Supplementary Materials for

"A two-track model for the spatiotemporal coordination of bacterial septal cell

wall synthesis revealed by single-molecule imaging of FtsW**"**

Xinxing Yang^{1*}, Ryan McQuillen¹, Zhixin Lyu¹, Polly Phillips-Mason², Ana De La Cruz¹, Joshua W. McCausland¹, Hai Liang^{3,5}, Kristen E. DeMeester³, Cintia C. Santiago³, Catherine L. Grimes^{3,4}, Piet de Boer^{2*}, Jie Xiao^{1*}

¹Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.

²Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.

³Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.

⁴Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.

⁵Current address: Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA

*Correspondence and requests for materials should be addressed to X.Y. (email: novayang@gmail.com), P.d.B. (email: pad5@case.edu) and J.X. (email: [xiao@jhmi.edu\)](mailto:xiao@jhmi.edu)

This PDF file includes:

Supplementary Figures 1 to 6 Supplementary Table 1 to 9 Supplementary Discussion Captions for Movies S1 to S9 References

Other Supplementary Materials for this manuscript includes the following: *Movies S1 to S9*

Supplementary Figure 1. **Characterizations of FtsW, FtsWI302C and FtsW-TagRFP-t fusion proteins used in the study.**

a. Growth curves of BW25113 (*wt*), JXY422 (*ftsW-TagRFP-t*), and JXY559 (*ftsW*^{*I302C*}) cells in LB or M9-glucose medium. Data are presented as mean \pm SEM. from three independent experiments. **b**. Doubling times of the three strains in LB and M9 calculated from growth curves in **a**. Data are presented as mean ± s.d. from three independent experiments. **c**. Snapshots of log phase BW25113 (*wt*) cells grown in M9 medium without (top panel) or with (bottom) MTSES. Scale bars:1 µm. **d**. Growth curves of BW25113 (*wt*) and JXY559 (*ftsW*^{*I302C*}) cells in M9 medium upon addition of MTSES in early log-phase. **e**. JXY422 (*ftsW-TagRFP-t*) cells showing the expected midcell localization of FtsW-TagRFP-t. Scale bar: 2µm. Micrographs in **c and e** are representative of three independent experiments. **g**. Immunoblot of FtsW-TagRFP-t using anti-TagRFP antibody. As expected, the FtsW-TagRFP-t band \sim 70kDa) is present in JXY422 but not in BW25113. Three non-specific bands (*, **, ***) are evident in both samples. Band*** migrates close to what would be expected of free TagRFP-t. If the modestly increased intensity of band*** in the JXY422 sample were due to degradation of the full length FtsW-TagRFP-t, it would represent only a minor fraction $(< 4\%)$ of total FtsW-TagRFP-t. Cells were grown at room temperature (c, f, g) , 30 $°C$ (a, b), or 37°C (e). MTSES was used at 0.1 mM in c and d; 1 mM in e.

Supplementary Figure 2. **Example of single-particle intensity traces and allover intensity distribution of FtsW-RFP in BW25113 strain in M9-glucose medium.**

a. Intensity traces show single step photobleach and blinking behavior, which suggest they are single FtsW-RFP molecules. Intensity was subtracted by the average background and integrated over a 5-by-5 pixel region, and back-calculated to photon numbers using experimental camera setting (EmGain = 300, preAmp = 9.93, Quantum yield \sim 0.96). Intensity histograms are shown on the right. **b.** Probability density function (PDF) of all fluorescent spots in BW25113 strain expressing FtsW-RFP. Most of the spots are from single FtsW-RFP (~54 photons). To minimize the possibility of tracking multiple FtsW-RFP molecules at a time, we removed spots with intensity > 2 sigma (~4 molecules) prior to further analysis.

