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Appendix E1 

Case Selection 
We identified potential patients with diseases involving deep gray matter structures from a 
search of institutional radiology archives (mPower, Nuance Communications, Burlington, Mass) 
of studies performed between January 2008 and January 2018 with search terms for each of the 
diagnostic entities and deep gray matter structures. Initial searches resulted in 348 potential 
patients (Fig 1). The diagnoses of potential patients were validated by consensus among two 
neuroradiologists (I.M.N., S.M.) through clinical chart review, pathology when available and 
analysis of other available imaging data, including follow-up imaging studies. Of these potential 
patients, 23 were excluded due to incorrect initial diagnoses (with 7 being reassigned to one of 
the other inclusion diagnoses) and 21 were excluded due to insufficient information to confirm 
diagnosis. To select the specific examination from each patient, the first diagnostic MRI 
performed was selected, with three being unavailable due to the MRI being performed prior to 
institutional review board (IRB)-approved date range. Potential cases were then further narrowed 
down by excluding cases without T1 imaging (n = 24; T1 images being required for the tissue 
segmentation and anatomic parcellation), severe motion artifacts (n = 23), cases with other 
secondary pathologic diagnoses other than a mild degree of chronic white matter small vessel 
ischemic disease (n = 28), and cases where the diagnostic findings were outside of the deep gray 
matter (n = 21), which resulted in a final sample of 212 cases (Table 1). An additional 178 cases 
were included for training of the CNNs from a related study of diseases involving the cerebral 
hemispheres (18), which initially consisted of 279 possible patients. 

Two academic neuroradiologists (I.M.N., S.M.) classified the 36 diagnostic entities as 
‘common’, ‘moderately rare’ or ‘rare’ in regard to the relative frequency in which they are 
diagnosed on brain MRI studies at our tertiary care center. The classification of prevalence was 
not specific to the diagnosis being present in deep gray matter (ie, if the disease was considered 
common but rarely found in deep gray matter, it was still considered a common disease). 

Appendix E2 

MRI Data Availability 
Of the 212 deep gray matter cases, T1-weighted images were acquired in the axial plane in 
86.7% of cases and in the sagittal plane in 13.3% of cases. Of the selected cases, 89.2% included 
axial T1 postcontrast, 98.6% axial FLAIR, 74.1% axial GRE, 99.1% DW, and 99.1% ADC 
images. Clinical MR images were collected from our health system PACS, which included 
outside studies submitted to our PACS for secondary interpretation between January 2008 and 
January 2018. The 390 MRI studies (212 deep gray matter cases and 178 used to supplement the 
CNNs) were obtained from 35 different physical scanners, 4 scanner manufacturers, and 16 
unique scanner models (Table 2), noting that 97% of the data were acquired from Siemens 
(Munich, Germany) and GE Healthcare (Chicago, Ill) with fewer cases from Philips 
(Amsterdam, the Netherlands) and Toshiba Medical Systems (Otawara, Japan). There were 80 
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unique acquisition parameters for the T1 images alone (Table 2). For reference, the most 
commonly used acquisition parameters for the T1 image were as follows: repetition time (TR), 
500 msec; echo time (TE), 17 msec; and in-plane resolution, 0.86 × 0.86 mm, with 5-mm thick 
slices, which was used in 25% of cases. 

Appendix E3 

Image Preprocessing, Registration, Tissue Segmentation, and Deep Gray 
Parcellation 
We performed segmentation of brain tissues and deep gray matter structures on the T1 images 
using a customized image processing pipeline utilizing ANTs (Advanced Normalization Tools; 
http://picsl.upenn.edu/software/ants/) (20,21), FSL (FMRIB’s Software Library, 
www.fmrib.ox.ac.uk/fsl) (30), MATLAB (Mathworks, Natick, Mass), and customized Python 
scripts (Python version 3.7). First, the neck portion of the T1 MRI was removed using a custom 
algorithm based on Brain Extraction Tool (BET) (31). This step failed in 7% of the cases due to 
T1 acquisitions containing unexpectedly large nonbrain tissue in older protocols, requiring 
manual intervention. The T1 images were then up-sampled to reduce slice thickness to 1 mm 
using a multimodal patch-based superresolution technique (32). The ANTs cortical thickness 
analysis pipeline was then applied to segment the brain into cerebrospinal fluid, cerebral white 
matter, cortical and deep gray matter, cerebellum and brainstem. Then, the deep gray matter was 
further divided into eight subregions, consisting of left and right caudate, putamen, globus 
pallidus, and thalamus, by assigning each deep gray matter voxel to the closest subcortical label 
in the Automated Anatomic Labeling parcellation (33) that was warped to the space of each 
patient’s up-sampled T1 scan. In addition, a mask of nearby structures including the ventricles, 
hypothalamus, optic chiasm and hippocampus in the OASIS template space (34) was warped to 
each patient and subtracted from the deep gray matter subregions to limit false positive extension 
of the deep gray matter into these structures. Morphometry correction was applied to generate 
the final segmentation of the subregions. Rigid registration (6 degrees of freedom) was 
performed to register each of the other modalities to the up-sampled T1 image of the same 
patient. In the end, the different tissue types and deep gray subregions were transformed and 
resampled to the native space of each MR sequence. 

