fFCFD) means the identification of the translated manufacturer type. Significance level is derived 
from permutation testing. All accuracies are expressed in % and are statistically above chance (P < .01, for ML and 
radiologist classification). nDD = native DD, nFCFD = native FCFD, fDD = fake DD, f,CFD fake FCFD. SVM = 
support vector machine, LogReg = logistic regression, LDA = linear discriminant analysis, QDA = quadratic 
discriminant analysis, RFo = random forest. 
 


