
Supplementary Information

Robust High-dimensional Memory-augmented Neural Networks

Geethan Karunaratne,1, 2, a) Manuel Schmuck,1, 2, a) Manuel Le Gallo,1 Giovanni
Cherubini,1 Luca Benini,2 Abu Sebastian,1, b) and Abbas Rahimi1, c)
1)IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon,
Switzerland.
2)Department of Information Technology and Electrical Engineering, ETH Zürich,
Gloriastrasse 35, 8092 Zürich, Switzerland.

a)These two authors contributed equally
b)Electronic mail: ase@zurich.ibm.com
c)Electronic mail: abr@zurich.ibm.com

1

mailto:ase@zurich.ibm.com
mailto:abr@zurich.ibm.com

SUPPLEMENTARY FIGURES

Supplementary Figure 1: Architecture to implement bipolar key memory using
PCM crossbar arrays

Km×nK2K1K1 Km×nK2
W

or
d
lin

e
D

ri
ve

rs

(1)

(2)

(3)

(4)

(512)

Crossbar Hardware

Software

Analog-to-digital Converter Array

m×n elements

Bipolar Key Memory

H
D

 V
ec

to
r

Max Comparator

8 bits

1 2 m

1
2

n

512 bits

Value Memory

Support Images Query Image

Support Labels

abs
abs
abs

abs
abs
abs

abs
abs
abs

Supplementary Figure 1: The MANN architecture with the bipolar key memory
using analog in-memory computations. This architecture is different from the one
presented in Fig. 3 in the main manuscript for the binary representations in the

following ways: First, the activation function used at the output of the embedding
function in the controller is changed to a sign function, generating bipolar query
and support vectors. Second, the crossbar utilizes twice the number of columns
compared to the binary architecture to store the complementary versions of the

support vectors on the crossbar. This effectively doubles the number of memristive
devices. Third, a regular absolute (abs) function approximates the softabs

sharpening function during inference. Fourth, there are some changes to the
peripheral circuits in the way the original support/query vector are fed from the

controller: the complementary version of it is fed to the wordline drivers in a time
multiplexed manner. Furthermore, the resulting current on the bitline from the

original support vectors is saved in an array of capacitors and subtracted from the
current measured on the corresponding complementary bitline before sending the
net current to the analog-to-digital converter array. The blue columns represent

the original support vectors, whereas the red columns indicate the complementary
versions.

2

Supplementary Figure 2: Robustness of bipolar versus binary architectures

(a) (b)

Binary

Devices = 1024

Dimensionality = 1024

Binary

Devices = 512

Dimensionality = 512

Bipolar

Devices = 1024

Dimensionality = 512

0 10 20 30 40 50 60 70 80 90 100
Conductance Variation (%)

91

92

93

94

95

96

97

98

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

5-way 1-shot problem

0 10 20 30 40 50 60 70 80 90 100
Conductance Variation (%)

88

89

90

91

92

93

94

95

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

100-way 5-shot problem

Supplementary Figure 2: Classification accuracy when using the PCM model as a
function of device conductance variations for the 5-way 1-shot (a) and the 100-way

5-shot problems (b). The bipolar architecture (with dimensionality d = 512 and
hence 1024 devices) is compared against the binary architecture with i) the same
dimensionality (d = 512), and ii) the same number of devices (d = 1024). At zero

or low conductance variations, the binary architecture with 1024-dimension
outperforms the same architecture with 512-dimension. This indicates a loss of

information when the representation dimensionality is lowered from 1024 to 512.
This loss is orthogonal to the loss incurred by non-idealities because conductance
variation is on the lower side. The bipolar architecture on the other hand achieves
a relatively higher accuracy at the lower dimensionality of 512 and retains it even
when extreme conductance variations are presented, compared to the both binary

architectures with the same dimension, or the same number of devices. This implies
that the bipolar architecture is more robust against non-idealities of in-memory
computing for the same power and area constraint. The accuracy distributions
were obtained from 8 test runs each containing 1000 episodes. The error bars
represent one standard deviation of sample distribution on either directions.

3

Supplementary Figure 3: Robustness of similarity measurement for different
vector dimensionalities

= 0.317

d=

d=

d=

d=

d=

d=

d=

(a) (b)

(c) (d)
= 0.5

= 0.2= 0.05

Supplementary Figure 3: Theoretic deviations in the computed cosine similarity
for different vector dimensionalities d, and different SET state variabilities σrel.
The case σrel = 0.317 represents the variability observed on our PCM crossbar
array as shown in Supplementary Note 6. In this case, the uncorrelated binary

vectors (i.e., α = 0.5) exhibit merely ≈ 0.015 standard deviation in the measured
cosine distance when using 512-bit vectors.

4

Supplementary Figure 4: PCM Measurements and Model Fitting

101 102 103 104 105

Time [s]

10 6

10 5

C
on

du
ct

an
ce

 [S
]

Example Curve Fittings

Sample Device 1

Sample Device 2

Sample Device 3

Sample Device 4

0 1 2 3 4 5
Conductance [S] 1e 5

0

20

40

60

80

100

Conductance Distribution at time
t = 11.38s

0 1 2 3 4 5
Conductance [S] 1e 5

0

20

40

60

80

100

Conductance Distribution at time
t = 99997.39s

(a) (b)

(c)

Supplementary Figure 4: Conductance distribution of 10,000 devices in the SET
state at the beginning (σrel = 31.7%) (a) and at timescales three orders of

magnitude later (σrel = 36.6%) (b) of the experiment. SET state measurements
from 4 example devices, with their fitted curves (c).