Appendix E4 

Convolutional Neural Networks for Abnormal T1, FLAIR, and GRE Signal 
For prediction of abnormal signal on T1, FLAIR and GRE MRI studies, we developed and 
trained customized 3D U-Nets (21–23) for each sequence, in a similar fashion as the FLAIR U-
Net described in Duong et al (24) (Fig 3, B). To provide segmentation masks for the training 
data, all T1, FLAIR and GRE lesions were hand-segmented by a radiologist (J.D.R. or A.M.R.) 
using ITK-SNAP (http://www.itksnap.org) (35). The FLAIR U-Net was supplemented by an 
additional 178 hand-segmented FLAIR MRI studies (total n = 387) and the GRE U-Net was 
supplemented with an additional 92 segmented GRE MRI studies (total n = 249) of lesions of 
various etiologies involving the cerebral hemispheres (18). 

Preprocessing for input into the CNNs included brain extraction, followed by intensity 
normalization by the mean and standard deviation. Next, images were resampled to 1 mm3 
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isotropic resolution via linear interpolation. The images were then augmented using elastic 
transformations (36), including rotate, flip and skew, with small random affine transformations 
stacked on top of small random free-form deformations such that each imaging volume was 
augmented a total of three times. The augmented images were then split into 96 × 96 × 96-mm 
cubes (“3D patches”) that were used as input into the CNN. 

The network architecture was implemented with TensorFlow (37) (CUDA version 
9.2.148) on an NVIDIA Titan Xp GPU (NVIDIA, Santa Clara, Calif; 12 GB memory). The 3D 
U-Net architecture consisted of four consecutive down-sampled blocks, followed by four 
consecutive up-sampled blocks (Fig 3, B). We used batch normalization for regularization and 
the rectified linear unit for nonlinearity. For down-sampling and up-sampling, the network used a 
stride-2 convolution and 2-stride deconvolution. A 3 × 3 × 3 convolutional kernel was applied 
across the network for each layer. In the down-sampling block, we applied a dilation factor of 
two in all convolutional layers. We applied a cross-link between corresponding up-sampling and 
down-sampling blocks as well as a residual connection between subsequent layers with number 
of features matched by a plain 1 × 1 × 1 convolution. After the final up-sampling block, three 
additional convolutional, rectified linear unit, batched-normalized (conv-ReLu-bn) layers were 
added, ending with a normalized exponential (softmax) head function. We utilized standard 
cross-entropy loss with an Adam optimizer (38) and a learning rate of 10−4. A batch consisted of 
six patches. The networks were trained for 20–50 epochs over the course of 1–3 days, with 
training halted after training loss plateaued. No hyperparameter optimization was performed as 
training was only performed once for each network and the network weights were applied to the 
test cases only once. During training, the 3D patches were randomly sampled across the full 
brain volumes. To prevent sample imbalance, the number of patches that included abnormal 
signal was equal to the number that did not have abnormal signal. During testing, the brain 
volume was densely sampled with the cubes using a step size of 32 in each direction, resulting in 
a 64 pixel overlap between cubes. The overlapped segmentation predictions were then averaged. 