Supplementary Figure 3. **Custom-developed cell envelope unwrapping method to retrieve true coordinates of single molecules along the circumference of the curved cell surface**.

a. The apparent cell diameter (*Dbright field,* right panel) is measured using the intersections of the background signal (red line) with the cell profile (black curve) resulted from a line scan (yellow dashed line) of the cell's bright-field image (left panel). Scale bar: 1 µm. **b**. For each cell (BW25113/pJL005), the corresponding diameter of FtsZ ring (D_{3dPALM}) is measured using threedimensional (3D) superresolution image of FtsZ-mEos3.2 (left) fit with a circle (right). Scale bar: 0.5 µm. **d**. The true cell radius (*R*, from cell center to the inner membrane) is calculated from *Dbright field* subtracting the intersection and adding the distance between FtsZ ring and inner membrane (~ 17nm¹). The 'true' coordinate *X*_{real} (purple arc) of a molecule along the circumference of the cell inner membrane is calculated using the true cell radius R and the detected X coordinate X_{detect} (bottom equation). **e**. One segment of a single FtsW-RFP trajectory along the circumference fits to

a line. The displacement (*L*) and the segment length (*T*) introduced in the Methods are labeled in the top panel. The noise level *S* is defined as the standard deviation of the residuals (*s*i, bottom panel, Methods). **a and b.** Micrographs are representative of independent experiments. **c**. The apparent cell diameter *Dbright field* is plotted against *D3dPALM* from the same cell and fit with a line with a slope of 1 and intersection at 57nm (magenta line). **a, b, and c.** n = 52 cells with Z-ring.

Supplementary Figure 4. **Single- or double-population fitting of the cumulative probability density of directional moving speed distribution**.

a. CDF curve of the directional moving speed of FtsW-RFP molecules in WT BW25113 cells (blue circles) was best fit by a double (solid magenta curve) instead of a single (dash gray curve) population (empirically using log-normal distribution to describe the long tail), as indicated by the residuals below. Error bars indicate SEM from bootstapping. **b.** Standard error of the mean of the fitting residuals from 1000 times bootstrapping (bottom panel in a) indicates that most CDF curves were best fit with two populations (magenta) in both BW25113 and FtsZ GTPase mutant cells. Data are presented as mean \pm SEM. (For details regarding statistics and plot definitions see the "Statistics" subheading in "Methods".)

Supplementary Figure 5. Dwell time distribution of processive moving FtsW-RFP molecules at the division septum.

Black curve: Dwell time distribution of processive moving FtsW-RFP molecules in wildtype TB28 cells. Orange curve: Moving FtsW-RFP molecules display longer dwell times in cells of the FtsI SF mutant strain PM6 (TB28, *ftsI*^{R167S}). Blue curve: Inhibition of sPG synthesis (all PGTases) results in short dwell times. Note that the imaging conditions for each curve were identical, indicating that differences in these distributions were not due to different levels of photobleaching. The differences are rather more reflective of FtsW-RFP molecules spending more (orange) or less (blue) time than usual on the sPG-track (synthesizing sPG), rather than on the Z-track (tracking FtsZ filaments).

a. Bright field cell images of *wt* strain MG1655 strain, and of the FtsN-depletion strain EC1908 grown in the presence ($FtsN^+$) or absence ($FtsN^-$) of 0.2% L-arabinose. Micrographs are are representative three independent experiments. Scale bar: 2µm. **b**. Representative immunoblot of FtsN $(\sim$ 35kDa) using anti-FtsN antiserum from Dr. David S. Weiss² from three independent sample sets. Slight degradation of FtsN during the experiment causes the multiple banding pattern. **c.** Quantification of the blots shows that the total FtsN level after overnight depletion decreases to \sim 45% of the WT cells. Cells were grown in M9-glucose medium overnight at room temperature to $OD_{600} = 0.5$ -0.6. Data are presented as mean \pm s.d. from three independent experiments.

15kDa

Supplementary Table 1: Strains and plasmids used in the study

* Cells require a complementing plasmid or specific growth conditions for survival.

Supplementary Table 2: Primers used in the study

Supplementary Table 3: Quantification of septal NAM labeling.

Errors are the mean of standard error of three experimental repeats

Cells were grown in M9-glucose at 25°C

N is the number of cells analyzed

^a Average cell body intensity was subtracted from the integrated intensity of the septal area. Note the median instead of mean integrated intensity was listed in the table and used for calculations due to the skewed distribution toward high intensity values in a small population of cells. See Methods and Extended Data Fig. 3.

^b Calculated using $(1 - R_A \cdot R_B)$.