5

SUPPLEMENTARY TABLES

Supplementary Table 1: PCM model parameters

Supplementary Table 1: Derived values of the model parameters.

Symbol Description Type Value

G0 mean conductance at time t = 1s - 22.8× 10−6 S

ν mean drift exponent - 0.0598

G̃p programming variability multiplicative 31.7 %

G̃r read-out noise additive 0.496× 10−6 S

ν̃ drift variability multiplicative 9.07 %

6

SUPPLEMENTARY NOTES

Supplementary Note 1: The CNN Controller in Conformity with Dense
High-dimensional Representations

We evaluate our training methodology to verify whether the trained CNN controller obeys
the “laws” of high-dimensional computing. Specifically, the pseudo-randomness of the dense
representations is crucial for our findings to be valid. In the theory of high-dimensional
computing2, the ratio between the number of −1s and 1s in the bipolar vectors (respectively,
0s and 1s in the binary vectors)—termed occupancy ratio—closely approximates at 1

2
. This

holds when the components of a vector are drawn randomly from {−1, 1} (respectively
{0, 1}) with equal probability.

In order to verify, whether our controller conforms with this property, we calculate the
occupancy ratio for the embeddings of multiple Omniglot samples for different dimension-
alities. Supplementary Figure 5 shows the mean and standard deviation of the occupancy
ratio at different dimensionalities together with their target value according to the high-
dimensional computing theory. While the mean should be constant at µ = 0.5, the standard
deviation is dependent on the dimensionality d, in fact σ = 1/(2

√
d). As shown, by increas-

ing the dimensionality (d ≥ 512), the controller generates vectors that closely follow the
equiprobable property of vectors in the high-dimensional computing theory. We particularly
select d = 512, as it also provides sufficient resiliency against the variations in the PCM chip
as shown in Supplementary Figure 3, and leads to comparable accuracy with the real-valued
vector representations as shown in Supplementary Figure 6.

To show that the distribution is as desired and approximately Gaussian, the distribution
of the occupancy ratios for embeddings at d = 512 is shown in Supplementary Figure 7. We
observe that the vector representations generated by the controller is in conformity with the
high-dimensional computing theory, but the means of the occupancy ratios are slightly off.
There is 2.08% standard deviation in the occupancy ratio of the controller at d = 512. This
deviation causes 1.02% accuracy drop (93.97% vs. 92.95%) for the 100-way 5-shot problem

101 102 103

Dimensionality

0.46

0.48

0.50

0.52

0.54

M
ea

n
R

at
io

Mean occupancy ratio

HD theory target

Statistics from the controller

101 102 103

Dimensionality

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 R

at
io

Standard deviation of occupancy ratio

HD theory target

Statistics from the controller

Supplementary Figure 5: Occupancy ratio of the embeddings generated from the
CNN controller at different dimensionalities versus the high-dimensional (HD)

theory target: Mean (left) and standard deviation (right) of the occupancy ratio.

7

101 102 103

dimensionality (d)

30

40

50

60

70

80

90

100

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
) real

bipolar
binary

Supplementary Figure 6: Classification accuracy of 100-way 5-shot problem as a
function of dimensionality for software models three different representations:real,

bipolar, and binary. The results averaged from 3 independent runs (3000 episodes).

in the case of binary representation when the similarity metric is approximated by the dot
product as shown in Supplementary Figure 13. We therefore seek an algorithmic solution
to reduce the deviation of the occupancy ratio from the desired value in the following.

Introducing a regularizer to optimize the occupancy ratio

In order to penalize a controller for generating output vectors with an occupancy ratio
that deviates from the desired value, a regularizing term is introduced into the loss function:

Loc = − 1

mn

mn∑
i=1

(
1

d

d∑
j=1

(
1

2
tanh(aKi(j)) +

1

2
)− 0.5)2 (1)

where the function 1
2
tanh(ax)+ 1

2
, also known as softstep, is a differentiable smoothed version

of the step function. This loss is minimized when the occupancy ratio is 0.5, in other words,
the number of positive vector components (Ki(j) > 0) is equal to the number of negative
vector components (Ki(j) < 0), for the ith support vector, hence leading to the desired
occupancy ratio. However, there is another condition that can alternatively minimize the
loss function by driving the support vector components towards the origin (Ki(j) = 0). It
was observed that the controller may reach this undesired condition, which sets the value
of support vector components near 0, because the softstep function reaches the same target
occupancy ratio of 0.5 when all support vector components approach 0.

8

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
Ratio

0

5

10

15

20

25

30

Pr
ob

ab
ili

ty
 D

en
si

ty

d=1000
d=512

Supplementary Figure 7: Distribution of the occupancy ratios of embeddings for
two different dimensionalities, normalized so that they form a probability density

function (PDF). Their target PDFs are shown as solid lines.

