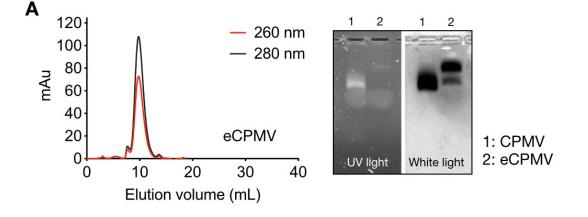
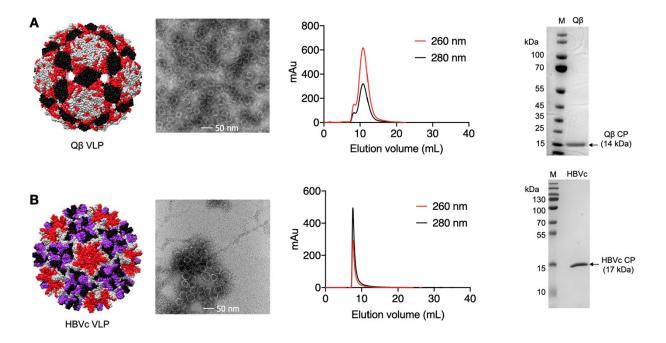
Supporting Information


The Unique Potency of Cowpea Mosaic Virus (CPMV) In Situ Cancer Vaccine

Sourabh Shukla,¹ Chao Wang,^{1#} Veronique Beiss,¹ Hui Cai,¹ Torus Washington,¹ Abner A. Murray,² Xingjian Gong,³ Zhongchao Zhao,⁴ Hema Masarapu,⁵ Adam Zlotnick,⁴ Steven Fiering ⁶ and Nicole F. Steinmetz.^{1,7,8,9,10}


¹Department of NanoEngineering, ⁷Department of Bioengineering, ⁸Department of Radiology, ⁹Moores Cancer Center, ¹⁰Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla CA 92039, USA; ²Department of Molecular Biology and Microbiology, ³Department of Bioengineering, Case Western Reserve University, Cleveland OH 44106; ⁴ Molecular and Cellular Biochemistry Department, Indiana University Bloomington IN 47405; ⁵Department of Virology, Sri Venkateswara University, Tirupati 517502, India; ⁶Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756.

Current address: MD Anderson Cancer Center, Houston TX 77030

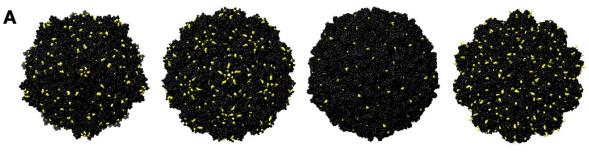

Correspondence: <u>nsteinmetz@ucsd.edu</u>

Figure S1: Characterization of eCPMV: (A, B) eCPMV was characterized by size exclusion chromatography using a Superose 6 column and native gel electrophoresis (1.2% (w/v) agarose in TBE buffer). The inverted 260:280 ratios (<1, compared to RNA-containing CPMV) confirmed absence of encapsidated nucleic acid; this was corroborated by lack of nucleic staining and reduced electrophoretic mobility of the eCPMV.

Figure S2: Characterization of Q β and HBVc VLPs: Q β and HBVc VLPs were analyzed by transmission electron microscopy (TEM), size exclusion chromatography (SEC) using a Superose 6 column and SDS-PAGE (using a 12% Nu-PAGE gel). TEM and SEC data indicate intact VLPs and SDS-PAGE showed the coat proteins; 14 kDa for Q β and 17 kDa for the HBVc.

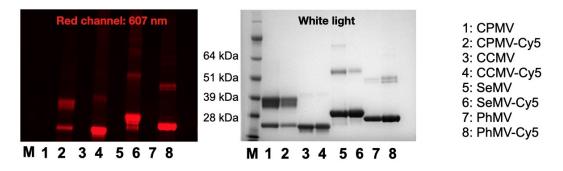
CPMV

CCMV

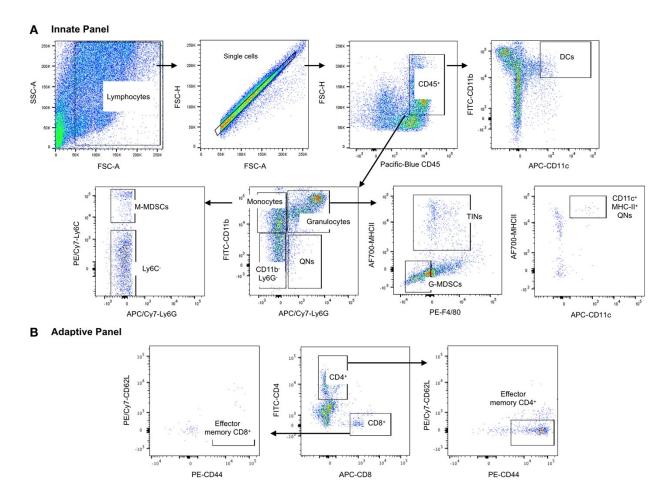
SeMV

PhMV

В



Plant viral nanoparticle NHS-sulfo-Cy5


С

Plant virus	Molecular weight	Size of CP	No. of Lys/capsid	Cy5/capsid	FI
CPMV	5.6 x 10 ⁶ g/ mol	42, 24 kDa (LCP, SCP)	300	28	41893
CCMV	3.78 x 10 ⁶ g/ mol	21 kDa	1080	39	38845
SeMV	5.4 x 10 ⁶ g/ mol	29 kDa	180	16	46263
PhMV	3.78 x 10 ⁶ g/ mol	21 kDa	720	28	42823

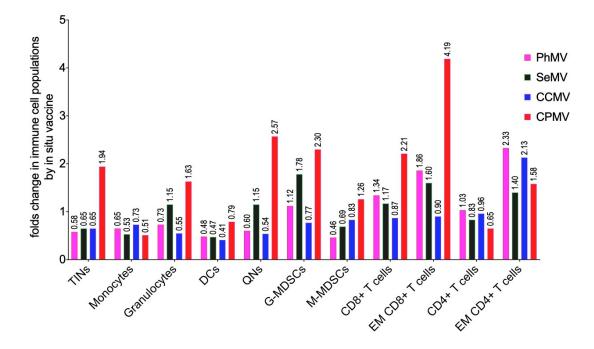

D

Figure S3: **Synthesis and characterization of fluorescent plant viral nanoparticles:** Cy5labeled viral nanoparticles were synthesized by conjugating NHS-sulfo-Cy5 to the solvent exposed Lys residues on viral capsids (A, B). All four particles offer variable number of reactive Lys residues; therefore the conjugation protocols were carefully adjusted yielding fluorescent viral particles with comparable fluorescence intensities (FI, C). The FI of the Cy-labeled viral nanoparticles measured using a particle concentration of 0.1mg/ mL and 635/655 excitation/emission. (D) SDS-PAGE confirmed presence of fluorescent coat proteins (D).

Figure S4: Gating strategy used for characterization of the immune response in the IP wash from ID8-Defb29/Vegf-a ovarian tumor bearing mice following treatment with CPMV, CCMV, SeMV and PhMV-VLP *in situ* vaccine.

Figure S5: Comparative changes in the immune cell population of intraperitoneal tumor microenvironment by in situ vaccine using different VNPs.

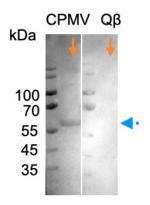


Figure S6: VOPBA assay comparing vimentin binding of CPMV and Qβ VLP.