FtsZ	FtsZ speed ^a	P moving ^b (%),	$T_{\rm s}(s)^{\rm c}$	$V_1^{\rm d}$	P_1 V_1 ^d	V_2^d	speed ^b FtsW
mutation	(nm/s) , (NZ)	$(N_{all})^e$	$(N_S)^e$	(nm/s) , (N) ^e	(%)	(nm/s)	(nm/s)
wt	28.0 ± 1.2 (182)	61.5 ± 1.8 (519)	19.2 ± 1.1 (204)	$8.0\pm0.3(315)$	37.4 ± 11.2	$31.9 + 4.4$	$22.5 + 1.6$
E238A	23.8 ± 2.9 (37)	$61.1 \pm 2.7(155)$	$22.3 \pm 1.7(65)$	7.9 ± 0.4 (90)	43.1 ± 14.5	$28.2+9.5$	$18.8 + 9.4$
E250A	$17.4 \pm 1.6(41)$	61.4 ± 2.0 (233)	$24.7 \pm 1.5(96)$	8.4 ± 0.3 (137)	71.2 ± 14.8	27.7 ± 6.8	12.4 ± 8.3
D269A	$14.3 \pm 1.3(32)$	50.1 ± 2.3 (158)	$23.8 \pm 1.7(84)$	$7.8 \pm 0.4(74)$	46.7 ± 22.6	$15.7 + 5.5$	$11.0 + 7.1$
G105S	9.7 ± 1.0 (35)	47.9 ± 2.1 (219)	26.3 ± 1.5 (112)	7.6 ± 0.5 (102)	34.5 ± 12.7	11.0 ± 1.8	10.3 ± 7.6
D ₁₅₈ A	7.4 ± 0.7 (36)	39.2 ± 2.7 (144)	$30.6 \pm 2.4(85)$	$9.0\pm2.9(59)$	$44.9 + 22.5$	$12.8 + 3.7$	$11.3+9.1$

Supplementary Table 4: FtsW dynamics in cells with different FtsZ treadmilling speeds

All the experiments were performed with cells growing on M9-glucose medium

^aFtsZ treadmilling speeds are from⁷. mean \pm S.E.M, where S.E.M is the standard error of mean speed. N_z is the number of FtsZ kymograph segments.

^bPercentage of time (*P_moving*) and average speed of FtsW-RFP molecules spent in directional moving state. Data expressed as mean \pm error, where the error is the standard deviation from 1000 bootstrap samples pooled from three independent experiments.

 c^c Average dwell time of stationary FtsW-RFP molecules. Data expressed as mean \pm S.E.M. ^dSpeed (*V*₁), percentage (*P₁ V*_{*l*}) of the slow-moving population and speed (*V*₂) of the fastmoving population of FtsW-RFP obtained from two-population free-float fitting of CDF curves bootstrapped 1000 times from three independent experiments. Errors are the standard deviations of the fitted parameters.

 e_{N} _{all} is the number of total track segments while *N* is the number of segments corresponding to a directionally moving molecule and *N*^s is the number of segments corresponding to a stationary molecule.

genotype	medium	P_{\perp} <i>moving</i> ^a	$V_1^{\rm b}$	P_I V_1^b	$V_2^{\rm b}$	FtsI average
		(96) , $(N_{all})^c$	$(nm/s), (N)^c$	(%)	(nm/s)	<i>speed</i> (nm/s)
BW25113	M9-glucose	54.2 ± 3.7 (92)	9.8 ± 1.1 (52)	53.9 ± 19.9	31.2 ± 5.6	$20.2 + 2.0$
BW25113, $\frac{f}{t}$ s Z^{E250A}	M9-glucose	$58.0\pm4.7(84)$	9.1 ± 1.8 (45)	21.9 ± 22.6	19.2 ± 3.4	16.5 ± 1.7
$TB28, \text{fts}B^{\text{E56A}}$	M9-glucose	52.2 ± 3.4 (146)	$9.2 \pm 0.7(76)$	$89.8 + 4.4$	37.3 ± 3.8	$12.4 + 1.4$

Supplementary Table 5: FtsI dynamics in different strains

^a Percentage of time (*P_moving*) and average speed of RFP-FtsI molecules spent in directional moving state. Data expressed as mean \pm error, where the error is the standard deviation of 1000 bootstrap samples from three experiments.

