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Figure S1. Related to Figure 1: Glycomic signature of HEK293 cells

A, HEK?293 cells were subjected to unbiased glycomic profiling for the characterization of N-glycans,
O-glycans, and GSLs. All glycan components were permethylated and analyzed by NSI-MS.
Permethylated malto-oligosaccharides were used as an external standard for quantification. An equal
portion of each glycan species was injected onto NSI-MS in order to quantify their expression level.
Top, A series of oligomannose N-glycans were observed as a dominant N-glycan class; middle, mono-,
and di-sialo-core 1 structures were the major O-glycan species; bottom, a variety of GSL species were
observed. GSLs tends to carry several forms ceramide species (e.g. d18:1 as a sphingoid base with
C16:0-C24:1 fatty acids).

B, MS/MS analysis of an N-glycan carrying a LacdiNAc disaccharide and a fucose. Top, MS/MS
analysis was carried out for a permethylated N-glycans detected at m/z 1154, demonstrating the
presence of LacNAc moiety (Hex-HexNAc) detected at m/z 486 and LacdiNAcC structures moiety
(HexNAc-HexNACc) detected at m/z 527 respectively. The signal at m/z 527 was disappeared in
BA4GALNT3&4-double-KO; middle, tri-antennary structure was more abundant than LacdiNAc
structure at m/z 1154; bottom, MS/MS analysis of an N-glycan detected at m/z 1242 was carried out
to determine fucosylation sites. LacNAc moiety (yellow box), fucosylated LacNAc moiety (blue box),
LacdiNAc moiety (green box), fucosylated LacdiNAc moiety (red box), and core fucose moiety
(purple box) were detected at m/z 486, 660, 527, 701, and 474, respectively.

C, Detection of O-Fuc and SA1+F1+Corel. MS/MS analysis was carried out for the O-glycan at m/z
1069 (left). A fragment at m/z 694 in the MS/MS analysis of the O-glycan at m/z 1069 was subjected
to MS? analysis (right). A fragment (m/z 472) corresponding Hex-HexNAc derived from O-Fuc
structure was major, whereas a trace amount of Hex-dHex moiety (m/z 433) derived from
SA1+F1+Corel was also detected.

D, Determination of the fucosylated position in an O-glycan structure (F1+Hex1+Core 2) at m/z 1157.
MS" analysis was carried out for the O-glycan carrying fucose at m/z 1157 (upper left). A fragment
(m/z 486) represents Hex-HexNAc moiety. A fragment (m/z 747), which represents a structure
appeared with a neutral loss of Fuc-Gal-O, was further subjected to MS?® (lower left), demonstrating
the presence of a Hex-HexNAc moiety (m/z 486). To distinguish a fucosylation site on either GICNAc
or Gal, a fragment (m/z 660) in the MS?® spectra (m/z 921 at m/z 1157) was subjected to MS* (right).
The MS* spectra indicates that both Fuc-Gal and Fuc-GIcNAC structures exist.



Figure S2
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Figure S2

GlycoMaple (HPA's RNA-seq data) vs MS data (Fujitani et al.,PNAS (2013))
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Figure S2. Related to Figure 2: Validation of GlycoMaple in various cell lines

A, Evaluation of GlycoMaple using mucin-type O-glycan structures detected in HEK293. Among the
53 mucin-type O-glycan structures in the GlycoMaple, 21 glycan structures detected in the glycomics
data and on recombinant MUC-1 in (A) were used as the actual detected structures. The predicted
glycan structures were estimated at various TPM threshold values (0 to 10). The numbers of true-
positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN) predictions were
calculated. Then, the Accuracy, Precision, Sensitivity (Recall), Specificity, and F1-score under the
different thresholds were measured.

B, GlycoMaple analysis was performed using RNA-seq data of 6 cell lines (A549, Caco2, HelLa,
HEK293, HepG2, and HL60) that are available in the Human Protein Atlas. As detected O-glycan
structures, the data in the published paper (Fujitani et al., 2013) were used. As described in Figure 2,
relationships between False Positive Rate (1 — Specificity) and True Positive Rate (Sensitivity)
obtained in analyses of 6 human cell lines were plotted as ROC curves. The area under the curve (AUC)
values in A549, Caco2, HelLa, HEK293, HepG2, and HL60 cells were 0.78, 0.74, 0.82, 0.80, 0.89, and
0.85, respectively.