To avoid this undesired condition, an auxiliary term is added to the loss function:

Laux = − 1

mnd

mn∑
i=1

d∑
j=1

(
1

2
(tanh(a(Ki(j) + δ)) + 1)− 1

2
(tanh(a(Ki(j)− δ)) + 1)) (2)

where parameters a and δ in Supplementary Equation 1 and Supplementary Equation 2
are chosen as 100 and 0.0001, respectively, based on the distribution of real-valued support
vectors elements Ki(j). The loss term Loc is assigned a weight value of 10, and the loss term
Laux is assigned a weight value of 0.1 to keep these losses in a comparable range as with the
original steady state log loss given in Supplementary Equation 3.

After introducing the above regularizing terms, the output of the controller conforms
more closely with the behavior demanded by the high-dimensional computing theory. For
example, the standard deviation of the occupancy ratio from the target 0.5 dropped from
2.08% to 0.91% for d = 512. That is effectively equivalent to the standard deviation of
pseudo randomly generated vectors for d ≈ 3000. As a result, the accuracy is consistently
increased across all three problems, up to 0.74%, by using the regularizer as shown in
Supplementary Table 2. We have shown that the binary architecture using the regularizer
and the dot product can almost reach to the accuracy obtained from the cosine similarity
without using the regularizer (maximum 0.28% lower accuracy); see Supplementary Table 2.
Supplementary Figure 8 also compares the resulting occupancy ratio with and without the
regularizer.

9

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
Ratio

0

5

10

15

20

25

30

35

40

Pr
ob

ab
ili

ty
 D

en
si

ty

without regularizer
with regularizer

Supplementary Figure 8: Distribution of the occupancy ratios of embeddings for
d = 512 with and without regularizer, normalized so that they form a probability

density function (PDF). Expected respective PDFs with and without regularizer is
shown as a line.

Supplementary Table 2: Comparison of average classification accuracy (%) from
10000 episodes (10 runs) with and without using the regularizer

Problem
without regularizer with regularizer

cosine

similarity

dot product

similarity

dot product

similarity

5-way 1-shot 97.44 96.92 97.26

20-way 5-shot 97.79 97.38 97.92

100-way 5-shot 93.97 92.95 93.69

10

Supplementary Note 2: Training and Inference for Key-Value Memory
Network

In the following, we describe two main phases in detail, the learning phase and the infer-
ence phase, for our proposed MANN architecture. For a summary, refer to Supplementary
Table 3 that shows the steps of each phase.

1. Learning Phase

The learning phase starts by randomly initializing the trainable parameters θ of the
embedding function fθ of the controller. Randomness is important for the feature vectors
to adopt certain important properties of high-dimensional computing. For example, the
number of positive and negative components of the feature vectors should be approximately
equal. The learning phase includes the following steps.

a. Support set loading step The step after initializing the parameters is the very first
training step. For that, we (randomly) draw a support set1 from the training dataset,
which is then mapped to the feature space via the controller and stored in the key memory.
More specifically, this step generates support vectors from the forward pass through the

Supplementary Table 3: Summary of the learning and inference phases.

State Before State After

Controller Key-value Memory Controller Key-value Memory

Learning Phase:

Support set loading stepa Immature Empty/Obsolete Unchanged Rewritten

Query evaluation stepb Immature Written Unchanged Unchanged

Backpropagation stepc Immature Written More Mature Unchanged

Episodic training by repeatingd Slightly Mature Written Mature Repeatedly Rewritten

Inference Phase:

Support set loading stepe Mature Empty/Obsolete Unchanged Rewritten

Query evaluation stepf Mature Written Unchanged Unchanged

a Support set from training dataset to fill the key-value memory
b Query batch from training dataset to evaluate predictions
c Loss computed based on classification errors in query phase and backpropagation
d The three above steps are repeated by randomly redrawing support sets and query batches from training dataset
e Support set from test dataset to fill the key-value memory
f Query batch from test dataset

1In correspondence with the common machine learning terms, the word “set” and “batch” are sometimes

used interchangeably. In this work, “set” will refer to a more general, mathematical construct, whereas

“batch” will denote a bundle of data that are processed together. Often, a whole set is processed in one

batch.

11

controller, and writes them in the key memory. Optionally, the dataset training samples can
be augmented by shifting and rotating the symbols to improve the learned representations,
as we described in the Methods. Each class in the support set gets assigned a unique one-
hot label and for each support vector in the key memory, the corresponding one-hot support
label is stored in the value memory (see Supplementary Figure 9a). After this step, both
key and value memories have been written and will remain fixed until the next training
episode is presented (see Supplementary Figure 9b). Henceforth, one can query arbitrarily
often without altering the architecture’s state at all. It should be emphasized that, as we
have just initialized the parameters, predictions will be random, because the controller is
still immature.

b. Query evaluation step During one episode of the learning phase, a whole batch
of query samples is processed together and later produces a single loss value. There is a
maximum size for the query batch, which is dependent on the number of available samples
per class in the training dataset. As the query samples stem from the same classes as the
samples in the support set, problems with a higher number of shots leave fewer samples for
the query batch. Then, the query batch is mapped to the feature space in the same way as
the support set. This yields a batch of probability distributions over the potential labels as
shown in Supplementary Figure 9c.

c. Backpropagation step This step has to be supervised, i.e., the labels of the query
batch need to be available. From the ground truth one-hot labels Y and the output of
the previous step P, the logarithmic loss λi is computed for every query i ∈ {1, ..., b}. It is
important to employ the logarithmic loss instead of the cross-entropy loss (i.e., including the
additional second term in Supplementary Equation (3)) so that vectors from different classes
are pushed further apart. The average loss (Supplementary Equation (4)) represents the
objective function that has to be minimized using an appropriate optimization algorithm2.
Notice that only the controller is affected in this step by backpropagating errors through all
modules using the chain rule, while the memories remain fixed as shown in Supplementary
Figure 9d. Hence, the controller can learn from its own mistakes to progressively identify
and distinguish different classes in general for realizing the meta-learning.