^b Speed (*V*₁), percentage (*P*_{*I*}*V*₁) of the slow-moving population and speed (*V*₂) of the fastmoving population of RFP-FtsI obtained from two-population free-float fitting of 1000 CDF curves bootstrapped from three experiments. Errors are the standard deviations of the fitted parameters.

 ϵ *N*_{all} is the number of total track segments while *N* is the number of segments corresponding to a directionally moving molecule.

genotype	Drug or medium	P_{\perp} <i>moving</i> ^b (96) , $(N_{all})^f$	T_s ^c (s), $(N_s)^f$	V_1 ^c (nm/s), (N) ^f	P_l _L V_1 ^c (%)	V_2 ^c (nm/s)	FtsZ speed ^e $(nm/s), (N_z)$	FtsW average speed(nm/s)
BW25113	EZRDM	63.6 ± 0.8 (1445)	13.6 ± 0.5 (535)	$11.1\pm0.24(910)$	80.7 ± 1.8	51.9 ± 2.3	49.8 ± 2.9 (182)	18.6 ± 0.8
BW25113	M9-glucose	61.5 ± 1.8 (519)	$19.2 \pm 1.1(204)$	8.0 ± 0.3 (315)	37.4 ± 11.2	$31.9 + 4.4$	28.0 ± 1.2 (182)	22.5 ± 1.6
BW25113	Fosfomycin, M9-glucose	20.5 ± 1.3 (643)	$15.2 \pm 0.8 (404)$	9.6 ± 0.1 (239)	$7.9 + 9.3$	34.9 ± 2.9	39.7 ± 1.9 (192)	31.4 ± 1.6
BW25113	Aztreonam, M9-glucose	11.1 ± 3.4 (347)	$24.6 \pm 1.4(245)$	9.2 ± 0.1 (102)	19.8 ± 7.7	34.6 ± 2.0	39.2 ± 2.1 (197)	29.9 ± 2.0
BW25113, $\mathit{ftsW}^{\text{I302C}}$	M9-glucose	52.4 ± 1.8 (361)	18.2 ± 1.0 (169)	10.7 ± 0.9 (192)	55.4 ± 7.5	33.8 ± 2.7	38.6 ± 3.2 (85)	20.7 ± 1.8
BW25113, ftsW^{1302C}	MTSES, M9- glucose	38.0 ± 1.2 (757)	20.1 ± 0.7 (418)	10.4 ± 2.5 (339)	$43.4 + 9.1$	30.0 ± 2.4	35.1 ± 2.0 (85)	22.5 ± 1.3
$MG1655,\overline{A3}$ $ponB^{\rm S247C}$ $ftsW^{1302C}$	M9-glucose	46.7 ± 2.1 (499)	$11.9 \pm 0.9(223)$	9.2 ± 0.1 (276)	16.5 ± 6.2	32.1 ± 1.5	42.3 ± 2.1 (166)	26.5 ± 1.5
MG1655, A3 $ponB^{\rm S247C}$ f ts W ^{1302C}	MTSES, M9- glucose	19.6 ± 1.8 (363)	$18.9 \pm 1.9(206)$	9.1 ± 0.2 (157)	1.2 ± 2.7	32.1 ± 1.5	38.1 ± 2.8 (98)	33.9 ± 2.3
TB28	M9-glucose	44.8 ± 1.7 (477)	$18.2 \pm 0.8(258)$	9.4 ± 0.3 (219)	$63.6{\pm}7.6$	37.8 ± 6.1	ND^a	18.8 ± 1.6
MG1655, $P_{BAD}:$:fts N	M9-glucose ^d	31.4 ± 1.0 (1094)	$16.3 \pm 0.6(696)$	10.5 ± 0.8 (398)	41.7 ± 14.7	30.1 ± 3.9	ND^a	22.1 ± 1.3
TB28, $\mathit{ftsB}^{\mathrm{E56A}}$	M9-glucose	36.3 ± 1.6 (499)	20.3 ± 0.8 (323)	9.3 ± 0.8 (176)	93.3 ± 3.7	46.9 ± 8.4	50.2 ± 2.4 (180)	11.7 ± 1.1
TB28, AftsN, $\mathit{ftsB}^{\text{E56A}}$	M9-glucose	36.0 ± 1.7 (339)	23.4 ± 1.3 (195)	7.9 ± 0.6 (144)	$76.2{\pm}4.4$	56.2 ± 2.7	ND^a	18.2 ± 2.3
TB28, $ftsW$ ^{E289G}	M9-glucose	49.8 ± 1.7 (383)	18.2 ± 1.0 (107)	8.9 ± 0.9 (176)	79.1 ± 5.6	35.4 ± 3.7	ND^a	13.9 ± 1.1

