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Detailed list of variables and definitions

Main time-varying exposures and primary outcomes

Mechanical ventilation

A patient’s daily mechanical ventilation (MV) status was derived from patient-specific MV 

episodes. Daily MV status was coded 1 if the MV episode covered the corresponding calendar 

date, and 0 otherwise. An MV episode was defined as an uninterrupted time window in which 

at least 2 ventilation parameters (including but not restricted to PEEP, tidal volume, FiO2, SpO2, 

respiratory rate, I:E ratio, pressure support, mean airway pressure) were registered. A time 

window is considered uninterrupted if there were no gaps of more than 24 hours with less than 

2 registered ventilation parameters. Ventilation parameters (set and measured values) were 

either routinely entered by nursing staff every 30 minutes to 2 hours (depending on the 

parameter) or automatically registered through a connected monitoring device (such as 

respiratory rate and SpO2) and validated by nursing staff every 30 minutes. Internal code was 

used to calculate MV episodes from time-dependent ventilator parameters.

Ventilator-associated pneumonia (VAP)

Hospital-acquired pneumonia diagnosed in patients under mechanical ventilation for 48 hours 

or longer, or in patients who had been extubated for less than 48 hours after mechanical 

ventilation for at least 2 days (1). Following (2), we included only pneumonia with high and 

moderate probability. Pneumonia was considered to be highly probable in the case of presence 

of a new or worsening infiltrate on chest X-ray, together with clinical signs of sepsis and new 

respiratory symptoms (increased sputum, increased purulence of sputum, worsening 

oxygenation), and a semi-quantitative score of 1+ growth or more of a pathogen in a good-
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quality respiratory sample. Pneumonia was considered to be moderately probable in the case of 

all previous criteria but in the absence of respiratory pathogens or growth below the threshold 

of 1+. This is a clinically pragmatic definition that closely matches reality and has high 

concordance with the CDC definition (2).

Suspected VAP diagnosis was entered by the treating intensive care physician in the Computer-

based Surveillance and Alerting of nosocomial infections, Antimicrobial Resistance and 

Antibiotic consumption in the ICU (COSARA) system. 

Two hundred ninety-five (295) patients were registered with suspected VAP. Forty (40) of these 

were not microbiologically confirmed and had low probability on clinical re-evaluation after 

48-72h of empirical antibiotic therapy. Of the remaining 255, 44 patients were coded with a 

VAP diagnosis within 48 hours after ICU admission and within 48 hours after the start of the 

first episode of mechanical ventilation (as defined above). Assuming correct ICU admission 

times, correct coding/registration of mechanical ventilation episodes at the ICU, we considered 

these patients as either misdiagnosed by the treating physician (because failure to adhere to the 

aforementioned definition of VAP) or as correctly diagnosed, but not ICU-acquired (possibly 

due to mechanical ventilation prior to ICU admission). These ‘ambiguous’ VAP cases were 

recoded as non-VAP, and remaining VAP cases were considered as ‘incident VAP cases’, i.e. 

ICU-acquired VAP due to mechanical ventilation administered at the ICU. One of the 

remaining 211 VAP cases was excluded from the final analysis due to a missing APACHE II 

score (cf. flow diagram in Figure 1 in the main manuscript).

VAP diagnosis may have been susceptible to differential misclassification bias in patients with 

treatment limitation decisions (cf. below), i.e. VAP cases could have been missed relatively 

more often (false negatives) in patients with DNR codes because accurate diagnosis may not 

have been as pressing for considering adequate therapy options as for patients without a DNR 

code. However, in estimating the population-attributable fraction (using approach 4), we aimed 
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to correct for such potential detection bias by adjusting for time-varying DNR code as a 

potential confounder in the Cox proportional hazards model to calculate inverse probability 

weights (see section ‘Cox proportional hazards model for the daily probability of acquiring 

VAP’). There is, however, no guarantee that this may have completely eliminated potential 

detection bias.

