

Supplementary information

Potential mimicry of viral and pancreatic β cell antigens through non-spliced and *cis*-spliced *zwitter* epitope candidates in Type 1 Diabetes

^{\$} Correspondence to: <u>michele.mishto@kcl.ac.uk</u>, <u>jliepe@mpibpc.mpg.de.</u>

Table S1	List of virus strains included in the study		
Table S2	Peptide-HLA-I binding affinity, reported as IC50 and used as cut-offs		
Table S3	Gonzalez-Duque's T1D-associated antigen list		
Table S4	List of viral-human zwitter non-spliced peptide candidates		
Table S5	List of viral-human zwitter cis-spliced peptide candidates		
Figure S1	Peptide-HLA-I binding affinity distribution of the 14 HLA-I alleles enror		
	in the study		
Figure S2	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-A*01:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S3	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-A*03:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S4	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-A*11:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S5	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-A*23:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S6	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-A*24:02-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S7	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-B*07:02-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S8	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-B*08:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S9	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-B*15:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S10	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-B*35:01-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		
Figure S11	Human pancreatic islets and mTECs' mRNA expression of antigens		
	potentially carrying HLA-B*39:06-restricted viral-human non-spliced and		
	cis-spliced zwitter peptide candidates		

Figure S12	Human pancreatic islets and mTECs' mRNA expression of antigens
	potentially carrying HLA-B*40:01-restricted viral-human non-spliced and
	cis-spliced zwitter peptide candidates
Figure S13	Human pancreatic islets and mTECs' mRNA expression of antigens
	potentially carrying HLA-B*44:02-restricted viral-human non-spliced and
	cis-spliced zwitter peptide candidates
Figure S14	Human pancreatic islets and mTECs' mRNA expression of antigens
	potentially carrying HLA-B44:03-restricted viral-human non-spliced and
	cis-spliced zwitter peptide candidates

T1D-associated cis-spliced zwitter epitope candidates

Virus	Acronym	Strain
Coxsackievirus B1	CVB1	Japan
Coxsackievirus B4	CVB4	E2
Epstein-Barr virus	EBV	B95 8 HHV 4
Human cytomegalovirus	HCMV	AD169
Human herpesvirus 6A	HHV-6A	6A
Human herpesvirus 6B	HHV-6B	6B
Human parechovirus 2	HPeV2	Williamson
Rotavirus C	RVC	Isolate RVC

Table S1. List of virus strains included in the study. Viruses included in this study are listed with their respective strains and acronyms.

HLA complex	IC50 cut-off (nM)
HLA-A*02:01	500.0
HLA-A*01:01	1486.5
HLA-A*03:01	482.3
HLA-A*11:01	132.2
HLA-A*23:01	263.7
HLA-A*24:02	519.9
HLA-B*07:02	239.3
HLA-B*08:01	1687.7
HLA-B*15:01	357.7
HLA-B*35:01	153.9
HLA-B*39:06	5574.7
HLA-B*40:01	171.0
HLA-B*44:02	550.0
HLA-B*44:03	650.2

Table S2. Peptide-HLA-I binding affinity, reported as IC₅₀ and used as cut-offs. These cut-offs corresponded to 91.4%ile of peptides present in the HLA-I immunopeptidome databases of IEDB database [1].

Table S3. Gonzalez-Duque's T1D-associated antigen list. This list of T1D-associated antigens was published by Gonzalez-Duque and colleagues [2] as Figure 2B in the cognate paper. The file is accessible as Supplementary material in Frontiers in Immunology.

 Table S4. List of viral-human zwitter non-spliced peptide candidates.
 This list includes viral-human zwitter 9mer viral non-spliced peptides.

 non-spliced peptides.
 The file is accessible in the repository Mendeley dataset: http://dx.doi.org/10.17632/z9g9knjxgw.1

Table S5. List of viral-human *zwitter cis*-spliced peptide candidates. This list includes theoretical *zwitter* 9mer viral non-spliced / human *cis*-spliced, viral *cis*-spliced / human non-spliced and viral *cis*-spliced / human *cis*-spliced peptides. Unless differently stated, they are all grouped under the definition of viral-human *zwitter cis*-spliced peptide candidates in this manuscript. The file is accessible in the repository Mendeley dataset: http://dx.doi.org/10.17632/z999knjxgw.1

Figure S1. Peptide-HLA-I binding affinity distribution of the 14 HLA-I alleles enrolled in the study. The distribution of the binding affinity parameter IC₅₀ among the HLA-I immunopeptidomes specific for the HLA-A*01:01, -A*02:01, -A*03:01, -A*11:01, -A23:01, -A*24:02, -B*07:02, -B*08:01, -B*15:01, -B*35:01, -B*39:06, -B*40:01, -B*44:02, -B44:03 alleles as reported in IEDB database. The IC₅₀ was predicted by using NetMHCpan-BA4.0 algorithm [3]. Red lines represent the IC₅₀ cut-off reported in **Table S2**.