λi = −
m∑
j=1

(Yi,j log (Pi,j) + (1−Yi,j) log (1−Pi,j)) (3)

loss =
1

m

b∑
i=1

λi (4)

Y ∈ Rb×m, P ∈ Rb×m, λ ∈ Rb

d. Episodic-training by repeating the above steps The three aforementioned steps form
one training episode. Several hundreds or even thousands of such training episodes should
be conducted so the model can perform well and provide meaningful predictions. Each
episode is administered on a different (random) subset of the training classes. This prevents
the model from overfitting. In the process, the parameters θ of the embedding function fθ
are updated such that objective function in Supplementary Equation 4 is minimized. This
procedure is called maturing the controller.

A mature controller would be an optimally fitted embedding function, right at the verge
of under- and overfitting. To avoid any overfitting, an early stopping6 strategy can be

2For example, a particular version of stochastic gradient descent like “Adam”4 works well.

12

applied. It relies on a subset of the training dataset kept aside as a validation set. As we
are operating in the realm of few-shot learning, “a subset of the training set” implies non-
overlapping classes. The validation set should be chosen large enough to properly represent
the data but not too large as those samples are excluded from training.

During the training procedure, the model’s performance is frequently evaluated on the
validation set, without computing the loss and updating the controller’s parameters. The
performance can be measured with an accuracy metric computed per few-shot problem and
states the fraction of correctly classified queries in a batch of size b:

accuracy =
1

b

b∑
i=1

[1 if argmax
j∈{1,...,m}

Pi,j = li else 0]

A moderate number of queries b should be presented per problem and a rather large number
of problems drawn from the validation set in order to average out fluctuations in the problem
difficulty during evaluation. The state of the model yielding the best performance represents
the mature controller.

2. Inference Phase

The outcome of the learning phase is the mature controller that is ready to learn and
classify images from never-seen-before classes. During the inference phase, there is no update
of the parameters of the mature controller (i.e., they are frozen), but the key-value memory
will be updated by the controller upon encountering a new few-shot problem. The inference
phase has two main steps similar to the learning phase: the support set loading step, and
the query evaluation step. The first step generates support vectors from the forward pass
through the mature controller, and writes them into the key memory followed by their labels
into the value memory. This essentially leads to learning prototype vectors for the classes
that are never exposed in the learning phase. By the end of this loading step, the key-value
memory is programmed for the few-shot classification problem at hand. Then the query
evaluation step similarly generates query vectors at the output of the controller that will
be compared to the stored support vectors generating prediction labels. In a nutshell, if
the backpropagation step in Supplementary Figure 9(d) is skipped and the support set and
query batches are sampled from the test split instead of the train split, the sequence in
Supplementary Figure 9 becomes similar to the inference phase (see also Supplementary
Table 3).

13

W

EmbeddingX Value
Memory

W

Key
Memory

Support
Keys

Unwritten Memories
Support Samples

Immature
Controller

Support Labels

R O R O

(a) Support set loading step.

Embedding

Written Memories
Immature
Controller

Value
Memory

R O

W

Key
Memory

R O

W

(b) State after the support set loading step.

Embedding Key
Memory

Value
Memory

X

Query
Keys

Written MemoriesQuery Samples Predicted
Distribution

Immature
Controller

R O R O

WW

(c) Query evaluation step.

Embedding Key
Memory

Value
Memory

Pr
ed

ic
tio

n

G
ro

un
d

Tr
ou

th

Loss

Loss Vector
Immature
Controller

R O R O

WW

Written Memories

(d) Backpropagation step.

Supplementary Figure 9: Illustration of the learning phase with its steps.

14

Supplementary Note 3: Proof of the optimality of the sharpening function

We have the following functions in our training pipeline:

1. Embedding function used in the controller Eq 5, Eq 6.

2. Cosine similarity function measuring similarity between the query embedding q and
key-memory embeddings Ki,j Eq 7.

3. Sharpening function applied on the similarity values Eq 8.

4. Prediction probabilities obtained by normalizing marginal sum of sharpened similari-
ties Eq 9.

5. Loss function calculated as cross entropy between prediction probabilities and one hot
encoded true label Eq 10.

q = f(xq;θ) (5)

Ki,j = f(xi,j;θ) (6)

αi,j =
q ·Ki,j

|q| |Ki,j|
(7)

εi,j = ε(αi,j) (8)

Pj =

∑n
i=1 εi,j∑m

j=1

∑n
i=1 εi,j

(9)

λ = −
m∑
j=1

(Yj log (Pj) + (1− Yj) log (1− Pj)) (10)

i ∈ 1, 2, ..., n, j ∈ 1, 2, ...,m, q ∈ Rd, Ki,j ∈ Rd,

αi,j ∈ [−1, 1], Pj ∈ [0, 1], Yj ∈ {0, 1}, λ ∈ R

We aim to find optimum conditions for the sharpening function given in Eq 8. First, we
seek the bounds for sharpened similarities εi,j.