Daily VAP acquisition status was coded 1 from the first calendar date of VAP diagnosis and 0 

otherwise. Following (3), we coded daily VAP status as ‘having acquired VAP on the current 

calendar date or earlier’ (i.e. VAP status was coded 1 even if clinical cure from VAP had 

occurred). Clinical cure after VAP acquisition was considered irrelevant as we aimed to 

estimate attributable ICU mortality due to VAP acquisition rather than that of time-varying 

VAP.

ICU death/discharge status and time

Time of death at the ICU and discharge from the ICU were entered by nursing staff in the 

Intensive Care Information System (ICIS), along with event status (ICU death/discharge). No 

information bias was expected because these involved hard endpoints. Nonetheless, one patient 

had a missing event status and was therefore discarded from the analysis, under the assumption 

of missing completely at random (MCAR) (see flow diagram; Figure 1 in the main text).
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Baseline covariates

Admission category

Admission category was extracted from the ICIS and indicated whether a patient was admitted 

at the Medical ICU (MICU) or Surgical ICU (SICU), and whether admission to the SICU was 

considered for emergency or scheduled surgery. 

Demographic data 

Gender and date of birth was extracted from the ICIS, which retrieves this information through 

the Admission Discharge Transfer (ADT) feed at ICU admission. Age at ICU admission was 

derived from ICU admission date, which was entered manually at ICU admission, and the 

patient’s date of birth. In addition, weight (kg) was either measured and retrieved from external 

hospital records, estimated by nursing staff or reported by the patient or their relatives, and 

entered in the ICIS by nursing staff. For 9 patients, weight was missing.

Charlson comorbidity index (updated)

The updated Charlson comorbidity index was calculated from patient admission data in the 

ICIS using weights as described in (4), using internal code (mapping and code available upon 

request). Data on rheumatologic disease was missing for all patients. The corresponding weight 

of 1 was therefore replaced by 0. The same principle was applied whenever information on 

other conditions was missing for certain patients.

Acute Physiology and Chronic Health Evaluation (APACHE) II score

APACHE II score (5) was calculated using proprietary code of GE Centricity Critical Care 8.1 

and incorporated in the ICIS. Eight cases with missing APACHE score were deleted and a 
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complete case analysis was performed under the assumption of missing completely at random 

(MCAR) (see flow diagram; Figure 1 in the main text).

Time-varying covariates

Antibiotic therapy

Daily binary indicators of antibiotic (AB) therapy (1 if AB received; or 0 otherwise) were 

derived from time windows in which a specific AB was administered, as entered by physicians 

in the COSARA database. A detailed list of included AB can be found in (6).

Vasoactive agent use

Daily binary indicators of vasoactive agent (VA) use (1 if VA received; or 0 otherwise) were 

derived from registered infusion rates of vasoactive agents (including dobutamine, dopamine, 

epinephrine, milrinone, norepinephrine and vasopressin) in the ICIS database.

Enteral feeding

Daily binary indicators of enteral feeding (EF) were derived from registered doses in the ICIS 

database.

Corticosteroids 

Daily binary indicators of administration of corticosteroids (1 if total day-specific dose >0.5 

mg/kg; or 0 otherwise) were derived from estimated/measured weight at admission (cf supra) 

and corticosteroid doses as entered by nursing staff (in case of oral administration or 

intravenous (IV) injection) or registered through IV infusion pumps in the ICIS (aggregated per 

patient per day). For 2 patients who received corticosteroids, weight was missing, such that 

E7



dose/kg could not be calculated. Each of these patients had only one recorded dose. Based on 

other non-missing demographic characteristics (gender and age), it was assumed that these 

doses exceeded 0.5mg/kg (i.e. under the assumption that the weight of these patients did not 

exceed the maximum weight at which the respective doses >0.5mg/kg).

Hemodialysis

Timestamps on hemodialysis episodes were missing from the ICIS and COSARA databases. 

This information was therefore derived from recorded ultrafiltration rates. Daily binary 

indicators of the presence of ultrafiltration rate records (1 if present; 0 otherwise) were 

calculated from the ICIS database. 