Figure S2. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-A*01:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-A*01:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-A*01:01 allele and located in hotspots, according to IEDB database.

Figure S3. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-A*03:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-A*03:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-A*03:01 allele and located in hotspots, according to IEDB database.

Figure S4. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-A*11:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-A*11:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-A*11:01 allele and located in hotspots, according to IEDB database.

Figure S5. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-A*23:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-A*23:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-A*23:01 allele and located in hotspots, according to IEDB database.

Figure S6. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-A*24:02restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-A*24:02 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-A*24:02 allele and located in hotspots, according to IEDB database.

T1D-associated cis-spliced zwitter epitope candidates

Figure S7. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*07:02restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (A) non-spliced and (B) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (A) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*07:02 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*07:02 allele and located in hotspots, according to IEDB database.

Figure S8. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*08:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*08:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*08:01 allele and located in hotspots, according to IEDB database.

Figure S9. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*15:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*15:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*15:01 allele and located in hotspots, according to IEDB database.

Α

BPKM

islets mRNA expression

1000

100

10

0.1

0.01

В

1000

100

0.1

0.01

RPKM

slets mRNA expressior 10

mTec mRNA expression (RPKM) mTec mRNA expression (RPKM) mTec mRNA expression (RPKM) mTec mRNA expression (RPKM) Human_herpesvirus_6B Epstein_Barr_virus_strain_B95_8_HHV_4 Human_herpesvirus_6A Human_cytomegalovirus_strain_AD169 1000 1000 1000 1000 BPKM 100 100 100 100 slets mRNA expression 10 10 10 10 mRNA exp nRNA exp IRNA ext 1 1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 1e-04 0.01 0.1 1 10 100 1000 1e-04 0.01 0.1 10 100 1000 1e-04 0.01 0.1 10 100 1000 1e-04 0.01 0.1 10 100 1000 1 1 1 mTec mRNA expression (RPKM) mTec mRNA expression (RPKM) mTec mRNA expression (RPKM) mTec mRNA expression (RPKM)

Figure S10. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*35:01restricted viral-human non-spliced and cis-spliced zwitter peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (A) non-spliced and (B) cis-spliced viral-human zwitter epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (A) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*35:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*35:01 allele and located in hotspots, according to IEDB database.

Figure S11. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*39:06restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*39:06 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*39:06 allele and located in hotspots, according to IEDB database.

Figure S12. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*40:01restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*40:01 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*40:01 allele and located in hotspots, according to IEDB database.

Figure S13. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*44:02restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*44:02 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*44:02 allele and located in hotspots, according to IEDB database.

Figure S14. Human pancreatic islets and mTECs' mRNA expression of antigens potentially carrying HLA-B*44:03restricted viral-human non-spliced and *cis*-spliced *zwitter* peptide candidates. The scatter plots depict the distribution of RPKM of mRNA of human antigens, as measured by Gonzalez-Duque and colleagues [2] in human pancreatic islets and mTECs, that theoretically can carry (**A**) non-spliced and (**B**) *cis*-spliced viral-human *zwitter* epitope candidates. Scatter plots are divided based on the corresponding theoretical virus origin. In (**A**) only four out of eight viruses are shown because for four viruses no viral-human non-spliced peptide candidates with the required characteristics were estimated. Black dots represent antigens carrying epitope candidates predicted to bind the HLA-B*44:03 allele. Red dots represent antigens carrying epitope candidates predicted to bind the HLA-B*44:03 allele and located in hotspots, according to IEDB database.

References

- [1] R. Vita, S. Mahajan, J.A. Overton, S.K. Dhanda, S. Martini, J.R. Cantrell, D.K. Wheeler, A. Sette, and B. Peters, The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47 (2019) D339-D343.
- [2] S. Gonzalez-Duque, M.E. Azoury, M.L. Colli, G. Afonso, J.V. Turatsinze, L. Nigi, A.I. Lalanne, G. Sebastiani, A. Carre, S. Pinto, S. Culina, N. Corcos, M. Bugliani, P. Marchetti, M. Armanet, M. Diedisheim, B. Kyewski, L.M. Steinmetz, S. Buus, S. You, D. Dubois-Laforgue, E. Larger, J.P. Beressi, G. Bruno, F. Dotta, R. Scharfmann, D.L. Eizirik, Y. Verdier, J. Vinh, and R. Mallone, Conventional and Neo-Antigenic Peptides Presented by beta Cells Are Targeted by Circulating Naive CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab (2018).
- [3] V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, and M. Nielsen, NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol 199 (2017) 3360-3368.