Appendix E5 

Abnormal Signal Detection for Enhancement and Restricted Diffusion 
Detection of abnormal enhancement and restricted diffusion relied on analysis of the voxel 
intensities within deep gray matter subregions relative to the mean intensity of all deep and 
cortical gray matter voxels. To detect enhancement, voxels were required to be 2.5 standard 
deviations higher than mean signal on the subtraction map performed between the rigidly aligned 
T1 and T1-post images (Fig 3, D) and 1.5 standard deviations higher than the mean signal on the 
T1-post images. Voxels with restricted diffusion were detected by masking voxels with 
intensities that were 2.5 standard deviations above the mean gray matter intensity on the high b 
value DW image and 1.0 standard deviations below the mean gray matter intensity on the ADC 
images (Fig 3, D). These thresholds were based on minimizing false positives in the training 
patients. 
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Appendix E6 

Thresholding of Abnormal Signal Maps in Deep Gray Subregions 
To consider the signal derived from the U-Nets (T1, FLAIR, GRE) or voxel-wise methods 
(enhancement, diffusion) to be abnormal, modality- and subregion-specific thresholds were set 
for abnormal voxel percentage. The thresholds were chosen based on the training cases, such that 
they resulted in the highest accuracy for each feature within the training cases, and were then 
applied to the test cases. This fine-tuning of thresholds in the training sample allowed for the 
pipeline to be robust in the presence of a minimal amount of abnormal signal due to noise or 
normal variation, minimizing false positives. This process also resulted in ignoring abnormal 
GRE signal detected in the globi pallidi due to the frequency of physiologic mineral deposition 
resulting in reduced signal that would be considered abnormal in other regions of the brain. 
Thresholds varied across subregions between 2.0% and 4.5% of regional voxels for 
enhancement, 0.5% and 3.5% for restricted diffusion, 1.0% and 3.0% for increased or decreased 
on T1, 2.0% and 4.0% for increased FLAIR, and 3.0% and 3.5% for decreased on GRE. For 
GRE, the feature state “high” reflected cases where more than 20% of the voxels had abnormal 
susceptibility across all the deep gray structures excluding globus pallidus. 

Appendix E7 

Anatomic Subregion and Spatial Features 
The four anatomic subregion features (caudate, putamen, globus pallidus, and thalamus) were 
considered to be involved if abnormal signal was present above the threshold for any of the 
modalities in either the right or the left side. The combined maps of abnormal signal across all 
modalities, masked by the deep gray subregions, were used to compute additional spatial pattern 
features, consisting of bilaterality and symmetry. Abnormalities were considered unilateral if 
there was a greater than 20-fold difference in abnormal signal volume between right- and left-
sided subregions. Abnormalities were considered bilateral and symmetric if there was a less than 
fivefold difference in the ratio of abnormal signal detected in left versus right hemispheres within 
at least one set of paired deep gray subregions. These thresholds were determined based on 
optimizing performance of these features in the training sample relative to attending-derived 
reference standard features. 

Appendix E8 

Clinical Features 
A review of electronic medical records was performed to obtain each patient’s age, sex, acuity of 
the patient’s clinical presentation and whether that patient was known to be 
immunocompromised at the time of imaging. These four clinical features were chosen based on 
their broad utility in helping develop a differential diagnosis for this set of diseases. Acute 
symptoms were defined as the predominant symptoms that necessitated the MRI occurring less 
than 7 days prior to imaging, subacute between 7 days and 3 months, and chronic and/or 
asymptomatic if the patient’s predominant symptoms had been present for longer than 3 months 
or the MRI had been ordered based on further evaluation of an incidental finding or screening 
due to an underlying disease. 
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Appendix E9 

Bayesian Network Construction and Analysis 
The probabilities of each feature for each disease for the Bayesian network were determined by 
the consensus of four neuroradiologists and published statistics in a comprehensive 
neuroradiology textbook (39), when available. These probabilities were then tuned to 
approximate a weighted average of the expert-derived probabilities and frequency of feature 
states seen in the training sample. The full set of probabilities used for the analysis are displayed 
in Table E2. For the purposes of this experiment, the prior probabilities for each disease and 
normal were set to be equal to each other to approximate their relative frequency in the study 
population. The Bayesian network was implemented with custom Python scripts performing 
simple naïve Bayesian inference (https://github.com/rauscheck/radai). For instances where the 
feature could not be calculated, such as a missing sequence, the feature received an N/A and was 
not used as input to the Bayesian network. 

Appendix E10 

Attending-derived Reference Standard Imaging Features 
To evaluate the performance of the image pipeline for detecting the presence of signal features 
(T1, FLAIR, susceptibility, enhancement, restricted diffusion), anatomic subregion (caudate, 
putamen, globi pallidi, thalami) and spatial features (bilateral, symmetric) we determined 
performance relative to the reference standard consensus of three radiologists (I.M.N., S.M., 
J.D.R.) evaluating each of the cases. Any discrepancies between the academic neuroradiologists 
regarding the imaging features and diagnoses were resolved through consensus after rereviewing 
the images. The prevalence of each of the features for each of the diagnostic entities is displayed 
in Table E1. 