C, Fl-scores in 6 human cell lines at various TPM thresholds were plotted as descrived in Figure 2.
The data are presented as the mean of the F1-scores in 6 cell lines (blue square) £SE. It should be
noted that the greatest F1-scores were detected at high TPM thresholds in some cells such as HepG2
and A549 cells. There are at least two possible reasons to explain this. First, the RNA-seq and
glycomics data used in the analysis were obtained from two independent sources. Second, glycomics
analysis still has limitations and cannot detect all glycan structures. Since some estimated glycan
structures in GlycoMaple were not observed in the MS analysis of some cell lines (such as HepG2 and

A549 cells in the reference paper), the false positive rate was increased at low TPM thresholds.
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Figure S3. Related to Figure 2: Mapping of glycan metabolic pathways in HEK293 cells

A, Gene expression in HEK293 cells was analyzed using RNA-seq. Based on the gene expression
profile of HEK293 cells, pathways for (A) lipid-linked oligosaccharide (LLO) biosynthesis and OST,
(B) N-glycan processing and branching , (C) complex capping of N-glycans / O-glycans / GSLs, (D)
biosynthesis of GPI-anchored proteins, (E) biosynthesis of mucin-type O-glycans, (F) biosynthesis of
O-fucose / O-glucose / collagen-O-galactose / O-GIcNAc / C-Man, (G) biosynthesis of O-Man, (H)
biosynthesis of GAGs, (I) biosynthesis of HS, (J) biosynthesis of CS and DS, (K) biosynthesis of
keratan sulfate (KS), (L) biosynthesis and catabolism of hyaluronan, (M) biosynthesis of core GSLs,
(N) biosynthesis of Gbs, (O) biosynthesis of gangliosides, (P) biosynthesis of sugar nucleotides, (Q)
lysosomal degradation of N-glycans, (R) lysosomal degradation of GSLs, and (S) lysosomal
degradation of GAGs were visualized. The expression data (TPM values) of glycan-related genes were
used for mapping. Arrows indicate the gene expression in each reaction. Thin pink arrows (TPM <
0.1) or solid red arrows (0.1 < TPM < 1) indicate that the responsible genes for the pathways are not
expressed or rarely expressed in the cells, respectively. The black arrows (1 < TPM) indicate that the
genes in the pathways are expressed in the cells. The thickness of these arrows shows the expression
levels of the genes: thin black arrows, 1 < TPM < 4; normal black arrows, 4 < TPM < 20; thick black
arrows, 20 < TPM < 100; very thick black arrows, 100 < TPM. If several genes overlapped in a reaction,
the maximum TPM value among the values of overlapped genes was used as default (The setting could
be changed. See Supplementary Informationl1). When several gene products make a complex for a
reaction, the minimum TPM value of the subunit genes was used. Blue arrows indicate the reactions

for which the responsible genes were not clear. Each numbered reaction is listed in Table S3.
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Figure S4. Related to Figure 4: Glycosylation is altered in the rationally engineered HEK293 cell
lines

A, Determination and quantification of N-glycan carrying bisecting GIcNAc in HEK293 WT and
MGAT5-KO cells. MS" analyses were carried out for several permethylated N-glycans, which
potentially carrying bisecting GICNAc epitope. For example, the molecular ion detected at m/z 1052
(2+) was subjected to MS® analysis demonstrating fragment ions produced from m/z 852 which
composed of 3 Hex and 1 HexNAc in black open box that produces signature ions m/z 648 and 634 (2
Hex and 1 HexNAc), and m/z 444 and 458 (1 Hex and 1 HexNAc). The ion of m/z 634 was barely
detected (less than 1% of total ion intensity), indicating the structure c is a minor glycan component
(upper figure). Based on the number of methyl group (orange circle) on monosaccharide residue of
permethylated N-glycan, it shows different m/z, e.g. m/z 458 carries 2 Me groups (blue open box) on
Man, whereas m/z 444 carries 1 Me group (red open box) on Man, indicating that one of hydroxy
group on the first Man attached on the second GIcNAc on chitobiose core is occupied by a GIcNAc
residue, forming a bisecting GICNAc epitope. The ion intensity detected at m/z 444 is significantly
increased in MGAT5-KO cells. Although WT expresses a reasonable amount of bisecting GICNAc
epitope (the ratio of 444:458=3:2), MGAT5-KO cells express more bisecting-GIcNAc type N-glycans
than that of WT due to a lack of MGATS. Incapability of synthesizing higher complex N-glycans by
knocking out MGAT5 gene alters the cellular glycosylation pathway leading to an increase of
production of bisecting GIcNAc epitope (lower figure).