Tracheotomy tube

Daily binary indicators of the presence of a tracheotomy tube (1 if present; 0 otherwise) were 

derived from time windows from placement to removal of tracheotomy tube, as entered by 

nursing staff in the ICIS database. In case no timestamp for removal of tracheotomy tube was 

registered, tracheotomy tube was assumed to be present until ICU death or discharge.

Treatment limitation decisions (TLDs)

Daily TLD codes (code 0-4) were derived from registered do-not-resuscitate (DNR) codes, as 

entered by physicians in the ICIS database, and their timestamps. In case a DNR code was 

changed on a particular day, only the last registered DNR code by the end of that day was with 

withheld as the day-specific DNR code. The last registered DNR code of a patient was assumed 

to hold until time of ICU death or discharge. The following progressive coding scheme was 

used (also see (7)):

- Code 0 = full therapy (no therapy restrictions);
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- Code 1 = no cardiopulmonary resuscitation, no defibrillation;

- Code 2 = withholding of therapy (therapy restrictions that may include no referral to the 

ICU, no dialysis, no upgrading of antibiotics, no vasopressors or inotropes, no colloids 

or cristalloids in case of hypotension, no intubation and mechanical ventilation, no 

blood transfusions or blood cultures, no metabolic correction, no surgical procedures);

- Code 3 = withdrawal of life-sustaining therapy (only comfort care; may include pain 

relief and symptom control, discontinuation of vasopressors/inotropes, discontinuation 

of mechanical ventilation);

- Code 4 = withdrawal of all active and supportive therapy, mechanical ventilation

Due to data sparsity codes 2, 3 and 4 were collapsed into one category.

Other hospital-acquired infections

Daily binary indicators of suspected or confirmed bacterial and fungal infections (1 if suspected 

or confirmed; 0 otherwise) were derived from infection diagnosis as entered in the COSARA 

database by treating physicians. More specifically, separate daily indicators were calculated for

- bacterial abdominal infections

- bacterial catheter-related infections

- bacterial respiratory infections

- bacterial urinary tract infections

- all other bacterial infections (including endocarditis, meningitis, encephalitis, 

neutropenic sepsis, other neurological infections, skin infection)

- fungal infections (including yeast infections and other fungal infections) 
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Sequential Organ Failure Assessment (SOFA) score

Daily SOFA scores (8) were extracted from the COSARA database. These were calculated as 

the sum of six SOFA subscores, each of which are scored from 0 to 4 and are calculated in real-

time in the ICIS for each 24h interval from 5am of the current calendar day to 5am the next 

calendar day, based on available lab results imported in the ICIS, physiological parameters and 

administered drugs and interventions (as detailed in (9)). The six SOFA subscores reflect

- coagulation function

- renal function

- cardiovascular system function

- central nervous system function

- hepatic system function

- respiratory function

Higher scores reflect increasing levels of organ dysfunction. However, this score may in part 

reflect the subjective appraisal of a patient’s condition by intensive care physicians because 

when a patient is not suspected to have a particular organ dysfuntion no tests are ordered beyond 

routine test and measurement procedures. Corresponding subscores that therefore may be 

missing are scored 0.

Standard of care VAP prevention

The following measures to prevent VAP are applied in our ICU: 1) use of short acting sedatives 

and analgetics and thrice daily assessment of sedation goals (morning, noon and evening 

rounds) 2) application of early mobilization and twice daily assessment of weaning readiness 

(morning and noon rounds) 3) use of oral chlorhexidine 4) 30% semi-recumbent positioning. 

Continuous subglottic aspiration is not systematically used.
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Comparison of statistical approaches with respect to emulation of a randomized 

controlled prevention trial

The (time-dependent) population-attributable fraction (PAF) of ICU mortality due to VAP 

expresses the percentage of preventable cases in the ICU in the absence of VAP as a function 

of time since ICU admission. Under certain assumptions1, its estimate can be interpreted as the 

relative mortality reduction that would be found in the ICU in a hypothetical RCT in which 

eligible patients are randomly assigned to receive either a fully effective bundle of preventive 

measures or standard of care (see ‘Detailed list of variables and definitions’). 