Appendix E11 

Clinical Validation 
To validate the performance of the AI system, four radiology residents, two neuroradiology 
fellows, two general radiologists, and two academic neuroradiology attending physicians 
reviewed the cases and provided their T3DDx from the 35 possible pathologic diagnoses plus 
normal. The academic neuroradiologists subsequently provided reference standard imaging 
features for each case to validate the performance of the image-processing portion of the 
pipeline. The test cases were copied into anonymized accession numbers and then displayed in a 
standard fashion in the clinical PACS (Sectra AB, Linköping, Sweden). The same four clinical 
features used in the Bayesian network were made available to each reader when viewing the 
cases, except that radiologists were provided with the exact age of the patient and the Bayesian 
network received a thresholded age as input. All radiologists were told that the frequency of all 
diagnoses was approximately equal in the study. 
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Appendix E12 

Receiver Operating Characteristics 
This ordinal scale of confidence for each diagnosis (top 1, top 2, top 3) was used to construct 
nonparametric ROC curves according to classic signal detection theory as applied to medical 
decision making (40), with the AUC used as a measure of criterion-independent performance. 
Nonparametric AUCs were calculated with 95% confidence intervals determined by 100 
bootstrapping samples on this nonparametric ROC curve, using the MATLAB routine 
“paramROC” (http://www.mathworks.com/matlabcentral/fileexchange/39127-parametric-roc-
curve). The significance of the difference between AUCs for different groups was tested using 
the DeLong test (25). The AUCs were averaged across each group for purposes of visualization 
in Figure 5, C[ID]FIG5[/ID]. 
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Table E1. Prevalence of imaging features for each of the diseases included in the study. 
Disease Chronicity Immun. T1 T2-FLAIR R 