Supplementary Table 6: FtsW dynamics under different sPG synthesis conditions

^a N.A. not applicable. N.D. not measured

 b Percentage of time (*P_moving*) and average speed of FtsW-RFP molecules spent in directional moving state. Data expressed as mean \pm error, where the error is the standard deviation of 1000 bootstrap samples from three experiments.

^c Speed (*V*₁), percentage (*P*_{*I*}*V*₁) of the slow-moving population and speed (*V*₂) of the fastmoving population of FtsW-RFP obtained from two-population free-float fitting of 1000 CDF curves bootstrapped from three experiments. Errors are the standard deviations of the fitted parameters.

^d Medium without arabinose (FtsN-depleted).

 e FtsZ's treadmilling speed, mean \pm S.E.M, where S.E.M is the standard error of mean speed. N_z is the number of FtsZ kymograph segments.

 f_{Null} is the number of total track segments while *N* is the number of segments corresponding to a directionally moving molecule and N_s is the number of segments corresponding to a stationary molecule.

Supplementary Table 7. Superfission variants of FtsB, FtsI or FtsW cause a short-cell phenotype, and can rescue ∆*ftsN* cells.

^a Cells were grown at 30^oC. Overnight cultures were diluted to $OD_{600} = 0.02$ in LB and grown to $OD_{600} = 0.6 - 0.7$ (rows 1-6), or to $OD_{600} = 0.05$ in M9-glucose and grown to OD_{600} $= 0.5$ -0.6 (rows 8-13). Cells were then chemically fixed, imaged with phase-contrast optics, and measured using MicrobeJ software¹⁶.

^b Mass doubling time in minutes.

^c Number of cells measured.

^d N.A. not available

Supplementary Table 8. Growth and constriction rates of TB28, *ftsI*R167S cells.

 a Mass doubling time in minutes at 25° C in liquid culture.

 b mean \pm s.d. of 2 independent experiments.</sup>

 \textdegree Constriction rates on gel-pad at \sim 25 \textdegree C

^d Number of cells measured.

 e mean \pm S.E.M. of all cells from 2-3 independent experiments.

Supplementary Table 9. Mean Error of single- and double-population fitting of CDF curves.

^a mean CDF fitting error of single population log-normal distribution. The mean error is calculated as:

$$
\langle Error \rangle = \langle \frac{1}{N} \sum_{i=1}^{N} \sqrt{R_i^2} \rangle
$$

Where R_i is the residual of data point i of the CDF curve.

^b mean CDF fitting error of double-population log-normal distribution. The mean error is calculated as in^a .

Discussion:

Functionality of FtsW-TagRFP-t construct

We verified that the chromosomal replacement of *ftsW* with the *ftsW-rfp* allele (strain JXY422) still supports cell growth similar to BW25113 in both LB and M9-glucose media (Supplementary Fig. 1a-b). FtsW-RFP is also expressed without observable degradation (Supplementary Fig. 1g) and localizes correctly to midcell where sPG synthesis taking place (Supplementary Figure 1f).

The processive motion and confined diffusion of FtsW-RFP are not imaging artifacts

To rule out the possibility that the movement we observed arises from some imaging artifacts such as mechanical drift of the sample, we imaged fixed cells under our typical condition. In those cells, only 2.3 \pm 0.4% of the molecules exhibited directional movement using the same data processing pipeline. This is 4~5-fold lower than under the Aztreonam treated condition that has the least directional moving trajectories, indicating that any imaging artifact is negligible (Supplementary Table 6). As expected, the MSD curve of the trajectories in fixed sample also showed a much tighter confinement than that of stationary FtsW-RFP in WT cells but similar to that of the Aztreonam treated cells, suggesting two types of stationary populations (Extended Data Fig. 3c).