Due to randomization, the cumulative incidence in the latter arm of this target prevention trial 

is expected to correspond to the observed cumulative incidence in an observational study 

(where all patients receive standard of care). This quantity can directly be estimated from a 

competing risk analysis (treating ICU discharge as a competing event for ICU death). 

The cumulative incidence in the preventive bundle arm, on the other hand, corresponds to 

the ‘counterfactual’ VAP-free cumulative incidence. This quantity cannot readily be estimated 

from observational data. However, explicit description of the hypothetical target trial provides 

1The sufficient set of assumptions entails consistency, no unmeasured confounding, positivity and no 

misspecification of the nuisance models (e.g. to estimate IP weights). A key component of consistency is that of 

‘well-defined interventions’. In particular, in our study, we aim to compare outcomes under ‘standard-of-care’ and 

‘a fully effective bundle of VAP prevention’. The latter intervention may not be sufficiently well-defined because, 

as of yet, such a bundle is unavailable. Note that this inherent vagueness may hinder an unambiguous interpretation 

of the PAF estimates in our study, because the definition in itself determines how ‘counterfactual’ interventions 

may be linked to the data (another key component of consistency) and may guide expert opinion on sufficient 

adjustment sets that suffice for confounding control. For instance, due to the inherent vagueness of the prevention 

bundle, we may have adjusted away preventive effects via manipulable confounders that may be effective targets 

for VAP prevention. For more details on this discussion, see (22,23).
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a roadmap for statistical analysis (10,11) and offers a general framework for comparing existing 

analytical approaches. In particular, estimation of the ‘counterfactual’ VAP-free cumulative 

incidence poses additional challenges as it necessarily relies on causal assumptions that cannot 

be verified from the data at hand. Although proposed estimation approaches for ‘emulating’ 

this hypothetical trial arm (or counterfactual scenario) differ in the extent to which such causal 

assumptions are made explicit, each approach involves some form of up-weighting VAP-free 

events from observational data. 

The (often implicit) rationale behind weighting events is as follows. As patients acquire VAP, 

they are no longer compatible with receiving a fully effective preventive bundle in the target 

prevention trial (or with the counterfactual scenario) we aim to emulate. As their subsequent 

events are therefore discarded from further statistical analysis, they should transfer their weight 

to patients who have remained VAP-free, thereby accounting for the selection of the latter group 

of ‘compatible’ patients. By receiving additional weight in the analysis, VAP-free patients 

substitute for VAP-infected patients being excluded from the original population for which we 

aim to estimate the hypothetical CI had no one acquired VAP. As illustrated in more technical 

detail in (12), it turns out that all proposed methods under comparison apportion weights to 

VAP-free events that are inversely proportional to the overall amount of selection, so as to 

‘reconstruct’ the original patient population. However, their respective weighting schemes 

differ largely in terms of how well they respect the temporal ordering of events and how well 

they take into account the (possibly) selective nature of ‘compatible’ patients over time. 

Consequently, proposed approaches are successful at tackling different sources of bias to 

varying degrees. Successful emulation of the cumulative incidence in this hypothetical trial arm 

critically hinges on the following guiding principles. 

First, the total amount of transferred weight at any given time wave should be inversely 

proportional to the likelihood of being VAP-free (i.e. degree of selection of VAP-free patients) 
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until (at least) that time wave. Deviations from this principle produce immortal time bias, 

because they fail to respect the temporal ordering of events. Such bias typically occurs when 

the analysis is restricted to never infected patients (i.e. patients who remained without VAP 

until the end of study follow-up) as in approach 1 (though not approaches 2—4). Indeed, such 

analysis implicitly weighs VAP-free events at each time wave according to the likelihood of 

remaining VAP-free until the end of study follow-up, which is only known at the ultimate VAP 

onset in the sample population. 