Diffusion 
Suscept Enhance Caudate Putamen GP Thala-

mus 
Bilateral Symmet-

ric 
Abscess 100% acute 50% 50% inc, 

100% dec 
100% inc, 
50% dec 

100% 100% 100% 100% 100% 100% 50% 50% 0% 

Anoxic Brain Injury: 
Acute 

100% acute 0% 0% inc, 
0% dec 

100% inc, 
0% dec 

86% 0% 0% 100% 100% 63% 29% 100% 100% 

Anoxic Brain Injury: 
Chronic 

100% chronic 0% 100% inc, 
50% dec 

100% inc, 
0% dec 

0% 50% 0% 100% 100% 50% 50% 100% 100% 

Anoxic Brain Injury: 
Subacute 

100% subacute 0% 0% inc, 
0% dec 

100% inc, 
0% dec 

75% 0% 25% 100% 100% 75% 50% 100% 100% 

Artery of Percheron 
Infarct 

100% acute 0% 0% inc, 
100% dec 

100% inc, 
0% dec 

100% 0% 0% 0% 0% 0% 100% 100% 0% 

Bilateral Thalamic 
Glioma 

100% subacute 0% 0% inc, 
100% dec 

100% inc, 
0% dec 

0% 0% 10% 50% 0% 0% 100% 100% 50% 

Calcium Deposition/ 
Fahr’s disease 

100% chronic 0% 100% inc, 
29% dec 

71% inc, 
29% dec 

0% 100% 0% 71% 86% 100% 71% 100% 100% 

Carbon Monoxide: Acute 100% acute 0% 0% inc, 
50% dec 

100% inc, 
0% dec 

100% 0% 0% 0% 0% 100% 0% 100% 100% 

Carbon Monoxide: 
Chronic 

100% chronic 0% 100% inc, 
0% dec 

100% inc, 
50% dec 

0% 50% 0% 0% 0% 100% 0% 100% 100% 

Carbon Monoxide: 
Subacute 

100% subacute 0% 50% inc, 
0% dec 

100% inc, 
0% dec 

66% 100% 100% 0% 0% 100% 0% 100% 75% 

Central Nervous System 
Lymphoma 

9% acute, 82% 
sub, 9% chronic 

27% 27% inc, 
100% dec 

100% inc, 
0% dec 

91% 0% 100% 82% 91% 91% 91% 55% 0% 

Creutzfeldt-Jakob 
Disease 

64% sub, 36% 
chronic 

0% 0% inc, 
18% dec 

100% inc, 
0% dec 

100% 0% 0% 100% 100% 0% 73% 100% 91% 

Cryptococcus 100% subacute 100% 50% inc, 
50% dec 

100% inc, 
0% dec 

100% 0% 100% 100% 100% 100% 100% 100% 50% 

Deep Vein Thrombosis: 
Acute 

100% acute 0% 0% inc, 
100% dec 

100% inc, 
0% dec 

50% 100% 0% 100% 100% 100% 100% 50% 0% 

Deep Vein Thrombosis: 
Chronic 

100% chronic 0% 67% inc, 
33% dec 

67% inc, 
100% dec 

0% 100% 0% 67% 33% 67% 33% 67% 0% 

Deep Vein Thrombosis: 
Subacute 

100% subacute 33% 33% inc, 
100% dec 

100% inc, 
0% dec 

67% 100% 33% 100% 100% 100% 100% 67% 33% 

Encephalitis 33% acute, 67% 
subacute 

50% 25% inc, 
50% dec 

100% inc, 
0% dec 

25% 0% 25% 100% 100% 100% 75% 100% 75% 

Glioma: High Grade 18% acute, 82% 
subacute 

0% 9% inc, 
100% dec 

100% inc, 
27% dec 

73% 71% 91% 9% 45% 55% 100% 0% 0% 

Glioma: Low Grade 14% sub, 86% 
chronic 

0% 0% inc, 
71% dec 

100% inc, 
0% dec 

0% 0% 29% 14% 29% 14% 100% 0% 0% 

Hemorrhage: Acute 100% acute 0% 100% inc, 
100% dec 

100% inc, 
100% dec 

88% 100% 0% 88% 100% 100% 88% 25% 0% 

Hemorrhage: Chronic 100% chronic 0% 83% inc, 
100% dec 

83% inc, 
83% dec 

0% 100% 0% 67% 100% 67% 50% 0% 0% 
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Hemorrhage: Subacute 100% subacute 0% 100% inc, 
50% dec 

100% inc, 
83% dec 

67% 100% 0% 67% 50% 67% 67% 33% 0% 

Infarct: Acute 100% acute 0% 10% inc, 
70% dec 

100% inc, 
0% dec 

100% 22% 0% 50% 50% 40% 40% 0% 0% 

Infarct: Chronic 100% chronic 13% 25% inc, 
88% dec 

100% inc, 
50% dec 

0% 80% 0% 88% 75% 38% 13% 0% 0% 

Infarct: Subacute 20% acute, 80% 
subacute 

0% 70% inc, 
70% dec 

100% inc, 
0% dec 

70% 20% 90% 50% 60% 60% 30% 0% 0% 

Manganese Deposition 22% acute, 22% 
sub, 56% 
chronic 

33% 100% inc, 
0% dec 

0% inc, 
0% dec 

0% 11% 0% 0% 0% 100% 11% 100% 100% 

Metastasis 36% acute, 18% 
sub, 45% 
chronic 

45% 45% inc, 
82% dec 

100% inc, 
0% dec 

45% 38% 100% 55% 100% 55% 91% 91% 0% 

Neuro Behçet’s Disease 100% subacute 100% 0% inc, 
100% dec 

100% inc, 
0% dec 

0% 0% 0% 50% 50% 50% 100% 50% 0% 

Neurofibromatosis type 
1 

100% chronic 0% 0% inc, 
0% dec 

100% inc, 
0% dec 

0% 0% 0% 0% 0% 100% 50% 0% 0% 

Neurosarcoidosis 17% acute, 83% 
subacute 

0% 0% inc, 
50% dec 

100% inc, 
0% dec 

17% 0% 83% 67% 67% 83% 100% 83% 17% 

Nonketotic 
Hyperglycemia 

50% acute, 50% 
subacute 

0% 100% inc, 
0% dec 

0% inc, 
0% dec 

0% 100% 0% 50% 100% 50% 0% 100% 50% 

Seizures 100% acute 0% 0% inc, 
0% dec 

100% inc, 
0% dec 

100% 0% 0% 100% 100% 0% 50% 100% 50% 

Toxoplasmosis 44% acute, 56% 
subacute 

82% 45% inc, 
64% dec 

100% inc, 
9% dec 

73% 80% 91% 73% 91% 100% 82% 55% 0% 

Wernicke 
Encephalopathy 

100% acute 0% 0% inc, 
0% dec 

100% inc, 
0% dec 

63% 0% 14% 0% 0% 0% 100% 100% 88% 

Wilson’s Disease 50% subacute, 
50% chronic 

0% 100% inc, 
0% dec 

50% inc, 
0% dec 

100% 0% 50% 50% 50% 100% 100% 100% 100% 

Normal 33% acute, 33% 
sub, 33% 
chronic 

10% 0% inc, 
0% dec 

0% inc, 
0% dec 

0% 0% 0% 0% 0% 0% 0% 0% 0% 

Note.—dec = decreased, GP = globus pallidus, Immun = immunocompromised, inc = increased, R Diffusion = reduced diffusion, sub = subacute, Suscept = 
susceptibility, T1 = T1-weighted, T2-FLAIR = T2-weighted fluid-attenuated inversion recovery. 