B, Comparative glycomic analysis of seven KO cells. Relative abundance of N-glycans (left panel)
and O-glycans (right panel) in HEK293 MAN1A1-, A2-, and Bl-triple-KO (T-KO), MGAT1-KO,
MGAT2-KO, MGAT4A&4B-KO, MGAT5-KO, BAGALNT3- and 4-KO, and SLC35C1-KO cells. The
data are visualized as clustered heatmaps. The relative amounts of glycan structures in each cell type
were calculated, and were compared with those of HEK293 cells. The log. values of the data are
visualized as heatmaps. The data used the mean value from two independent experiments.

C, N-linked glycosylation is altered in the rationally engineered HEK293 cell lines. A selected set of
glycan-related gene KO cells were subjected to glycomics analysis. N-glycans from equivalent
numbers of cells were analyzed for each cell type shown here. The full MS profiles of N-glycans were
deconvoluted by Xtract software. Briefly, N-linked glycans were released from glycoproteins
harvested from the indicated cell types. MS glycan profiles were obtained following permethylation.
An internal standard (Dp4, red line) was added in equal amount to each glycan preparation to facilitate
quantification of glycan abundances.

D, GSLs glycosylation is altered in the rationally engineered HEK293 cell lines. GSLs from equivalent

numbers of cells were analyzed for each cell type. The full MS profiles of GSLs were deconvoluted



by Xtract software. Intact GSLs were permethylated with 12C-methyliodide prior to MS analysis. An
internal standard (Dp4, red line) was added in equal amount to each glycan preparation to facilitate
quantification of glycan abundances. In the T-KO (MAN1A1&A2&B1) cells, a significant signal of
polylactosamine chain was detected compared to other type cells.
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Figure S5. Related to Figure 5: Increase of LacNAc-containing GSLs and hyaluronan in
MAN1A1&A2&B1-T-KO cells.

A, Increase of LacNAc-containing GSLs in T-KO cells. GSLs extracted from WT and T-KO cells
were permethylated and subjected to NSI-MS analysis by total ion monitoring (TIM). The resulting
TIM profiles were filtered for detection of the signature fragment ion corresponding to the loss of
terminal Hex-HexNAc disaccharide epitope in order to report the presence of LacNAc-containing
GSLs. Theoretical mass of the B2-ion resulting from a neutral loss of doubly charge LacNAc
disaccharide was used to assess the relative expression of LacNAc-containing GSLs in WT and T-KO
cells.

B, MS" analysis of a GSL carrying LacNAc disaccharide in T-KO cells. MS" analysis was carried out
for the GSL detected at m/z 1146.5. Neutral loss of Cer was triggered to obtain fragment ions derived
from GSL-glycan moiety (upper), showing a loss of sialic acid from the oligosaccharide backbone.
MS* analysis was carried out to determine the hexasaccharide structure, demonstrating the presence of
a linear type internal tetrasaccharide moiety Hex-HexNAc-Hex-HexNAc) detected at m/z 921 and a
linear and a branched form of internal disaccharide (Lactose) detected at m/z 449 and 435, respectively.
By comparison of ion intensities observed at m/z 449 and 435 as well as m/z 921 and 486, a linear
type GSL shows higher abundance than that of branched type. A blank box indicates a HexNAc
(GalNAc or GIcNAC) residue due to a difficulty to determine the monosaccharide residue by MS
analysis.

C, Comparison of the expression of glycan-related genes in WT versus MAN1A1/A2/B1/C1/MGAT1-
quintuple knockout (QT-KO) cells. TPM values (averages of triplicated data) were calculated and
plotted as log2(TPM + 1) values. The yellow area represents the predicted interval expression in WT
or QT-KO cells. Representative examples of genes with higher expressions in WT or QT-KO cells are
indicated by blue or red text, respectively.