Second, at any given time wave, weight transferred from newly VAP-infected patients should 

only be distributed among VAP-free patients that are still hospitalized at the ICU at that time 

wave. Deviations from this principle likewise fail to fully respect the timing of events. They 

often yield a more subtle form of time-dependent bias, which has only been documented 

recently (12,13). One widely advocated multi state modelling approach for estimating the PAF 

(14)  (approach 2, along with approach 1, though not approaches 3—4) violates this second 

principle because it (implicitly) distributes the (correct) total amount of transferred weight at a 

given time wave evenly among all patients who did not acquire VAP by that time, including 

patients that already experienced a VAP-free event (i.e. patients that have died or been 

discharged by that time without VAP). This implies that a deceased VAP-free patient is not 

only weighed in the analysis at her time of death, to compensate for the depletion of VAP-

infected patients by that time wave, but gets re-weighted after her death to compensate for 

further depletion of VAP-infected patients in the future.

Third, at any given time wave, VAP-infected patients should transfer weight to VAP-free 

patients with the same patient profile in terms of admission characteristics and evolution of 

disease severity up to that time wave. This is required to ensure comparability of patients in 

each of the arms of our target prevention trial, or in other words, to emulate randomized 

assignment of eligible patients to the preventive bundle arm. For instance, susceptible patients 
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who acquire VAP generally tend to be more severely ill than those who do not acquire VAP. 

Accordingly, the weight received by a VAP-free ICU patient who is severely ill at a particular 

time wave should be proportional to the degree of depletion of comparable VAP-infected 

patients with the same severity of illness up to that time. Deviations from this principle fail to 

account for the selective nature of VAP-free ICU patient profiles over time and may result in 

estimates of the counterfactual VAP-free cumulative incidence that are systematically biased 

downward. Approach 3 (15–18), which has rarely been applied for estimation of time-

dependent PAFs , violates this third principle (along with approaches 1 and 2). This is because, 

in their current form, multi state modelling approaches only allow to accommodate the selective 

nature of VAP-free patients insofar as this is captured by admission characteristics, but not to 

the extent that this is driven by time-dependent confounding factors that evolve since 

admission. This is a less well understood but important shortcoming because, for instance, prior 

to acquiring VAP, patients may deteriorate further and may therefore be at increased risk of 

VAP, even if, at ICU admission, their prognosis is similar to that of patients who eventually do 

not acquire VAP. Consequently, adjustment for time-dependent confounding (or equivalently, 

adjustment for the ensuing differential selection of VAP-free patients / informative censoring 

of VAP-infected patients) should not only be made at baseline, e.g. for severity of illness 

indicators recorded at time of admission, but also for the evolution of such indicators over time. 

Generalized methods, abbreviated g-methods (19,20), comprise a class of methods, some of 

which, in particular inverse probability (IP) weighting (approach 4), can be characterized as a 

natural generalization of approach 3 that enables additionally respecting this third principle by 

tackling issues related to the time-dependent nature of confounding and selection of VAP-free 

patients (12). In contrast to the first two principles, one’s ability to correctly adhere to this third 

principle necessarily relies on subject matter knowledge of the selective nature of VAP-free 
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patients, especially in relation with the patient outcome under study, i.e. ICU mortality, and the 

availability of data on relevant characteristics that sufficiently capture this selective nature.
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Cox proportional hazards model for the daily probability of acquiring VAP

Causal assumptions encoded in a causal diagram

Figure E1 (A) displays a simplified causal diagram that depicts the time-dependent setting 

(restricted to VAP acquisition at time waves t-1 and t) along with the causal assumptions with 

respect to measured baseline and time-varying covariates. Specifically, the red nodes capture a 

set of covariates, as listed below (heading ‘Adjustment set and simplifying model and causal 

assumptions’), that were deemed sufficient to adjust for confounding (i.e. assumption of no 

unmeasured confounding). The temporal ordering of the variables is explicitly displayed in the 

causal diagram by representing earlier measurements and events to the left and later 

measurements and events to the right. Pink pathways indicate biasing pathways of the effect of 

time-dependent VAP on ICU mortality. 