Classification of single molecule segments

As shown in Extended Data Fig. 5e, we can linearly fit a single molecule trajectory (segment) with T frames to estimate the speed V and calculate the standard deviation of fitting residuals S, while the ground truth of the speed is \hat{V} . The confidence of calling one segment as in directional motion depends on the related level of *S*, which is a function of the localization error, diffusion coefficient and confinement size. We further defined a dimensionless metric *R* that is *S* normalized by the total displacement of the segment $L =$

 $T \cdot V$. Thus, the classification problem can be described as estimating the probability of the segment to be 'stationary' given T and R :

$$
P_s = P(Stationary|T, R) \approx P(\hat{V} = 0|T, R)
$$
\n(1)

And the probability of directional movement is

$$
P_m = P(processive|T, R) \approx P(\hat{V} = V|T, R)
$$
\n(2)

Here, we simplified the problem to a binary classification with two most likely speeds, 0 or *V*. We developed the following algorithm to calculate the probabilities in (1) and (2) and to classify a certain segment as stationary or directional moving.

Step 1: build the probability density function (PDF) of from simulation

Since *R* is defined as $\frac{s}{T \cdot v}$, where *S* depends on the localization error (δ), diffusion coefficient (*D*) and confinement size (*B*), we first determined $\delta_0 = 37nm$, $D_0 = 0.0007$ μ m²/s, $B_0 = 95$ nm of FtsW-RFP under our experimental condition from the MSD fitting results shown in Extended Data Fig. 7c. Note that we simulated stationary RFP-FtsI molecules' PDF using the same parameter set since FtsI is expected to be in the same complex and displays similar motion as FtsW-RFP. For an experimental segment with length T_{exp} and fit speed V_{fit} , we carried out two sets of random simulations to generate 1000 segments based on fixed δ_0 , D_0 , B_0 , T_{exp} , and $V = 0$ or V_{fit} . All the simulated segments were then fit linearly to calculate their *values. The distribution was used to* construct the PDF of *R* given a stationary or directional movement state:

$$
PDFS(R) = PDF(R | \delta0, D0, B0, Texp, V = 0)
$$
\n(3)

$$
PDF_m(R) = PDF(R | \delta_0, D_0, B_0, T_{exp}, V = V_{fit})
$$
\n
$$
(4)
$$

Step 2: Estimate the experimental distribution of R_{exp} :

We determined the distribution of R_{exp} using a bootstrapping-like procedure. We first randomly deleted 10% of the datapoints from the segment for 100 times. We then fit all the re-sampled segments by line and calculated the corresponding standard error (σ) of R_{exp} . Next, we integrated $\langle R_{exp} \rangle \pm \sigma$ in (3) and (4) to obtain the probability of R_{exp} given the conditions described above and the speed.

$$
P\big(R_{exp}\big| stationary\big) = \int_{(R_{exp})-\sigma}^{(R_{exp})+\sigma} P\big(R\big|\delta_0, D_0, B_0, T_{exp}, V=0\big)dR\tag{5}
$$

$$
P\big(R_{exp}|processive\big) = \int_{(R_{exp})-\sigma}^{(R_{exp})+\sigma} P\big(R\big|\delta_0, D_0, B_0, T_{exp}, V = V_{fit}\big)dR\tag{6}
$$

Step 3: Bayesian inference:

For every segment, we calculated its P_m using Bayes' theorem:

$$
P_m = \frac{P(R_{exp}|processive)P(processive)}{P(R_{exp}|stationary)P(Stationary) + P(R_{exp}|processive)P(processive)}
$$

$$
= \frac{P(R_{exp}|processive)}{P(R_{exp}|stationary) + P(R_{exp}|processive)}
$$

Here we assume no prior knowledge on the type of motion, thus $P(statinary) =$ $P(\text{processive})$.

Step 4: Classification:

We used a set of thresholds: $P_m > 0.75$ and $R_{exp} < 0.4$ to identify directional or processive moving molecules, which is comparable with a manual classification but largely reduced the potential systematic bias.