D, Expression changes of genes involved in the biosynthetic pathway of neolacto-series GSLs. Gene
expression of T-KO and QT-KO cells were compared with HEK293 WT cells and illustrated as the
fold change. The values of fold change that were more than 1.2 and less than 0.83 were shown as color
in red and blue, respectively. The data represent means of triplicated experiments. *, p < 0.05; **, p <
0.01. (two-tailed Student’s t test).

E, Lipid composition of LacCer. Representative zoom spectra for the mass range containing LacCer
ceramide forms are presented for a WT and T-KO (MAN1A1, A2, and B1). The m/z values at which
LacCer species were detected are shown along the x-axis (left). Summary of the mean relative
abundances (n = 2) of HexCer, LacCer, and Gb4 ceramide forms in WT controls and T-KO were

shown as pie charts (right). Ceramide consisting of d18:1-C18:0, which is mainly synthesized by



CERS1 and CERS4 ceramide synthase, was increased in T-KO cells, which is consistent with
upregulated CERS1 and CERS4 genes in T-KO.

F, Flow cytometric analysis of cells stained by fluorescent-conjugated LEL. HEK293 wild-type (WT)
and B3GNT5-KO cells treated with DMSO or a mannosidae-1 inhibitor, kifunensine, were stained by
fluorescent-conjugated LEL, and analyzed by flow cytometry. Background, without lectin staining.
G, Expression values (TPM) of genes required for hyaluronan biosynthesis in WT and T-KO cells.

H, Comparison of sugar nucleotide biosynthetic pathway between HEK293 WT and T-KO cells. The
TPM value of RENBP (step 16) was 3-fold increased in T-KO cells compared to WT cells. Pink arrow
represents expression (TPM value) of the gene responsible for the reaction was increased more than 2
times in T-KO compared to WT cells. Each numbered reaction is listed in Table S3.

I, Amounts of UDP-GIcNAc and GDP-Man were analyzed by a Dionex high-performance anion-
exchange chromatography. UDP-GIcNAc (blue arrow) and UDP-Man (green arrow) were
significantly increased in T-KO and T-KO+HAS2-KO cells, respectively, whereas the expression of
CMP and CMP-sialic acid (SA) among the three sample populations did not alter and stay on a quite
similar level. Due to a lack of ability to synthesize higher complex N-glycans by knocking of
mannosidase-1 genes, both KO cells tends to accumulate UDP-GIcNAc, which are important donors
to build matured glycoprotein-glycan structures. Interestingly, T-KO+HAS2-KO cell tends to express
higher abundance of UDP-GIcNACc than that of T-KO cells, indicating that knocking out HAS2 gene
in T-KO cell leading to an accumulation of cellular UDP-GIcNAc due to a disruption of hyaluronan
biosynthesis.
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Figure S6. Related to Figure 6: Comparison of pathways for glycosylation pathways between
colon normal and primary tumor tissue

Prediction of biosynthesis and catabolic pathways of glycans including (A) lipid-linked
oligosaccharide (LLO) biosynthesis and OST, (B) N-glycan processing and branching , (C) complex
capping of N-glycans / O-glycans / GSLs, (D) biosynthesis of GPl-anchored proteins, (E) biosynthesis
of mucin-type O-glycans, (F) biosynthesis of O-fucose / O-glucose / collagen-O-galactose / O-GIcNAc
/ C-Man, (G) biosynthesis of O-Man, (H) biosynthesis of GAGs, (I) biosynthesis of HS, (J)
biosynthesis of CS and DS, (K) biosynthesis of keratan sulfate (KS), (L) biosynthesis and catabolism
of hyaluronan, (M) biosynthesis of core GSLs, (N) biosynthesis of Gbs, (O) biosynthesis of
gangliosides, (P) biosynthesis of sugar nucleotides, (Q) lysosomal degradation of N-glycans, (R)
lysosomal degradation of GSLs, and (S) lysosomal degradation of GAGs in colon normal (N = 304)
(left), primary tumor tissue (N = 288) (middle) and comparison (right). The expression data (TPM
values) of glycan-related genes were used for mapping. Arrows indicate the gene expression in each
reaction. Thin pink arrows (TPM < 0.1) or solid red arrows (0.1 < TPM < 1) indicate that the
responsible genes for the pathways are not expressed or rarely expressed in the cells, respectively. The
black arrows (1 < TPM) indicate that the genes in the pathways are expressed in the cells. The thickness
of these arrows shows the expression levels of the genes: thin black arrows, 1 < TPM < 4; normal black
arrows, 4 < TPM < 20; thick black arrows, 20 < TPM < 100; very thick black arrows, 100 < TPM. If
several genes overlapped in a reaction, the maximum TPM value among the overlapped genes were
used. When several gene products make a complex for a reaction, the minimum TPM value of the
subunit genes was used. Blue arrows indicate the reactions for which the responsible genes were not
clear. In the comparison images (right), fold changes that were > 2 and < 0.5 are shown as pink and