Rationale behind inverse probability weighting

Inverse probability (IP) weighting aims to resolve this confounding bias by constructing a 

pseudo-population that consists of the original study population under the hypothetical scenario 

that all patients had remained without VAP until the end of hospitalization (i.e. until ICU death 

or discharge). It does so in a way that aims to render VAP acquisition at time t among 

hospitalized patients that have remained without VAP up until time t-1 independent of the 

measured covariate history up until time t-1 or, in other words, in a way that aims to restore 

covariate balance (up until time t-1) between incident VAP cases and VAP-free patients at time 

t among hospitalized patients that have remained without VAP up until time t-1. In graphical 

terms, IP weighting removes all incoming edges into time-varying VAP such that biasing 

pathways are resolved, as displayed in the modified causal diagram in Figure E1 (B).
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Adjustment set and simplifying model and causal assumptions

In order to calculate IP weights, a time-dependent Cox proportional hazards model was fitted 

for time-to-VAP (or, equivalently, the daily probability of acquiring VAP) in function of the 

available covariate history, including admission characteristics and time-dependent factors, as 

detailed below. 

At each time wave, the history of daily measures of interventions and treatments was 

summarized in terms of their presence or absence on the day before possible VAP acquisition 

and by the total number of previous days exposed to each of these interventions and treatments. 

It was assumed that this summary coding of the covariate history was sufficient for confounding 

adjustment. To acknowledge that SOFA scores and antibiotic treatment the day before possible 

VAP diagnosis may be surrogate markers for an incubating infection, and hence potentially be 

affected by VAP, in accordance with (3), we adjusted for SOFA score and antibiotic treatment 

(and total number of treated days up to) two days before each considered time wave of possible 

occurrence of VAP.

The model included a flexible functional form of all continuous covariates (a restricted cubic 

spline with 3 knots (***) whenever feasible, or 2 knots (**) otherwise) and additional time-

transformed functions of covariates (the product of log(time-1) and the covariate) for which a 

smoothed function of the scaled Schoenfeld residuals over time indicated clear violations of the 

proportional hazards assumption (indicated with a single asterisk (*) in the list below).  

Baseline and admission characteristics

 Gender

 Age at ICU admission (***)

 Admission category (medical, emergency surgery or scheduled surgery)

 Admission year (2013, 2014, 2015, 2016, 2017)
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 APACHE II score (***)

 Updated Charlson comorbidity index (**)

 Antibiotic therapy at baseline (i.e. during the first two days at the ICU)

 Total SOFA score at baseline (i.e. at day 1 = the second calendar day at the ICU) (***)

Time-varying covariates including daily updated disease severity and interventions 

 Daily total SOFA score two days before possible occurrence of VAP (***)

 Daily evolution in total SOFA score (i.e. difference in total SOFA score two vs three

days before possible occurrence of VAP) (***)

 Daily updated treatment limitation decisions (TLDs) (code 0, 1, 2 or higher)

 Daily indicator of antibiotic therapy two days before possible occurrence of VAP

 Daily indicator of

o mechanical ventilation (*)

o administration of vasoactive agents

o enteral feeding

o administration of corticosteroids (>0.5 ml/kg)

o hemodialysis

o presence of a tracheotomy tube

o suspected or confirmed bacterial abdominal infection

o suspected or confirmed bacterial catheter-related infection

o suspected or confirmed bacterial respiratory infection (*)

o suspected or confirmed bacterial urinary tract infection

o suspected or confirmed other bacterial infections

o suspected or confirmed fungal infection

1 day before possible occurrence of VAP
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 Daily updated cumulative number of days exposed to antibiotic therapy up to two days

before possible occurrence of VAP

 Daily updated cumulative number of days exposed to

o mechanical ventilation

o administration of vasoactive agents

o enteral feeding

o administration of corticosteroids (>0.5 ml/kg)

o hemodialysis

o presence of a tracheotomy tube

o suspected or confirmed bacterial abdominal infection

o suspected or confirmed bacterial catheter-related infection

o suspected or confirmed bacterial respiratory infection

o suspected or confirmed bacterial urinary tract infection

o suspected or confirmed other bacterial infections

o suspected or confirmed fungal infection

up to 1 day before possible occurrence of VAP

Figure E2 and Figure E3 display the results of the final time-dependent Cox model. Figure E4 

displays the distribution of IP weights assigned to VAP-free patients as a function of day since 