Estimation of PG synthesis rate in E. coli

Burman et al.¹⁷ estimated that *E. coli* cells growing with a doubling time of 48 min, insert about 450,000 new muropeptides in the peptidoglycan sacculus during an 8-min labeling period with radioactive cell wall precursors. This is equivalent to 150 PG loops

around the cell circumference (each loop corresponds to \sim 3000 muropeptides or 3000 nm). If one assumes that there are \sim 150 PG synthase complexes¹⁸ that simultaneously synthesize the PG in a processive fashion, the polymerization rate for each loop would be 3000 nm / $480 s = 6$ nm/s. Note that this number is lower than the directional moving speed of the RodA/PBP2 system for cell wall elongation⁶, and that this simplified estimation does not take into account the number of enzyme molecules presented on each loop's synthesis, the contribution of other PGTases, the growth condition (our growth condition is at RT and in minimal media), and the simultaneous PG turnover process. Nevertheless, the speed estimated from these labeling experiments and the speed of the RodA system agree with our SMT measurements in the same order of magnitude.

Captions for Movies

MovieS1:

Phase contrast time-lapse movie of JXY559 (BW25113 *ftsW*^{1302C}) cells growing on 3% agarose gel-pad with M9-glucose minimum medium in the absence of MTSES at room temperature. The movie was recorded every \sim 3.5 minutes Scale bar: 5 μ m.

MovieS2:

Phase contrast time-lapse movie of JXY559 (BW25113 *ftsW*^{1302C}) cells growing on 3% agarose gel-pad with M9-glucose minimum medium at room temperature. The gel-pad was supplemented with 0.1mM MTSES. The movie was recorded every ~3.5 minutes Scale bar: 5 μm.

MovieS3-9:

Epi-fluorescence time-lapse imaging of single FtsW-RFP molecules in M9-glucose, corresponding to Extended Data Fig. 3a, Fig. 2a, b, and Extended Data Fig. 2a-d. Frame rate = 2 frames/second; camera pixel size = 81.25 nm. Scale bar: 0.5 μ m.

Reference:

1.Buss, J. *et al.* A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. *PLoS Genet* **11,** e1005128 (2015).

2.Tarry, M. *et al.* The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. *J Mol Biol* **386,** 504–519 (2008).

3.Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci USA* **97,** 6640–6645 (2000).

4.Liu, B., Persons, L., Lee, L. & de Boer, P. A. J. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. *Mol Microbiol* **95,** 945–970 (2015).

5.Gerding, M. A. *et al.* Self-enhanced accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. *J Bacteriol* **191,** 7383–7401 (2009).

6.Cho, H. *et al.* Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. *Nat Microbiol* **1,** 16172 (2016).

7.Yang, X. *et al.* GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. *Science* **355,** 744–747 (2017).

8.Guyer, M. S., Reed, R. R., Steitz, J. A. & Low, K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. *Cold Spring Harb Symp Quant Biol* **45 Pt 1,** 135–140 (1981).

9.Bernhardt, T. G. & de Boer, P. A. J. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. *Mol Microbiol* **48,** 1171–1182 (2003).

10.Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* **177,** 4121–4130 (1995).

11.Liang, H. *et al.* Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications. *Nat Commun* **8,** 15015 (2017).

12.Hale, C. A. & de Boer, P. A. J. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. *J Bacteriol* **184,** 2552–2556 (2002).

13.Mercer, K. L. N. & Weiss, D. S. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. *J Bacteriol* **184,** 904–912 (2002).

14.Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. *Cell* **159,** 1300–1311 (2014).

15.Lyu, Z., Coltharp, C., Yang, X. & Xiao, J. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging. *Biopolymers* **105,** 725–734 (2016).

16.Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. *Nat Microbiol* **1,** 16077 (2016).

17.Burman, L. G. & Park, J. T. Molecular model for elongation of the murein sacculus of Escherichia coli. *Proc Natl Acad Sci USA* **81,** 1844–1848 (1984).

18.Egan, A. J. F. & Vollmer, W. The stoichiometric divisome: a hypothesis. *Front Microbiol* **6,** 455 (2015).