Because prediction probabilities Pj must be non-negative → summed sharpened similarity∑n
i=1 εi,j for all m ways ∀j should carry the same sign or it must be zero to satisfy Eq 9.
This condition can be met in two ways:

1. When εi,j ≥ 0 ∀i, j

2. When εi,j ≤ 0 ∀i, j

In this proof we focus on the first case, it can be similarly proved for the second case as well.
This lets us set the bound for sharpened similarity as: εi,j ∈ [0,∞).

To further tighten this bound and infer other characteristics of the optimum sharpening
function, we calculate partial derivative of loss λ given in Eq 10 w.r.t to Pj to find the
optimum Pj that minimizes the loss.

∂λ

∂Pj
= −Yj

Pj
+

1− Yj
1− Pj

(11)

15

The loss λ is minimized when ∂λ
∂Pj

= 0. By solving this we find optimum Pj as

P ∗j = Yj (12)

In other words,

P ∗j =

{
1, if j = j∗ is the true class index

0, otherwise
(13)

In turn from Eq 9 we obtain the following constraints on ε that satisfies the optimum P ∗j :

εmax = max
1≤i≤n

εi,j∗ (14)

εmin = 0 when j 6= j∗ (15)

The domain of sharpening function ε is α ∈ [−1,+1] and our objective is to further tighten
the bounds of the sharpening function. From Eq 14, 15, for the true class index j∗, where
cosine similarity between key memory embeddings and query are strong αi,j∗ → 1 (see Eq 7),
we get a new tight upper bound for the sharpened similarities as: εi,j ∈ [0, εmax] also a fixed
point in the optimum sharpening function as: ε

∣∣
α=1

= εmax.
For dissimilar classes j = j′ 6= j∗ where εmin = 0, we would like to assign a cosine

similarity value that can be learned within the range −1 ≤ αi,j′ ≤ 1. We can immediately
dismiss αi,j′ = 1 because it is attained for the true class and we want to distinguish other
classes from the true class. Then we consider αi,j′ = −1. This anti-correlation state can
be achieved only by a set of embeddings that all have the same unit vector direction. For
2-way problem this works, however, when the problem scales beyond 3-way problem, this is
not feasible because two or more classes are forced to learn embeddings with the same unit
vector which makes it difficult to distinguish those classes.

Next we consider αj1,j2 = 0 (when j1 6= j2). This yields zero cosine similarity (i.e. orthog-
onal) high-dimensional (HD) vectors for dissimilar classes allowing. As the dimensionality
increases, we observe that the number of quasi-orthogonal vectors that can co-exist in a
space increases exponentially. In HD computing theory, we observe that the maximum
number of unique unit vectors with a fixed cosine similarity are obtained when pair-wise
cosine similarity is zero i.e. αj1,j2 = 0 (when j1 6= j2), allowing us to learn a controller for the
problem of highest possible number of classes for a given embedding dimensionality. With
this, we fix another point in our optimum sharpening function as: ε

∣∣
α=0

= εmin = 0 when
j 6= j∗.

To enable convergence towards this global minimum solution, we impose a monotonic
increase on the positive axis of α i.e. α > 0 and monotonic decrease when α < 0 of the
sharpening function. In order to ensure differentiability, the derivative at α = 0 is set to be
zero. This leads to the following further constraints:

ε(α1) ≤ ε(α2), when α1 ≤ α2, α1 > 0, α2 > 0 (16)

ε(α1) ≥ ε(α2), when α1 ≤ α2, α1 < 0, α2 < 0 (17)

dε

dα

∣∣∣∣
α=0

= 0 (18)

Although the above criteria are sufficient for the single shot learning case, we could add
an additional constraint for the case of multi-shot learning. For example for a given dimen-
sionality, the chance of the true class having a one shot with a similarity 0.6 maybe higher

16

than the true class having two shots both with 0.31 similarity. Furthermore the amount of
noise that HD representations can tolerate depends on the chosen dimensionality: the larger
the number of dimensions, the higher the robustness of the representations to the noise.
Based on these observations, we can set a “private neighbourhood” similarity threshold i.e.,
those key memory embeddings that result in a similarity within the private neighbourhood
are allowed to boost the prediction probability more than the ones outside this neighbour-
hood. In mathematical terms, this corresponds to a neighborhood of the inflection point(s)

given by d2ε
dα2 = 0 in the sharpening function.

Based on the above constraints and criteria we can visualize the family of optimum
sharpening functions as given in Figure 10.

+1-1 (0,0) α

ε εmax

inflection
point

εmin

Supplementary Figure 10: Visualization of family of optimum sharpening
functions. The softabs function is highlighted in bold

The softabs sharpening function that we propose is:

ε(α) =
1

1 + e−(β(α−0.5))
+

1

1 + e−(β(−α−0.5))
(19)

This function readily meets the optimal conditions given in Eq 14, 16, 17, 18, in addition
to setting the inflection points d2ε

dα2 = 0 at -0.5 and 0.5, whereas the softmax sharpening
function does not have any inflection points and fails to meet the conditions in Eq 15, 17,
18. Although the softabs does not exactly meet the condition in Eq 15, it approximates this
condition very closely. For example, for β = 10 we get epsilon(0)=0.0134 which leads to a
27× better approximation than the softmax.