ICU admission.
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Assessment of covariate balance

At every time wave, time-dependent IP weights ideally restore covariate balance across future 

exposures, conditional on the past exposure history. Because we aim to compare the 

counterfactual VAP-free cumulative incidence curve with the observed cumulative incidence 

curve (rather than another counterfactual curve), we focused on covariate balance between 

patients that were at risk of VAP at the beginning of each day (i.e. had remained hospitalized 

and without VAP (at least) up until the previous day) and a subgroup of those patients who 

died or were discharged without VAP or remained hospitalized without VAP until the end of 

that day (i.e. those patients whose weighted deaths that day contributed to the ‘counterfactual’ 

cumulative incidence curve).

Figure E5 displays covariate balance at days 2, 4, 8, 12 and 24, before and after IP weighting. 

These plots allow to assess extent to which IP weighting succeeded to accommodate covariate 

imbalances (summarized by standardized mean differences for continuous covariates or raw 

mean differences for binary covariates) due to selection of the latter from the former group of 

hospitalized patients on each day.

In theory, covariate balance should be checked at every single time window at which we 

considered incident VAP cases (i.e. daily, up to day 60 from ICU admission). However, this 

becomes quite cumbersome with an increasing number of time waves. We have therefore 

chosen to restrict assessment of covariate balance to a limited number of time waves.
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Figure legends

Figure E1.

Simplified causal diagram (A) (also available as an interactive DAGitty diagram from this 

webpage: http://dagitty.net/mdJm-Ys) and modified causal diagram after IP weighting (B) 

(also available from this webpage: http://dagitty.net/dags.html?id=ebuxWi).

Figure E2.

Point and 95% confidence interval estimates of adjusted hazard ratios of all categorical 

variables in the final time-dependent Cox model for daily risk of acquiring VAP. 

Figure E3.

Point and 95% confidence interval estimates of adjusted hazard ratios of all continuous 

variables in the final time-dependent Cox model for daily risk of acquiring VAP. 

Figure E4.

Distribution of inverse probability (IP) weights assigned to VAP-free patients as a function of 

day since ICU admission. 

Figure E5.

Covariate balance before and after IP weighting at days 2, 4, 8, 12 and 24 between patients at 

risk of VAP at the beginning of each day (i.e. had remained hospitalized and without VAP (at 

least) up until the previous day) and a subgroup of those patients who died or were discharged 

without VAP or remained hospitalized without VAP until the end of that day.
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Figure E6.

Comparison of results for estimating the time-dependent population-attributable fraction (PAF) 

of intensive care unit (ICU) mortality due to ventilator-associated pneumonia (VAP) based on 

an unadjusted competing risk (CR) analysis (approach 3 in the main text; A), a CR analysis that 

adjusts for gender, age and SOFA score at ICU admission (B), a CR analysis that adjusts for an 

extended set of admission characteristics including admission year, admission category, 

updated Charlson comorbidity index, APACHE II score and antibiotic treatment at ICU 

admission (C), and a CR analysis that additionally adjusts for time-dependent confounding 

(approach 4 in the main text; D). Upper panels: observed cumulative incidence of ICU mortality 

(black curves) and estimated counterfactual VAP-free cumulative incidence of ICU mortality 

(grey curves). Lower panels: estimated PAF of ICU death due to VAP (solid lines) and 95% 

pointwise confidence intervals (shaded areas). 
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Figure E1.

(A)
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(B)

E28



Figure E2.
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Figure E3.
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Figure E4.
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Figure E5.
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Figure E6.
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