Table E2. Expert consensus probabilities (%) of imaging and clinical features for the 36 diagnostic entities 
included in the study. 

 Sex Age Chronicity Immunocom
promised 

T1_Increased T1_Decrease
d 

T2_FLAIR_In
creased 

T2_FLAIR_De
creased 

Disease Male Fem
ale 

Young 
(<40) 

Old 
(≥40) 

Acute Sub-
acute 

Chron-
ic 

Yes No Increased 
Normal 

Decreased 
Normal 

Increased 
Normal 

Decreased 
Normal 

Normal 50 50 50 50 34 33 33 10 90 10 90 10 90 10 90 10 90 
Abscess 50 50 30 70 80 19 1 50 50 60 40 60 40 85 15 30 70 
Artery_of_Percheron_acute 50 50 10 90 95 4 1 10 90 15 85 60 40 89 11 5 95 



 

Page 10 of 13 

Bilateral_Thalamic_Glioma 50 50 50 50 5 60 35 10 90 5 95 68 32 78 22 5 95 
Calcium_Deposition 50 50 20 80 5 15 80 10 90 75 25 25 75 50 50 30 70 
Carbon_Monoxide_acute 50 50 40 60 95 4 1 10 90 10 90 45 55 89 11 11 89 
Carbon_Monoxide_chronic 50 50 40 60 1 4 95 10 90 30 70 60 40 79 21 21 79 
Carbon_Monoxide_subacute 50 50 40 60 30 69 1 10 90 70 30 30 70 89 11 11 89 
Creutzfeldt_Jakob 50 50 5 95 1 60 39 10 90 5 95 47 53 75 25 10 90 
Cryptococcus 50 50 50 50 30 65 5 95 5 20 80 60 40 85 15 6 94 
Deep_Vein_Thrombosis_acute 25 75 30 70 95 4 1 10 90 25 75 60 40 90 10 15 85 
Deep_Vein_Thrombosis_chronic 25 75 30 70 1 4 95 10 90 75 25 35 65 50 50 50 50 
Deep_Vein_Thrombosis_subacute 25 75 30 70 2 95 3 10 90 50 50 60 40 85 15 10 90 
Encephalitis 50 50 50 50 30 69 1 50 50 30 70 50 50 80 20 20 80 
Glioma_High_Grade 70 30 30 70 20 60 20 10 90 25 75 85 15 90 10 21 79 
Glioma_Low_Grade 50 50 50 50 5 15 80 10 90 10 90 50 50 89 11 5 95 
Hemorrhage_acute 60 40 20 80 95 4 1 10 90 40 60 50 50 80 20 30 70 
Hemorrhage_chronic 60 40 20 80 1 4 95 10 90 50 50 50 50 50 50 50 50 
Hemorrhage_subacute 60 40 20 80 2 95 3 10 90 80 20 30 70 70 30 40 60 
Hypoxic_Ischemic_Encephalopathy_acute 60 40 50 50 95 4 1 10 90 10 90 40 60 85 15 10 90 
Hypoxic_Ischemic_Encephalopathy_chronic 60 40 50 50 1 4 95 10 90 75 25 35 65 85 15 10 90 
Hypoxic_Ischemic_Encephalopathy_subacut
e 