17

Supplementary Note 4: Comparison of classification accuracy between
sum-argmax vs argmax as the ranking criteria

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 D

ro
p
 (

%
)

Supplementary Figure 11: Comparing classification accuracy drop from the ideal
crossbar to the PCM experiment based on the sum-argmax vs global-argmax

across different problems each from 1000 testing episodes of a single run. In all
problems except bipolar 20-way 5-shot problem, sum-argmax results in lower

accuracy drop, indicating its robustness as the ranking criterion.

We investigate two different selection criteria to choose the final predicted class from
the produced attention vector during inference. We first consider the typical argmax of
the components across the whole attention vector (w). We call this the global argmax
and it returns the label of a support vector, among all the mn support vectors, whose
probability is the highest. As the second criterion, we propose sum-argmax where the same
class components of the attention vector are first summed together before applying the
argmax function on m summed values (i.e., the number of classes). For an m-way n-shot
problem, the global argmax has O(nm) comparison operations, while the sum argmax has
O(m) comparisons together withO(mlog(n)) addition operations; these operations are much
fewer than the number of operations involved in the key memory for the similarity search
with the high-dimensional vectors. Hence, the computational complexity of the selection
criterion is not dominant, and does not affect the overall computational complexity of the
key-memory.

However, as shown in Supplementary Figure 11, the sum-argmax exhibits a clear ad-
vantage over the global argmax, in mitigating the accuracy drop in the presence of noise
when the key memory is implemented on the PCM devices, as opposed to the ideal soft-
ware model without any variations. This lower accuracy drop is observed for both bipolar
and binary representations, especially in the large problem sizes. For instance, the 100-way
5-shot problem with the binary representation reaches up to 1% better accuracy mitigation
by using the sum-argmax instead of the global argmax function. This is mainly due to the
fact that in the sum-argmax function the variations among various classes programmed on

18

the PCM array can be better averaged out by adding the intra-class probabilities. As a
further observation, the sum-argmax, which yields a more robust ranking criterion, cannot
be implemented in the TCAM-based architectures because the TCAM can only compute
argmax as the speed of a matchline discharge.

19

Supplementary Note 5: Effect of approximating sharpening function and
similarity function

(a) (b) (c)

Real Bipolar Binary
Representation

97

97.2

97.4

97.6

97.8

98

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

5-way 1-shot

Real Bipolar Binary
Representation

97

97.5

98

98.5

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

20-way 5-shot

Real Bipolar Binary
Representation

92

92.5

93

93.5

94

94.5

95

95.5

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

100-way 5-shot

97.78 97.78

97.35 97.35

97.44 97.44

98.12

98.01 98.11

97.83

97.49

97.78

94.69
94.53

94.81

94.08

93.06

93.97

precise sharpening approximate sharpening

Supplementary Figure 12: Classification accuracy comparison between
approximate sharpening function and precise sharpening function for three

problems: 5-way 1-shot(a) 20-way 5-shot(b) 100-way 5-shot(c), from 10
independent runs each with 1000 episodes. For all the problems, the precise

similarity function is used. The error bars represent one standard deviation of
sample distribution on either directions.

96.92

97.44

Bipolar Binary
Representation

97

97.5

98

98.5

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

20-way 5-shot

Bipolar Binary
Problem

92

92.5

93

93.5

94

94.5

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

100-way 5-shot

97.83 97.84

97.38

97.78

94.08 94.08

92.95

93.97

(b) (c)(a)

approximate similarityprecise simiarity

Bipolar Binary
Representation

96.5

97

97.5

98

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 (

%
)

5-way 1-shot

97.35 97.35

Supplementary Figure 13: Classification accuracy comparison between
approximate similarity function and precise similarity function for three problems:
5-way 1-shot(a) 20-way 5-shots(b) 100-way 5-shots(c) from 10 independent runs

each with 1000 episodes. For all the problems, the approximate sharpening
function is used. The error bars represent one standard deviation of sample

distribution on either directions.

Supplementary Figure 12 shows the impact of using the softabs as the precise sharpening
function versus the regular absolute function as the approximate version, during inference for

20

three different representations. As shown, the softabs function consistently reaches a higher
accuracy in both the real and bipolar representations across all the three problems. However,
the softabs has a negative impact on the accuracy of binary representation. Therefore, using
the regular absolute function, which in fact can be bypassed in the binary representation,
not only simplifies the inference architecture but also slightly improves the accuracy.

Supplementary Figure 13 shows the impact of using the cosine similarity as the precise
similarity metric versus the dot product as the approximate version. The approximate
sharpening functions are used for each configuration. A significant accuracy drop is observed
in the binary case when the cosine similarity is approximated by dot product. This drop is
due to the fact that the controller produces binary vectors that do not have a fixed norm

but a norm approximately close to
√

d
2
, whereas this is not the case for the bipolar vectors

with a constant norm of
√
d. When the similarity metric is not approximated, the binary is

on average better than the bipolar, indicating that the similarity approximation is the cause
of accuracy drop in the case of the binary representation. The results are collected from 10
independent runs from each configuration.