green arrows, respectively. Each numbered reaction is listed in Table S3.



Methods S1. Related to STAR Methods: Instruction of GlycoMaple

Visualization of glycosylation pathways using RNA-seq data 1.
Access https://glycosmos.org/glycomaples/index in a browser.

Download a sample file by clicking the S@™MPe " [sample]. A sample file including median TPM

values of the primary tumors (N = 288) and normal colon tissues (N = 304) is available on the top of
the main page.

GlyCosmos Portal Submissions ¥ Resources Home Search About Help

Submission @% GlycoMaple

=
g GlyTouCan
@ GlycoMaple is a visualization tool for pathways. Glycogene expression data can be Database Name Last Update
oy Yo 8 uploaded or selected from RNA-Seq data from the Human Proteome Atlas. The

expression values will be displayed in various glycan-related pathways. GlycoMaple April 1, 2020
8) UniCarb-DR

Please input .csv file (Gene ID, TPM value). Do you neelles?

arch
_ Choose File | No file chosen HPA(cell): HPA(tissue):
A-431 v adipose tissue Ml Add

Genes/Proteins/Lipids

Unclear sSx<
Complex:|Min v = 1 4 =
Overlap: | Max v
None > 4 X< 120 >
If two or more tabs are open in the diagram,
two datasets can be compared using the X < 01 20 Sx< [100
Compare button below. »
RIS A
Glycomes
: default
» -

2. Click clhases A [Choose File] to choose the sample file downloaded (test_seq.csv).

Choose File |test_seq.csv
| A B c D E

Gene ID HEK293_AVE TKO_AVE

1

2 |A1BG 251 2.48
3 |AlCF 0.03 0

4 |A2m 1.05 2.85

5 [A2ML1 0.05 0.05

Alternatively, prepare RNA-seq data by yourself. 5 azcaLt? 0.09 0.58
The file should contain “Gene ID” in the first 7 A%CALT a2 2.39
) 8 |A4GNT 0.16 0.02

column, and followed by “TPM value in samplel”, o 4,45 e P

“TPM value in sample2”,, from the second column. 10 AAcs 33.98 32.14

- 11  AADAC 0.06 0

The data should be saved as a csv file AT = =
13 |AADACL3 0 0

147 AADACL4 0.01 0

1R IAANAT 1472 Q2R


https://glycosmos.org/glycomaples/index

3. Select the mode of Complex: [ Min ~ | [complex] and Overlap: [Max | [overlap].

The GlycoMaple allows users to choose different modes to represent the value. Users can select

[minimum] (Min), [maximum] (Max), [average] (Ave) or [summary] (Sum) in the [complex]
and [overlap] parts. In the [complex] part, the default setting is [Min], which means when several
gene products make a complex for a reaction, the minimum TPM value of the subunit genes is used
to represent the arrow. In the [overlap] part, the default setting is [Max]. This means if several
isoenzyme genes overlapped in a reaction, the maximum TPM value of these genes is used to show
the arrow. [Ave] uses the average value of the TPM values and [Sum] uses the summary of the TPM

values to represent the arrow, respectively. Before submitting this file, users need to select Sum

“minimum, maximum, average, summary” in the [complex] and [overlap] parts.

4. Select threshold values to show the thickness of arrows with different TPM values.

Unclear — 1 S x< —
None . 4 <x< —_
X < 20 S x< -
0.1 < x < s 100 < x =D

5. Click m [submit], then start the processing.

After confirming the setting, click the “Submit” bottom to submit RNA-seq data. The processing will
be finished within a few second.

