SUPPORTING INFORMATION for

Site-Specific Antibody Conjugation Strategy to Functionalize Virus-based Nanoparticles Jooneon Park^{1#}, Paul L. Chariou^{2#}, and Nicole F. Steinmetz^{1,2,3,4,5*}

¹Department of NanoEngineering, ²Department of Bioengineering, ³Department of Radiology ⁴Moores Cancer Center, ⁵Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr. - MC 0448, La Jolla CA 92039, USA.

*Corresponding author: <u>nsteinmetz@ucsd.edu</u>

<u>*[#]* these authors contributed equally.</u>

Figure S1. UV-spectra of FITC-conjugated antibodies. Using the molecular extinction coefficients for IgG and FITC (210,000 and 73,000 M⁻¹cm⁻¹, respectively), the number of FITC attached to each antibody were determined to be 0.98, 1.05, and 0.66 for hIgG, trastuzumab, and α -CD47, respectively.

Figure S2. Hydrodynamic size change before and after antibody conjugation measured by dynamic light scattering.