21

Supplementary Note 6: Spatial Variability on PCM Crossbar

The particular conductance levels determine the power consumption of the crossbars
during read-outs and the variability of the programmed states. Usually, the lower the con-
ductance level of the state, the larger the deviations. The conductance of the RESET state
for such devices is usually low enough so that currents cannot be detected by the analog-
to-digital converter during read-out. Since our binary representations are extremely robust
against deviations, we used low and thus power-saving conductance levels for the SET state
of the key memory crossbar. Supplementary Figure 14(a) illustrates typical SET variations
encountered at programming time of the prototype chip used for the experiments.

co
n
du

ct
an

ce
 μ

S

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

0 50 100 150 200 250 300 350 400 450
2.0

2.5

3.0

3.5

4.0

A
vg

.
co

n
du

ct
an

ce
 (
μ
S
)

2.0

2.5

3.0

3.5

4.0

050100
bin count

(a)

(b) (c) A
vg

.
co

n
du

ct
an

ce
 (
μ
S
)

Supplementary Figure 14: (a) Spatial variability of SET state conductance of
device across the PCM array. (b) Average SET state conductance per bitline. (c)

Distribution of Average SET state conductance per bitline.

The relative standard deviation of the spatial variability of the set state conductance
(σrel) at programming timescales is observed as 31.7% across the entire region of the chip
utilized for 100-way 5-shot problem. When SET state conductance is averaged per bitline
there is 5.38% relative standard deviation in the average SET state conductance across bit
lines as shown in Supplementary Figure 14(b) and (c). This spatial variability is the cause
for further classification accuracy loss of 0.11% in PCM experiments when compared with

22

PCM model simulations with the same parameters as with the prototype chip used for the
experiments.

23

Supplementary Note 7: Accuracy comparison with the state-of-the-art
few-shot learning models

Here, we compare classification accuracy of our MANN model against the state-of-the-art
few-shot learning models based on meta-learning approach. The range of relevant models
can be broadly divided into three different settings:

1. Type I: Purely software models, using the cosine similarity and the highest precision,
aimed to run on conventional CPUs/GPUs. The key memory vector components are
represented by 32-bit real numbers. As shown in Supplementary Table 4, among all
the models, the Matching Networks7, generally provides the highest accuracy. At
maximum, it achieves 0.49% higher accuracy compared to our model for the 20-way
5-shot problem, but it used an unconventional split of training and evaluation in
Omniglot dataset that led to including 4720 more training examples from 236 classes.
To show the scalability of our approach, we also extended the repertoire of standard
Omniglot problems up to 100-way 5-shot. For this largest problem ever-tried on the
Omniglot, the accuracy of our model is still in the range of problems with a smaller
number of ways. There is no report from other models on this large problem size.

2. Type II: Models simulated with an ideal low-precision key memory. In this setting,
we consider a deterministic (i.e., without noise) behavior in the hardware such that
the accuracy degradation due to the device non-ideality and noise are not included.
In our model, the key memory uses the binary representation (1-bit per vector com-
ponent), while the other works assume an optimal 4-bit representation1, or a 3-bit
representation3. Targeting the PCM hardware, we employ an approximation to the
common cosine similarity computation as mentioned in the paper, whereas the other
works consider other distance metrics such as combined L1 + L∞ distance (for which
only L∞ can be implemented in TCAM and L1 is computed outside the crossbar1),
or a modified version targeting multibit CAM3. Despite working with the lowest pre-
cision of 1-bit, our model with the softabs sharpening function provides the highest
accuracy across all the problems as shown in Supplementary Table 4.

3. Type III: Models simulated with a noisy and low-precision key memory. In this
setting, the key memory aimed to withstand noise and stochastic variabilities of in-
memory computing hardware. We simulate our model with 30% conductance variation
that we observed in the experimental PCM platform. This we compare against the
multibit CAM model3 with its threshold voltage variation at its lowest state S1 equal
to 30%, which amounts to less than 30% variation for the other higher state S2,...,S8.
Despite the higher relative variation, our model achieves higher accuracy across all the
problems showing its robustness even with binary representations.

In another column in Supplementary Table 4, we also compare the classification accuracy
of our model with the softmax sharpening function. The results show that the accuracy
gap between the softmax and the sofabs can be as high as 19.26% in the software model.
Although the softmax works with the same vector dimensionality as the softabs, the results
demonstrate that simply expanding the vector dimensionality to HD space is not sufficient,
and therefore there is a need for the proper sharpening function to direct the vector repre-
sentations during training. Further, the resulting vector representations by the softmax is
less robust than those obtained by the softabs: e.g., in the 100-way 5-shot problem, there is

24

4.09% accuracy drop by going from the software (Type I) to the noisy hardware (Type III)
with the softmax, while the softabs causes only 2.46% accuracy drop.

Supplementary Table 4: Comparison of classification accuracy with the
state-of-the-art models at three different settings: software, simulated in-memory
hardware without noise, and simulated in-memory hardware with noise. Th key

memory in our model uses 32-bit floating-point vectors in the software setting, and
binary vectors in both hardware settings.

reference 5 1 3 7 This (softmax) This (softabs)

Type I: 32-bit real numbers and cosine similarity in software

5-way 1-shot 96.59∗ 96.59∗ 96∗ 98.1∗ 94.14 97.78

20-way 1-shot - 95∗ 89∗ 93.8∗ 84.67 94.61

20-way 5-shot - 98.5∗ 97∗ 98.5∗ 90.19 98.01

100-way 5-shot - - - - 75.27 94.53

Type II: 1–4-bit in-memory hardware simulations without noise

5-way 1-shot - 24.99∗ 95∗ - 93.06 97.44

20-way 1-shot - - 89∗ - 82.32 93.18

20-way 5-shot - - 95∗ - 88.96 97.78

100-way 5-shot - - - - 73.44 93.97

Type III: 1–3-bit noisy in-memory hardware simulations (with maximum of 30% σrel)

5-way 1-shot 92∗ 93.06 96.40

20-way 1-shot 81∗ 82.31 93.19

20-way 5-shot 93∗ 88.96 97.60

100-way 5-shot 71.18 92.07

∗Accuracy obtained from an unconventional training and evaluation split of the Omniglot dataset

25

Supplementary Note 8: Proof of robustness of noisy cosine similarity with
binary high-dimensional vectors

Let us take two binary high-dimensional vectors â and b̂, which fulfill the property

‖x̂‖ ≈
√

d
2
. We write b̂ to the computational memory and use â as the readout voltage.