6. Check glycosylation maps and bar plots
The thickness of arrows in glycosylation pathway maps is changed depending on the TPM values of
responsible genes. If there is a reaction called A->B->C->D and there is a defect in the gene involved
in the reaction B->C, which shows a red or pink arrow, it is assumed that products C and D will not
be synthesized no matter how the genes involved in the C->D reaction is highly expressed.

2



Each arrows links to the human gene nomenclature website, and show information of the genes
responsible to the reactions. The TPM values are shown at the bottom of the page as a bar plot. The
number of the gene name in the plot are corresponded to the number on the map.

By uploading your own RNA-seq data, 19 glycan metabolic pathways and expression profiles of
about 950 glycan-related genes can be visualized.

6" GlyCosmos Portal

T S GlycoMaple is a visualization tool for pathways. Glycogene expression data can be Database Name Last Update
uploaded or selected from RNA-Seq data from the Human Proteome Atlas. The
expression values will be displayed in various glycan-related pathways. GlycoMaple April 1, 2020

g GlyTouCan

"5 GlycoPOST

Colon Normal Tissue Colon Primary Tumor

8o unicarb-or - R
LLO biosynthesis and OST

Resources N-glycan processing and
branching

e Q Complex capping N-

_ glycans/O-glycans/GSLs

'-‘ 19 18
Biosynthesis of GPI-APs i H¢—|-H iQ—I I -
Genes/Proteins/Lipids ! \! !/ '\I l !

17

@ Glycogenes Biosynthesis of mucin-type ..-_
CJE Glycoproteins O-glycans 8 ‘ / - )

(it Biosynthesis of O-Fuc/O- 8 ‘ ‘J_r’; / E ‘_" I\
(& Glycolipids Gle/Col-Gal/O-GleNAC/C- :oo.u— ‘.‘." / ‘.‘/ :.a' ;:' |‘

& Giycans Biosynthesis of O-Man 9o}
& Glycans Search Biosynthesis of GAG ~
O €3 Glycoproteins 10

@ Glycolipids Biosynthesis of Heparan
sulfate (HS)

Glycomes Download Image | Legend

Man / { / /
Glycans/Glycoconjugates .:‘Qlun— | / | | | |
f ' I STT38 “‘ep

6" GlyCosmos Portal

Submissions
. $ % GlycoMaple

- GlycoMaple is a visualization tool for pathways. Glycogene expression data can be Database Name Last Update
o /COA uploaded or selected from RNA-Seq data from the Human Proteome Atlas. The

expression values will be displayed in various glycan-related pathways. GlycoMaple April 1, 2020
8o unicarb-or

Biosynthesis of Heparan osT

 Eamplesearchwords sulfate (HS)
Genes/Proteins/Lipids pawoadlimagg]) Lagend

Resources Trrmmmmmm e o N
Biosynthesis of GAG &
Search Q “’ rd it ed g T STTaa )

@ Glycogenes
GIES Glycoproteins
@ Lectins
(& Glycolipids
01 DOLK| W Colon Normal Tissue
B Colon Primary Tumor
Glycans/Glycoconjugates 02 ALGS)
5 Glycans
& Glycans Search 03-1 0PML
G 5 Glycoproteins
03-2 DPM2]
(S Glycolipids
03-3 DPM3|
Glycomes
. 04 MPDU1
4 > -




Comparison of glycosylation pathways in different cells/tissues data.

7. Click [compare].
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post Glycol uploaded or selected from RNA-Seq data from the Human Proteome Atlas. The

expression values will be displayed in various glycan-related pathways. GlycoMaple April 1, 2020
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8. Pick two data that you want to compare. >2MPle B: |Colon Normal Tissue

Two sets of data can be compared in GlycoMaple. Click [compare] and choose two samples that you
want to compare.

Complex:
. . Overlap: |Max v
9. Confirm the setting of veriap [complex] and [overlap].

10. Confirm the threshold of fold changes to show green and pink arrows.
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Visualization of glycosylation pathways in human cells/tissues using HPA data.

The RNA-seq data of 64 human cell lines and 37 human tissues in the Human Protein Atlas (HPA)
have been already deposited on the website. When you select the cells or tissues of your interest, the
glycosylation pathway maps in the cells/tissues can be presented.

12. Choose cells/tissues of interest.
13. Click “Add”.
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