60 40 50 50 2 95 3 10 90 25 75 25 75 85 15 10 90 

Infarct_acute 50 50 10 90 95 4 1 10 90 10 90 50 50 83 17 5 95 
Infarct_chronic 50 50 10 90 1 4 95 10 90 35 65 55 45 60 40 45 55 
Infarct_subacute 50 50 10 90 30 69 1 10 90 53 47 47 53 83 17 5 95 
Lymphoma 50 50 20 80 15 70 15 40 60 25 75 75 25 85 15 30 70 
Manganese_Deposition 50 50 10 90 20 20 60 30 70 94 6 5 95 20 80 20 80 
Metastases 50 50 10 90 30 20 50 50 50 40 60 70 30 85 15 15 85 
Neuro_Behcet_Disease 50 50 50 50 10 80 10 75 25 10 90 50 50 89 11 5 95 
Neurofibromatosis1 50 50 90 10 10 10 80 10 90 15 85 10 90 84 16 5 95 
Nonketotic_Hyperglycemia 50 50 20 80 45 45 10 10 90 90 10 10 90 10 90 10 90 
Sarcoidosis 20 80 50 50 20 75 5 10 90 10 90 50 50 90 10 10 90 
Seizures 50 50 50 50 90 9 1 10 90 10 90 25 75 85 15 10 90 
Toxoplasmosis 50 50 50 50 48 48 4 80 20 50 50 60 40 80 20 20 80 
Wernicke_Encephalopathy 50 50 20 80 95 4 1 10 90 5 95 7 93 85 15 10 90 
Wilson_Disease 50 50 70 30 5 45 50 10 90 90 10 10 90 50 50 10 90 
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 Enhance-
ment 

Diffusion Susceptibility Bilateral Symmetric Caudate Globus_ 
Pallidus 

Putamen Thalamus 

Disease Yes No Yes No Yes High No Yes No Yes No Yes No Yes No Yes No Yes No 
Normal 10 90 10 90 4 1 95 10 90 10 90 5 95 5 95 5 95 5 95 
Abscess 95 5 95 5 40 20 40 30 70 5 95 50 50 50 50 50 50 50 50 
Artery_of_Percheron_acute 10 90 80 20 10 0 90 95 5 50 50 5 95 5 95 5 95 95 5 
Bilateral_Thalamic_Glioma 50 50 10 90 10 5 85 95 5 30 70 5 95 10 90 5 95 95 5 
Calcium_Deposition 5 95 5 95 50 25 25 90 10 80 20 60 40 70 30 70 30 70 30 
Carbon_Monoxide_acute 30 70 90 10 9 1 90 80 20 70 30 10 90 95 5 30 70 10 90 
Carbon_Monoxide_chronic 5 95 5 95 40 10 50 80 20 70 30 40 60 95 5 40 60 25 75 
Carbon_Monoxide_subacute 80 20 10 90 30 20 50 80 20 70 30 20 80 95 5 40 60 20 80 
Creutzfeldt_Jakob 5 95 95 5 19 1 80 70 30 60 40 90 10 30 70 90 10 70 30 
Cryptococcus 90 10 50 50 20 15 65 90 10 30 70 70 30 70 30 70 30 70 30 
Deep_Vein_Thrombosis_acute 10 90 50 50 50 15 30 80 20 30 70 50 50 60 40 60 40 90 10 
Deep_Vein_Thrombosis_ chronic 5 95 5 95 50 20 30 80 20 30 70 50 50 60 40 60 40 90 10 
Deep_Vein_Thrombosis_ subacute 50 50 50 50 50 20 30 80 20 30 70 50 50 60 40 60 40 90 10 
Encephalitis 30 70 35 65 15 10 75 80 20 50 50 80 20 80 20 80 20 60 40 
Glioma_High_Grade 80 20 40 60 40 10 50 30 70 20 80 20 80 50 50 50 50 80 20 
Glioma_Low_Grade 30 70 30 70 9 1 90 20 80 5 95 20 80 30 70 30 70 80 20 
Hemorrhage_acute 1 99 60 40 20 79 1 30 70 10 90 60 40 80 20 80 20 80 20 
Hemorrhage_chronic 1 99 5 95 69 30 1 20 80 10 90 60 40 80 20 80 20 80 20 
Hemorrhage_subacute 20 80 50 50 39 60 1 20 80 10 90 60 40 80 20 80 20 80 20 
Hypoxic_Ischemic_Encephalopathy_acute 5 95 70 30 9 1 90 80 20 60 40 80 20 60 40 90 10 50 50 
Hypoxic_Ischemic_Encephalopathy_chronic 5 95 5 95 20 10 70 80 20 60 40 80 20 60 40 90 10 50 50 
Hypoxic_Ischemic_Encephalopathy_subacut
e 