Thus, the latter remains accurate whereas the former (written into the memory) has to be

modeled as a vector of normal random variables B̂ with

B̂i = X if b̂i = 1, else 0

E(X) = 1, Var(X) = σ2
rel.

In the next step, we consider the (approximate) cosine similarity between the original vectors
a fixed value α and rearrange its expression:

α =
2

d
â · b̂ =

2

d

d∑
i=1

âi · b̂i

=
2

d

d∑
i=1

(1 if âi = b̂i = 1)

=
2

d

n∑
i=1

1 =
2n

d
,

where n denotes the number of positions where both â and b̂ equal 1. Analogously, we
obtain

Λ =
2

d
â · B̂ =

2

d

d∑
i=1

(X if âi = b̂i = 1)

=
2

d

n∑
i=1

X,

where the random variable Λ denotes the result of the noisy cosine similarity operation.
Applying the rules of probability theory, we compute the expected value and standard

deviation of Λ as

E(Λ) = E

(
2

d

n∑
i=1

X

)
Var(Λ) = Var

(
2

d

n∑
i=1

X

)

=
2

d

n∑
i=1

E(X) =

(
2

d

)2 n∑
i=1

Var(X)

=
2n

d
= α =

(
2

d

)2

nσ2
rel =

(
2

d

)2
αd

2
σ2
rel =

2ασ2
rel

d
.

This finally leads to

σ(Λ) =

√
2α

d
σrel.

26

This states that the standard deviation of the cosine similarity is inversely proportional to
the square root of the dimensionality, and is thus able to diminish the influence of the large
SET state variability. Furthermore, a deviation of the expected value E(X) from 1 has a
direct influence on the expected value of Λ:

E(Λ) = εα when E(X) = ε.

Therefore, all crossbar devices’ SET state should exhibit the same mean, which otherwise
can only be compensated by the quality of the representations themselves.

27

SUPPLEMENTARY REFERENCES

1Ann Franchesca Laguna, Michael Niemier, and X. Sharon Hu. Design of Hardware-
FriendlyMemory Enhanced Neural Networks. In Design, Automation Test in Europe Con-
ference Exhibition (DATE), pages 1583–1586, 2019.

2P. Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive Computation, 1(2):139–
159, Jun 2009.

3A. Kazemi, M. M. Sharifi, A. F. Laguna, F. Müller, R. Rajaei, R. Olivo, T. Kämpfe,
M. Niemier, and X. S. Hu. In-Memory Nearest Neighbor Search with FeFET Multi-Bit
Content-Addressable Memories. Preprint at http://arxiv.org/abs/2011.07095, 2020.

4D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Con-
ference on Learning Representations, 2014.

5A. F. Laguna, X. Yin, D. Reis, M. Niemier, and X. S. Hu. Ferroelectric FET based
in-memory computing for few-shot learning. In Proceedings of the ACM Great Lakes Sym-
posium on VLSI, pages 373–378, 2019.

6L. Prechelt. Early stopping — but when? In Neural Networks: Tricks of the Trade: Second
Edition, pages 53–67. 2012.

7O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching Networks
for One Shot Learning. Preprint at http://arxiv.org/abs/1606.04080, 2016.

28

http://arxiv.org/abs/2011.07095
http://arxiv.org/abs/1606.04080

	Supplementary Information Robust High-dimensional Memory-augmented Neural Networks
	Supplementary Figures
	Supplementary Figure 1: Architecture to implement bipolar key memory using PCM crossbar arrays
	Supplementary Figure 2: Robustness of bipolar versus binary architectures
	Supplementary Figure 3: Robustness of similarity measurement for different vector dimensionalities
	Supplementary Figure 4: PCM Measurements and Model Fitting

	Supplementary Tables
	Supplementary Table 1: PCM model parameters

	Supplementary Notes
	Supplementary Note 1: The CNN Controller in Conformity with Dense High-dimensional Representations
	Introducing a regularizer to optimize the occupancy ratio

	Supplementary Note 2: Training and Inference for Key-Value Memory Network
	Learning Phase
	Inference Phase

	Supplementary Note 3: Proof of the optimality of the sharpening function
	Supplementary Note 4: Comparison of classification accuracy between sum-argmax vs argmax as the ranking criteria
	Supplementary Note 5: Effect of approximating sharpening function and similarity function
	Supplementary Note 6: Spatial Variability on PCM Crossbar
	Supplementary Note 7: Accuracy comparison with the state-of-the-art few-shot learning models
	Supplementary Note 8: Proof of robustness of noisy cosine similarity with binary high-dimensional vectors

	Supplementary References