5 95 70 30 15 5 80 80 20 60 40 80 20 60 40 90 10 50 50 

Infarct_acute 20 80 85 15 24 1 75 20 80 10 90 50 50 50 50 50 50 50 50 
Infarct_chronic 5 95 5 95 35 15 50 20 80 10 90 50 50 50 50 50 50 50 50 
Infarct_subacute 80 20 40 60 45 5 50 20 80 20 80 50 50 50 50 50 50 50 50 
Lymphoma 90 10 60 40 9 1 90 50 50 35 65 60 40 60 40 60 40 60 40 
Manganese_Deposition 5 95 5 95 20 10 70 90 10 90 10 10 90 95 5 30 70 50 50 
Metastases 80 20 50 50 45 5 50 60 40 30 70 50 50 60 40 60 40 60 40 
Neuro_Behçet_Disease 20 80 20 80 9 1 90 60 40 35 65 50 50 50 50 50 50 75 25 
Neurofibromatosis1 5 95 5 95 9 1 90 50 50 50 50 50 50 70 30 50 50 50 50 
Nonketotic_Hyperglycemia 10 90 5 95 45 5 50 70 30 50 50 50 50 50 50 90 10 10 90 
Sarcoidosis 90 10 5 95 9 1 90 90 10 30 70 60 40 60 40 60 40 70 30 
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Seizures 5 95 90 10 4 1 95 70 30 50 50 60 40 50 50 60 40 70 30 
Toxoplasmosis 80 20 50 50 40 25 35 60 40 10 90 60 40 70 30 60 40 60 40 
Wernicke_Encephalopathy 30 70 40 60 9 1 90 90 10 90 10 10 90 10 90 10 90 90 10 
Wilson_Disease 30 70 60 40 20 10 70 90 10 90 10 50 50 90 10 70 30 70 30 

Note.—T1 = T1-weighted, T2-FLAIR = T2-weighted fluid-attenuated inversion recovery. 
 
Table E3. Accuracy for correct top 3 differential diagnosis for each of the 36 diagnostic entities. 

Disease Prevalence Residents General Rads Neuro Fellows Acad Attend Automated 
High Grade Glioma Common 83% 67% 100% 100% 100% 
Low Grade Glioma Common 75% 33% 83% 83% 100% 
Hemorrhage: Chronic Common 100% 67% 83% 100% 67% 
Infarct: Acute Common 100% 83% 100% 100% 100% 
Infarct: Subacute Common 58% 67% 100% 100% 100% 
Infarct: Chronic Common 75% 100% 100% 100% 100% 
Central Nervous System Lymphoma Common 58% 67% 67% 100% 67% 
Manganese Deposition Common 50% 33% 67% 100% 100% 
Metastasis Common 67% 67% 67% 100% 100% 
Normal Common 100% 65% 95% 90% 100% 
Abscess Moderate 50% 100% 50% 75% 0% 
Calcium Depositon/Fahr’s disease Moderate 73% 83% 83% 100% 100% 
Creutzfeld-Jacob Disease Moderate 50% 17% 67% 83% 100% 
Hemorrhage: Acute Moderate 83% 50% 100% 100% 100% 
Hemorrhage: Subacute Moderate 67% 67% 83% 83% 100% 
Anoxic Brain Injury: Acute Moderate 75% 100% 83% 100% 100% 
Anoxic Brain Injury: Subacute Moderate 42% 50% 33% 83% 67% 
Toxoplasmosis Moderate 42% 50% 17% 100% 67% 
Wernickes Encephalopathy Moderate 58% 25% 100% 100% 100% 
Artery of Percheron Infarct Rare 75% 75% 100% 100% 100% 
Bilateral Thalamic Glioma Rare 75% 50% 100% 100% 50% 
Carbon Monoxide: Acute Rare 75% 67% 67% 100% 100% 
Carbon Monoxide: Subacute Rare 25% 80% 100% 100% 33% 
Carbon Monoxide: Chronic Rare 38% 75% 100% 100% 100% 
Cryptococcus Rare 25% 25% 75% 75% 50% 
Deep Vein Thrombosis: Acute Rare 13% 25% 50% 50% 100% 
Deep Vein Thrombosis: Subacute Rare 17% 33% 33% 33% 100% 
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Deep Vein Thrombosis: Chronic Rare 42% 17% 17% 33% 100% 
Encephalitis Rare 8% 0% 83% 33% 33% 
Anoxic Brain Injury: Chronic Rare 50% 75% 0% 75% 100% 
Neuro Behçet’s Disease Rare 38% 50% 0% 25% 100% 
Neurofibromatosis type 1 Rare 13% 0% 25% 50% 100% 
Nonketotic Hyperglycemia Rare 0% 25% 100% 100% 100% 
Neurosarcoidosis Rare 42% 0% 33% 83% 67% 
Seizures Rare 13% 0% 75% 75% 50% 
Wilson’s Disease Rare 0% 25% 75% 75% 50% 

 


